
Arabian Journal for Science and Engineering (2018) 43:7945–7960
https://doi.org/10.1007/s13369-018-3261-8

RESEARCH ART ICLE - COMPUTER ENGINEER ING AND COMPUTER SC IENCE

Efficient Workflow Scheduling Algorithm for Cloud Computing System:
A Dynamic Priority-Based Approach

Indrajeet Gupta1 ·Madhu Sudan Kumar1 · Prasanta K. Jana1

Received: 26 April 2017 / Accepted: 12 April 2018 / Published online: 19 April 2018
© King Fahd University of Petroleum &Minerals 2018

Abstract
Workflow scheduling is one of the burning topics that has drawn enormous attention recently in the research community of
cloud computing due to its wide applications in astronomy, physics, bioinformatics, health care and so on. This is a well-known
NP-complete problem. It presents an interesting aspect of achieving minimum processing time of all the tasks and maximum
resource utilization in cloud resources. Therefore, many algorithms have been developed for workflow scheduling. However,
most of them consider a static priority of the tasks which is non-realistic for heterogeneous cloud computing environment.
In this paper, we propose a workflow scheduling algorithm which considers dynamic priority of the tasks. The algorithm
undergoes a process of min–max normalization followed by the calculation of the dynamic threshold to dispatch the tasks
into one of the virtual machines. The algorithm is extensively simulated using various benchmark, scientific and real-life
workflows. All the simulated results are compared with other four existing workflow scheduling algorithms. The simulated
results confirm that the proposed algorithm lags behind all the four existing algorithms in terms of makespan and average
cloud resource utilization. The simulation results are also validated through analysis of variance statistical test.

Keywords Cloud computing · Workflow scheduling · Min–max normalization · Makespan · Resource utilization

1 Introduction

Many scientific areas including bioinformatics, physics,
astronomy and health care require executing complex jobs
which are modeled as workflows. Such workflows are rep-
resented by a directed acyclic graph (DAG) in which a node
denotes a task, and the data dependency is indicated by a
directed edge between the two corresponding task nodes.
However, the scientific workflows in the aforementioned
areas are very large in size and complicated in structure. They
require high computational power and storage for their pro-
cessing. Therefore, various projects such as Pegasus [1,2],
ASKALON [3] and GrADS [4] are designed for processing

B Indrajeet Gupta
indrajeet7830@gmail.com

Madhu Sudan Kumar
mdhsdnkumar88@gmail.com

Prasanta K. Jana
prasantajana@yahoo.com

1 Department of Computer Science and Engineering, Indian
Institute of Technology (ISM), Dhanbad, Dhanbad 826004,
India

andmanagement of theworkflows in the grid environment. In
the recent years, cloud computing [5–7] has gained enormous
attention as the most suitable platform for executing large-
scale scientificworkflows due to the following reasons. It can
provide unlimited resources by creating an illusion through
virtualization technology. The users are charged on a pay-as-
you-go basis because virtualized resources are dynamically
provisioned as per the need of workflows and their dead-
line and budget. Moreover, cloud is more reliable than its
counterparts such as grid and cluster computing. However,
we require efficient schemes for scheduling large scientific
workflows for their processing. In this paper, we propose an
efficient scheme for workflow scheduling in a cloud environ-
ment.

The problem of workflow scheduling in cloud comput-
ing is to map each task to a suitable VM and to schedule
the tasks for their execution. It is a challenging and a
well-marked problem as NP-complete in nature. Therefore,
various scheduling algorithms [5,6] have been developed for
finding solution by fulfilling someoptimal criteria. For exam-
ples, the works presented in [8–14] are designed to obtain
considerable least makespan and maximum cloud resource
utilization. The algorithms in [12,13] are designed to achieve

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-018-3261-8&domain=pdf
http://orcid.org/0000-0003-1262-899X

7946 Arabian Journal for Science and Engineering (2018) 43:7945–7960

cost optimality. The works reported in [15] emphasize on
the energy efficiency. However, most of these algorithms are
developed for independent tasks and thus they are not appli-
cable for the workflow applications.

In this paper, we propose an algorithmwhich is applicable
for workflow scheduling. The algorithm is based on min–
max normalization on estimated computation time (ECT)
of all the tasks. However, it uses dynamic threshold value
for dividing all the tasks into small batch and large batch
in order to obtain task to VM mapping with the application
of minimum completion time algorithm [16]. The proposed
algorithm is extensively simulated using various scientific
workflows [2], and the simulation results are compared with
four existing algorithms, namely heterogeneous earliest fin-
ish time (HEFT) [9], dynamic level scheduling (DLS) [10],
min–min [11] and max–min [11]. The overall workflow exe-
cution time (i.e., makespan) and average cloud utilization
both are considered as the performance parameters for the
proposed algorithm.

Recently, Panda and Jana [13,17] have presented various
task scheduling algorithms. The basic idea of our proposed
algorithm is similar to them. However, it has the follow-
ing notable differences and advantages. (1) We consider the
dynamic threshold value to divide the tasks into two different
batches in contrast to a static threshold as used in [13,17]. (2)
To make more realistic our proposed algorithm incorporates
data transfer time between the tasks which is not considered
by their approach. (3) They have shown the simulation results
for independent tasks which is not applicable for workflow
scheduling.

The contributions of this paper can be summarized as fol-
lows:

– Development of a workflow scheduling algorithm based
on min–max normalization

– Design of a dynamic threshold for categorizing the task
in the ready queue

– Rigorous simulation on different benchmark, scientific
and real-life workflows

– Performance evaluation by considering makespan and
average cloud utilization as the performance parameters

– Comparison of the simulation results with four well-
known existing algorithms to show the effectiveness of
the proposed algorithm

– Validate the results by performing a hypothetical test,
called ANOVA [18].

The rest of the paper is outlined as follows: Sect. 2
describes few notable research work related to workflow
scheduling problems. Section 3 states workflow scheduling
problem formulationwith the cloudmodel functionality. Sec-
tion4 explains theproposedworkwith an illustrative example
followed bySect. 5, inwhich experimental results and perfor-

mance evaluation with comparisons of proposed algorithm
with the existing works are well loaded. Finally, Sect. 6 sum-
marizes the paper.

2 RelatedWork

Numerous researchworks [19–25,27,28] have been surveyed
and proposed for workflow scheduling in cloud environment
followed by both centralized and multi-agent distributed
approaches. The workflows can be categorized in two main
categories, (1) data-intensive and (2) compute-intensive
workflows. The communication-to-computation ratio (CCR)
value is applied to categorize such workflows. When the
value ofCCR is very low, aworkflow is fallen under compute-
intensive otherwise, it is data-intensive [21,24,26,27]. The
algorithm which we propose in this paper is capable to
handle both these types, i.e., compute-intensive and data-
intensiveworkflow applications. Due toNP-complete nature,
various heuristic and meta-heuristic-based algorithms have
been carried out for workflow scheduling. Most of the algo-
rithms have certain objectives such as minimizing cost,
makespan, energy consumption and maximizing reliability
and resource utilization [5,8,28–31]. Yu et al. [32] presented
a task scheduling algorithm which works in two phase, and a
three-level cloud environment is taken as the computing envi-
ronment. This scheduling algorithm is a hybridization of the
traditional opportunistic load balancing (OLB) and min–min
load-balanced scheduling strategy. However, this method is
limited for the three-level cloud architecture. Another notice-
able work has been proposed byMing and Li [25]. They tried
to recover the waiting time between the short tasks by apply-
ing max–min scheduling scheme.

Cloud computing is itself a multi-agent-based system,
which creates an environment for providing various services.
The workflow management system can also be benefited
by the agent-based paradigm over the centralized system to
solve the complex problems. A multi-agent system (MAS)
is a group of loosely coupled network of software agents of
different capabilities which interact to each other to solve
the given problem. The detailed review and applications
about the multi-agent systems are well described in [33].
In [8], Bochenina et al. proposed three workflow schedul-
ing algorithms for multiple workflows. In their work, a soft
deadline-based scheduling scheme have been introduced for
mapping the tasks of multiple workflows within the various
different deadlines by considering static set ofVMswithprior
known empty time windows. Another well-known cloud
platform OpenNebula [30] follows the task rank schedul-
ing policy, and the match making scheduler is used in this
scheduling scheme.Here, highest rank tasks are to bemapped
on the suitable VM.

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7947

Nimbus [34] searches virtual resources having the min-
imum percentage of unallocated random access memory.
After that it keeps the resource in sleep mode if the resource
has not been used for a long time, so that the resource may
utilize the proper power consumption. Therefore, in case
of energy-efficient scheduling it is one remarkable work.
However, it provides poor makespan. Freund et al. [35]
drawn the advantage of min–min and max–min as the
computational intensive algorithms, both were applied by
Ibarra and Kim [26]. Afterwards, Braun [36] displayed that
min–min gives quite satisfactory makespan, whereas the
resource utilization is produced by max–min algorithm as
compared to other scheduling algorithms. Recently, Li et
al. [12] have proposed cloud min–min scheduling which
is the extension of the popular min–min algorithm. This
is first work which belongs to heterogeneous multi-cloud
environment for bag of tasks. In the similar fashion, Panda
and Jana [17] have proposed CMAXMS (cloud max–min
scheduling) and CMINMAXS (cloud min–min max–min
scheduling), respectively. However, these algorithms have
considered task to cloud mapping rather than mapping of the
tasks to the virtualmachines. Hence, their methodmay not be
applicable for the workflow scheduling in cloud computing.

Some algorithms [8,9,12,13] are presented for cloud envi-
ronment, but they consider static workflows, and therefore,
they are not suitable for dynamic workflow scheduling. In
the case of dynamic scheduling, the information of work-
flows and cloud resources are not given in advance and it
is to be available during the scheduling of the workflows.
Since it is one of the core concern in the cloud computing
that its resources are elastic, a dynamic scheduling makes
more sense in the realistic scenario and the remarkable work
has been done by Salah et al. [37]. Their work has been
designed to achieve the best suitable cloud resources while
the processing of user request as per the every service level
objectives (SLOs) satisfaction. This work uses the Markov
chain model efficiently for prediction of the cloud resources
to fulfill the user-defined SLOs. There are many other algo-
rithms that deal with the dynamic scheduling of workflows.
However, this is not concerned with the proposed technique
as it deals with static schedulingwhere all the tasks and avail-
ability of VMs are priori.

This is noteworthy that the well-known algorithms, i.e.,
HEFT [9], Min–Min, Max–Min and DLS are not fully able
to fill the idle time slot of computing resources, i.e., VMs.
The other task replication-based task scheduling algorithms
ever demand the infinite resource infrastructure. Therefore,
the improvement for utilization of VMs under heterogeneous
cloud infrastructure is always desirable. So we present a new
dynamic priority list-based workflow scheduling algorithm
for heterogeneous cloud.

3 CloudModel and Problem Formulation

This section describes the cloud model which is used
throughout in this paper. The problem formulation and some
preliminaries are well organized step by step.

3.1 CloudModel

We consider a cloud model which is applicable with the pre-
defined assumptions for workflow scheduling. In this model,
the cloud servers offer various VM instances of dissimilar
capabilities. The VM manager takes the all responsibilities
of VM creation and deletion as per the global cloud manager
requirement. The workflow manager is the module to split
the workflow applications into the task pool and also send the
task dependencies information in the formof adjacency list to
the global cloud manager. The global cloud manager works
as the cloud scheduler. It keeps track of the status of VMs
which are deployed in all the host systems on cloud servers.
When a user application (workflow) is submitted to a work-
flow manager, it splits up that workflow into the set of tasks
or cloudlets and submits to global cloud manager deployed
separately in the cloud server physically. Then, global cloud
scheduler fetches the tasks from the ready task list and then
schedules the task on the scalableVMpool as per the schedul-
ing strategy. If the tasks are assigned to the VMs those are
deployed on the same cloud server, then the tasks do not
require any data transfer time; otherwise, there will be a data
transfer time required to handover the task from one cloud
server to another cloud server.

3.2 Workflow Scheduling Problem Formulation

3.2.1 Workflow Application

Aworkflow Dg = (T , E) is symbolized by a directed acyclic
graph (DAG) where T = {T1, T2, . . . , Tn} is the set of n
task nodes and E is the set of edges. An edge from Tp to
Ts indicates that the task Ts cannot be started until Tp is
completed and this is denoted by Tp ≺ Ts . The task Tp is the
predecessor, and Ts is the successor.

Definition 3.1 In aworkflow application, a task nodewithout
any ancestor task is known as entry task and a node without
any successor is known as exit task node. If a workflow has
multiple entry nodes, a pseudo entry task is added to connect
it with all the entry nodes by means of virtual links having
zero weight (i.e., transfer time). The computation time of
this pseudo entry task is also assumed as zero. Similarly,
in case of multiple exit nodes, we introduce a pseudo exit
task to connect it with all the exit nodes by applying the
same assumption as that of the pseudo entry task. The data

123

7948 Arabian Journal for Science and Engineering (2018) 43:7945–7960

transfer time between task nodes can be represented by an
upper triangular matrix denoted by DT as follows:

DT =
T1
T2
...

Tn

T1 T2 . . . Tn⎡
⎢⎢⎢⎣

0 DT1,2 . . . DT1,n

0 0 . . . DT2,n
...

...
...

...

0 0 . . . 0

⎤
⎥⎥⎥⎦

(1)

where the element DTi j , 1 ≤ i ≤ n, 1 ≤ j ≤ n represents
the time for data transfer between the task Ti and the task Tj .

3.2.2 Cloud Resources or VM Instances

A cloud service provider (CSP) offers a set of VM instances
of different capability which are suitable for execution of a
given workflow. Let CS = {CS1,CS2,CS3, . . . ,CSM } be
the available set of cloud servers which deploy m number of
VMs. These VMs are responsible for execution of the tasks
of the given workflow. Note that, the number of active VMs
is changeable from one cloud server to another cloud server
as per the deployment capacity of cloud server. It is also
assumed that the data transfer time among two VMs is negli-
gible if both the VMs are deployed on the same cloud server.

3.2.3 Estimated Computation Time (ECT)

A task may take different execution time on different VMs.
This estimated computation time is represented by a matrix
called ECT which is defined as follows:

ECT =
T1
T2
T3
.
.
.

Tn

CS1 · · · CSM︷ ︸︸ ︷
VM1 . . . VM |CS1 | . . .

︷ ︸︸ ︷
VMα+1 . . . VMα+|CSM |⎡

⎢⎢⎢⎢⎢⎢⎣

ET1,1 . . . ET1,|CS1 | . . . ET1,α+1 . . . ET1,α+|CSM |
ET2,1 . . . ET2,|CS1 | . . . ET2,α+1 . . . ET2,α+|CSM |
ET3,1 . . . ET3,|CS1 | . . . ET3,α+1 . . . ET3,α+|CSM |

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

ETn,1 . . . ETn,|CS1 | . . . ETn,α+1 . . . ETn,α+|CSM |

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where α is
∑M−1

k=1 |CSk | and cell ETi, j , 1 ≤ i ≤ n, 1 ≤
j ≤ |CSM | represents the estimated computation time of
the task Ti on VM j . This time can be estimated by using
different routine techniques (e.g., empirical and analytical
modeling [31] and historical data [4,38]).

Before moving ahead in the problem formulation, the fol-
lowing assumptions are considered throughout the paper.

1. The runtime of the tasks in the given workflows is known
priorly.

2. Single task from the task pool must be executed on a
single VM at a time. Neither the partial execution nor the
duplication of the tasks is allowed.

3. There should not be any preemption of the task from a
VM once the task is allotted to VM.

3.2.4 Cloud Makespan

The makespan (MS) is the overall processing time of a work-
flow application. So, this is the elapsed time from the starting
of executing entry task till the end of the exit task. Note that,
all the tasks need to be executed on available VMs of the
cloud servers. LetMS(CSk) be the makespan corresponding
to all the tasks executed on the VMs of the cloud server CSk ,
1 ≤ k ≤ M and MS(VM j) be the makespan of the tasks
executed on the virtual machine say, VM j , 1 ≤ j ≤ |CSk |
(assuming that VM j is deployed in cloud CSk). Then the
individual makespan on the cloud server CSk , 1 ≤ k ≤ M
can be mathematically expressed as follows:

MS(CSk) = max(MS(VM j)), 1 ≤ j ≤ |CSk |. (3)

Therefore, the overall makespan on all the cloud servers
for a given workflow application is given by

MS = max(MS(CSk)), 1 ≤ k ≤ M . (4)

3.2.5 Average Cloud Utilization (CU)

Time consumption rate of any VM with respect to the cloud
server on which the VM is deployed is known as the VM
utilization. The proportion between the VM makespan and
the entire engaged (busy) time (i.e., makespan) of the cloud
server CSk on which the VM is deployed [17]. Mathemati-
cally, it can be expressed as follows:

U (VM j) = MS(VM j)

MS(CSk)
, 1 ≤ j ≤ |CSk | (5)

where U (VM j) denotes the utilization of VM j . Therefore,
the utilization of the cloud server can be defined as the aver-
age utilization of all the deployed VMs on same cloud server.
It is represented mathematically as:

U (CSk) = 1

|CSk |
|CSk |∑
j=1

U (VM j) (6)

where 1 ≤ j ≤ |CSk | , 1 ≤ k ≤ M .
In the above-mentioned equation,U (CSk) denotes the uti-

lization of cloud serverCSk . Similarly, the average utilization
of all cloud servers defined as average cloud utilization.

CU = 1

M

M∑
k=1

U (CSk), 1 ≤ k ≤ M . (7)

Problem Statement The problem is to generate a schedule
plan which maps all the tasks of the given workflow on m

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7949

active VMs deployed onM cloud servers such that makespan
is minimized and average cloud utilization is maximized.

3.3 Notations and Preliminaries

Let us now define the other notations/terminologies that are
useful to describe our proposed algorithm. All such notations
along with their descriptions are depicted in Table 1.

1. Estimated computation time (ETi, j): It is the estimated
computation time of task Ti on VM j as defined earlier in
Eq. 2.

2. Earliest start time (ESTi, j): The ESTi, j is the time of a
task Ti , when a task can begin its execution on a VM j . It
searches for the most extreme (max) of the followings:
(1) minimum accessible time of VM j (i.e., Avail j) and
(2)maximumof the addition of the completion time of all
the antecedent tasks of a given task Ti , where 1 ≤ i ≤ n
and the information (data) transfer time from the parent
tasks to the current task Ti . Mathematically, ESTi, j is
formulated as follows:

ESTi, j = max

{
Avail j , max

pi∈predr(i)

{
ACT pi + DT pi ,i

}}

(8)

where a function max seeks the maximum of all the val-
ues, pi denotes a predecessor task, predr(i) consists a set
the parent (predecessor) tasks of current task Ti , ACT pi

represents the time of actual completion for a predecessor
task Tpi , pi ∈ predr(i) andDT pi ,i denotes the data trans-
fer time from a predecessor task Tpi to current task Ti .

Remark 3.1 For all the entry tasks the ESTi, j will be zero,
i.e., EST entry, j = 0.

Remark 3.2 The data transfer time from a predecessor task
(Tpi) to the current task Ti will not be considered if both the
tasks are mapped to the same VM or same cloud server.

3. Earliest finish time (EFTi, j): The EFTi, j of a task Ti on
VM j is calculated by summingof the earliest (immediate)
start time and estimated computation time of the task Ti
on the VM j which is formulated as follows:

EFTi, j = ESTi, j + ETi, j (9)

4. Actual completion time (ACTi, j): It is the absolute time
by which VM j completes the task Ti .

5. Normalized estimated completion time (N_ECTi, j):
N_ECT(i, j) is formulated as follows:

N_ECTi, j =
(

ECTi, j − min{ECTi, j }
max{ECTi, j } − min{ECTi, j }

)
(10)

where 1 ≤ i < n, 1 ≤ j ≤ m

Initially, at the level 1 of theworkflow, the normalizedECTi, j

is calculated by Eq. 10. After that N_ECTi, j updates as

Table 1 List of notations Notation Description

li i th level of workflow Dg

QRli Ready task list at level li of workflow Dg

|QRli | Total no. of tasks at level li of workflow Dg

ETi, j Estimated computation time of task Ti on VM j

ESTi, j Earliest start time of task Ti on VM j

EFTi, j Earliest finish time of task Ti on VM j

DTi, j Data transfer time from task Ti to task Tj

n Numbers of task node in a workflow Dg

m Numbers of VMs used for scheduling

M Total number of cloud servers (CS)

ACT(i) Actual completion time of task Ti

COMP_EFT () Function for compute estimated finish time

CCR Average communication-to-computation ratio of workflow Dg

Avail j Available time of VM j

Temp_ECTi, j Temporary ECTi, j matrix after mapping a task Ti on VM j in QRli at level li of Dg

NTemp_ECTi, j Normalized Temp_ECTi, j matrix in ready queue QRli at each level li of Dg

Thrsh(dTi) Dynamic Normalized threshold value threshold

B_large Large batch of tasks at each level li of Dg

B_small Small batch of tasks at each level li of Dg

123

7950 Arabian Journal for Science and Engineering (2018) 43:7945–7960

N_Temp_ECTi, j because if any single task Ti is assigned
to any available VM j then the previous ECTi, j needs to be
updated as Temp_ECTi, j .

Remark 3.3 Similarly, N_ECTi, j also updates as corre-
sponding N_Temp_ECTi, j at each level li of workflow Dg .

6. Dynamic normalized threshold value (Thrsh(dTi)):Thrsh
(dTi) of task Ti is the ratio between maximum computa-
tion time of task Ti onm VMs andmaximumdata transfer
time DT pi ,i at task Ti from all of its predecessors’ task
set {Tp}. If the task node Ti do not have any predecessor
task in predecessors tasks set {Tp}, then data transfer time
will be zero. Mathematically, Thrsh(dTi) is calculated as
follows:

Thrsh(dTi) =

⎧⎪⎨
⎪⎩

∑
i∈|QRli

| Max
j∈m (ECTi, j)

∑
i∈|QRli | Max

pi∈{Tp }(DT pi ,i)
if Tp �= Φ

Fixed if Tp = Φ

(11)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ pi ≤ |Tp|

Remark 3.4 The Thrsh(dTi) is totally independent from
Temp_ECTi, j . It is calculated on the basis of initial ECTi, j

at each level of workflow Dg .

7. Avg. communication-to-computation ratio (CCR): It is
the ratio of average data transfer time (communication
cost) to the average computation cost of any DAG. It is
the property of the DAG or workflow. On the basis of
CCR value, the DAG is recognized as either compute-
intensive or data-intensive.

4 Proposed Algorithm

The basic concept of the proposed algorithm is as follows.We
first divide all the tasks of the given workflow into the bag of
tasks (BOTs) at each level. Now we start iterating the sched-
ule of the tasks with the first BOT as follows. The ECT value
for all the tasks in the BOT is normalized using min–max
normalization. Then, we apply a dynamic threshold value to
divide all the tasks of the BOT into two batches. Finally, we
perform scheduling by applying minimum completion time
algorithm on each of batches, the large batch first followed
by the small batch.

The proposed algorithm works in two phases at each level
li of workflow Dg without assigning the task’s priority. In the
first phase, it normalizes the ECTi, j of each task Ti at each
level li . It then calculates the threshold value of each task as
per Eq. 11. The maximum normalized value of {N_ECTi, j }

is compared with the threshold value Thrsh(dTi) to divide all
the tasks at each level into small and large batches. This is
done from the entry task node to the exit task node in top to
bottom fashion. In the second phase, the tasks are assigned
to the VMs by choosing minimum execution time from the
ECTi, j . After task assignment, further the ECTi, j needs to
be updated as Temp_ECT(i, j). This process continues until
all the tasks are scheduled. In second phase, EST and EFT
are calculated of that task which has to be scheduled as per
the algorithm (refer Eqs. 8, 9). The detailed description of
the above-mentioned method is shown in pseudo code from
Algorithm 1 through Algorithm 4.

Algorithm 1 : NMMWS Workflow Scheduling

Input- Dg(T , E) workflow consisting of n task nodes

Output- Schedule plan generation S of workflow Dg(T , E) on all
available m VMs deployed on M cloud servers

1 Read the estimated computation time ECT and data transfer time
DT of a given workflow application Dg(T , E) where Ti∈T and
DTi, j∈E

2 while there are unscheduled tasks in the task pool do
3 for each level li of Dg(T , E) do
4 Call GENERATE-READY-TASKS-LIST

(n, ECTi, j)
5 Call COMP_EFT (ECTi, j of QRli , DTi, j)

6 CallNORM_PARTITION (ECTi, j , N_ECTi, j , Thrsh(dTi))
7 if B_large is not empty then
8 find min(EFT (i , j))
9 taskVMmap(Ti)=VM j
10 ACTi, j = EFTi, j
11 ESTi, j = 1
12 remove Ti from B_large
13 else
14 find min(EFTi, j)
15 taskVMmap(Ti)=VM j
16 ACTi, j = EFTi, j
17 ESTi, j=1
18 end if
19 end for
20 end while

Algorithm 2 :
GENERATE-READY-TASKS-LIST(n, ECTi, j)

1 while there is unscheduled task in workflow Dg(T , E) do
2 Blarge of tasks is empty
3 for each task Ti do
4 if ECTi, j then
5 Add this Ti to QRli
6 end if
7 end for
8 end while

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7951

Algorithm 3 : COMP_EFT(ECTi, j of QRli , DTi, j)

1 for each task Ti in ready task list QRli do
2 if Ti has no parent task Tp then
3 ECTi, j = Avail j + ETi, j
4 else
5 for each VM j and Tp in parent task of Ti do
6 if taskVMmap(Tp) is not equal VM j then
7 if ECTi, j <

max{Avail j , max{ACTpi +DT pi ,i }} then
8 ECTi, j =
max{Avail j , max{ACTpi +DT pi ,i }}

9 end if
10 else
11 if ECTi, j<max(Avail j , ACTpi) then
12 ECTi, j = max(Avail j , ACTpi)

13 end if
14 end if
15 end for
16 end if
17 end for

Algorithm 4 :NORM_PARTITION
(ECTi, j , N_ECTi, j , Thrsh(dTi))

1 for each task Ti in ready task list QRli and VM j do
2 Find min(ECTi, j)

3 Find max(ECTi, j)

4 Find the normalized ECTi, j as N_ECTi, j
/∗ using Eq. 10 ∗/

5 Find the Thrsh(dTi) /∗ using Eq. 11 ∗/

6 if max {N_ECTi, j } ≥ Thrsh(dTi) then
7 add task Ti to batch B_large
8 else
9 task Ti go to batch B_small
10 end if
11 end for

Lemma 1 Time complexity of procedure GENERATE-
READY-TASKS-LIST (n,ECTi, j) is O(n2).

Proof There are n task nodes which are to be scheduled on
m VMs. Before scheduling all the task nodes at each level of
the DAG li are maintained by the ready task list QRli . So the
while loop from Step 1 through Step 8 requires O(n) time
in worst case and inner for loop from Step 3 through Step
7 iterates by O(n) times. Therefore, the time complexity of
the procedure GENERATE-READY -TASKS-LIST is O(n2).

�	
Lemma 2 Time complexity of COMP_EFT (ECTi, j , DTi, j)

is O(nm).

Proof For the n separated tasks of the DAG, the for loop
iterates Step 1 through Step 17 n times and the inner for
loop iterates Step 5 through Step 15 m times. Here m is the
total available VMs which are deployed on M cloud servers.
SoCOMP_EFT (ECTi, j ,DTi, j) requires O(nm) time com-
plexity. �	

Lemma 3 The procedure NORM_PARTITION has the Time
complexity of O(n2m).

Proof Let n be the total task nodes in a DAG application and
m is the number of all active VMs which are deployed at M
cloud servers. In this procedure, from Step 1 to Step 11 the
for loop iterates (nm) times. Then Step 2 and Step 3 both
require O(nm) time and Step 4 and Step 5 both require O(n)

time complexity. Therefore, procedure NORM_PARTITION
takes O(n2m) time complexity. �	

Lemma 4 The overall time complexity of the proposed algo-
rithm NMMWS is O(n3ml).

Proof Let n be the number of total task nodes with e con-
necting edges, l is the count of levels in the given workflow
by consideringm active VMswhich are deployed at M cloud
servers. In the algorithm, Step 2 and Step 3 require O(n+ e)
and O(l) time, respectively. Consequently, Step 4 demands
O(n2) time for generating ready task list for n number of
tasks in the worst case. Step 5 requires O(nm) time for com-
puting estimated completion time of each task at each level
of li of the DAG. Step 6 requires O(n+e) time. The for loop
from Step 3 to Step 19 iterates n2m times. It takes O(n2m)

time accordingly. Here, the while loop from Step 2 to Step
20 iterates n times. Hence, the overall time complexity of the
of the proposed workflow scheduling algorithm NMMWS is
O(n3ml). �	

4.1 An Illustration

We consider the Montage DAG as an example workflow
as figured in Fig. 1. It orientates as 15 tasks, i.e., T =
{T1, T2, . . . , T15}with 7 levels and 24 edges among the tasks.
TheMontageworkflow follows the hybrid structurewith par-
allelism and pipelining. The data transfer time matrix DTi, j

denotes the file transfer time among the tasks which repre-
sents the data transfer time between the tasks as shown in
Table 2. The estimated computation time ECT matrix repre-
sents computation time of each task on the 4 virtual machines
which are deployed on two cloud servers as shown in Table 3.

In Fig. 1, level-1 of the workflow has three task nodes in
ready list QRl1 . They are T1, T2 and T3, and all these three
tasks have the possibility to map on all the 4 available VMs
at both the cloud servers. So at level-1, tasks T1, T2 and T3
consist the Temp_ECT(i, j) as follows:

Temp_ECTi, j = T1
T2
T3

⎛
⎜⎜⎝
VM1 VM2 VM3 VM4

17 14 13 22
14 17 14 16
19 17 16 12

⎞
⎟⎟⎠

123

7952 Arabian Journal for Science and Engineering (2018) 43:7945–7960

Fig. 1 A Montage workflow of
15 task nodes

722

23

13
9

16

2113 15

11

198 1712
16

19
1813

15

17
14

11
16

7

T1 T2 T3

T4 T5 T6 T7 T8

T9

T10

T11 T12 T13

T14

T15

Table 2 Data transfer time
matrix with 24 dependency
edges and 15 tasks of Montage
workflow

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

T1 0 0 0 13 16 0 0 0 0 0 22 0 0 0 0

T2 0 0 0 15 0 11 14 0 0 0 0 23 0 0 0

T3 0 0 0 0 0 17 18 19 0 0 0 0 17 0 0

T4 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0

T5 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0

T6 0 0 0 0 0 0 0 0 15 0 0 0 0 0 0

T7 0 0 0 0 0 0 0 0 17 0 0 0 0 0 0

T8 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0

T9 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0

T10 0 0 0 0 0 0 0 0 0 0 13 16 9 0 0

T11 0 0 0 0 0 0 0 0 0 0 0 0 0 13 0

T12 0 0 0 0 0 0 0 0 0 0 0 0 0 21 0

T13 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0

T14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11

T15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7953

Table 3 An ECT matrix for
Montage workflow DAG with
15 tasks and 4 virtual machines
on 2 cloud servers

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

CS1
VM1 17 14 19 13 19 13 15 19 13 19 13 15 18 20 11

VM2 14 17 17 20 20 18 15 20 17 15 22 21 17 18 18

CS2
VM3 13 14 16 13 21 13 13 13 13 16 14 22 16 13 21

VM4 22 16 12 14 15 18 14 18 19 13 12 14 14 16 17

According to Eq. 10, normalized Temp_ECTi, j will be as
follows:

N_Temp_ECTi, j = T1
T2
T3

⎛
⎜⎜⎝
VM1 VM2 VM3 VM4

0.50 0.20 0.10 1.00
0.20 0.50 0.20 0.40
0.70 0.50 0.40 0.00

⎞
⎟⎟⎠

In DAG example, tasks T1, T2 and T3 have no predeces-
sors tasks so there will be no data transfer time at tasks
T1, T2 and T3 from its predecessors tasks. If DT pi ,i is
zero, then the threshold Thrsh(dTi) will be also zero as per
Eq. 11. Therefore, the Thrsh(dTi) is fixed as 0.99 for such
type of situations. Now we compare Thrsh(dTi) with max
element of N_Temp_ECTi, j . MaxN_Temp_ECTi, j = 1.00
in the N_Temp_ECTi, j matrix at level-1 for task T1 com-
pared with Thrsh(dTi) which is fixed as 0.99. Thrsh(dTi) <

MaxN_Temp_ECTi, j ; therefore, task T1 is placed in large
batch (b_large). By calculating EST and EFT as per Eqs. 8
and 9 task T1 is mapped on the VM3 at cloud server 2. Now
updated Temp_ECT(i, j) for tasks T2 and T3 will be as fol-
lows:

Temp_ECTi, j = T2
T3

⎛
⎝
VM1 VM2 VM3 VM4

14 17 13 + 14 16
19 17 13 + 16 12

⎞
⎠

and corresponding Normalized Temp_ECTi, j will be as fol-
lows:

N_Temp_ECTi, j =

T2
T3

⎛
⎝

VM1 VM2 VM3 VM4

0.1176 0.2941 0.8824 0.2353
0.4118 0.2941 1.00 0.00

⎞
⎠

MaxN_Temp_ECTi, j in the updated N_Temp_ECTi, j matrix,
is also 1.00 for task T3 also compared with Thrsh(dTi)which
is fixed as 0.99. Here, also Thrsh(dTi) < MaxN_Temp_
ECTi, j ; therefore, task T3 is also placed in large batch
(b_large). Similarly, after findingEST andEFT as per Eqs. 8
and 9 the task T3 is mapped on the VM4 at cloud server 2.
Now at level 1 ofDAG, task T2 has the updatedTemp_ECTi, j

as follows:

T2

(
VM1 VM2 VM3 VM4

14 17 13 + 14 16 + 12

)

Table 4 The tasks to VMs mapping with entire scheduling process for
15 tasks of montage workflow

TaskID EST EFT ACT VMID CloudID

T1 0 13 13 3 2

T2 0 14 14 1 1

T3 0 12 12 4 2

T4 26 39 13 1 1

T5 13 28 15 4 2

T6 14 32 18 2 1

T7 28 41 13 3 2

T8 13 26 13 3 2

T9 39 59 20 1 1

T10 59 70 11 1 1

T11 70 92 22 2 1

T12 70 90 20 1 1

T13 79 93 14 4 2

T14 92 108 16 1 1

T15 108 124 16 1 1

The corresponding Normalized Temp_ECTi, j only for T2
will be as follows:

T2

(
VM1 VM2 VM3 VM4

0 .2143 .9286 1.00

)

Here, also Thrsh(dTi) < MaxN_Temp_ECTi, j therefore
task T3 is also placed in large batch (b_large). Further by
calculating EST and EFT , the task T2 is mapped on the VM1

at CS1.
Now at level-2 in the DAG example, there are 5 tasks

T4, T5, T6, T7 and T8 which are in the ready list QRli and the
tasks T1, T2 and T3 have already been mapped on the VM3,
VM1 and VM4, respectively.

Therefore, after the scheduling of tasks T1, T2 and T3 the
machine available time Avail j for VM1, VM2, VM3 and VM4

will be 14, 0, 13 and 12, respectively. But T4 has the prede-
cessors tasks T1 and T2 with the data transfer time DTi, j 13
and 15, respectively. So according to Algorithm 4 from step-
5 to step 11, the Temp_ECTi, j for the tasks T4, T5, T6, T7
and T8 and all the 4 VMs VM1, VM2, VM3 and VM4 will be
updated as follows:

123

7954 Arabian Journal for Science and Engineering (2018) 43:7945–7960

Table 5 Gantt chart for
NMMWS VM4 0∼12 13∼28 28∼79 79∼93 93∼124

CS2 T2 T5 * T13 *

VM3 0∼13 13∼26 28∼41 41∼124

T1 T8 T7 *

VM2 0∼14 14∼32 32∼70 70∼92 92∼124

CS1 * T6 * T11 *

VM1 0∼14 26∼39 39∼59 59∼70 70∼90 92∼108 108∼124

T2 T4 T9 T10 T12 T14 T15

Table 6 Gantt chart for
Min–Min scheduling VM4 0∼12 13∼28 28∼83 83∼95 93∼140

CS2 T3 T5 * T11 *

VM3 0∼13 13∼26 26∼28 28∼41 41∼140

T1 T8 * T7 *

VM2 0∼14 14∼32 32∼70 70∼91 91∼140

CS1 * T6 * T12 *

VM1 0∼14 14∼26 26∼39 39∼59 59∼70 70∼86 86∼108 108∼124 124∼140

T2 * T4 T9 T10 T13 * T14 T15

Table 7 Gantt chart for
Max–Min scheduling VM4 0∼13 13∼28 28∼77 77∼90 90∼102 102∼147

CS2 * T5 * T10 T11 *

VM3 0∼13 13∼51 51∼64 64∼77 77∼99 99∼147

T1 * T7 T9 T12 *

VM2 0∼33 33∼53 53∼147

CS1 * T8 *

VM1 0∼14 14∼33 33∼46 46∼59 59∼99 99∼115 115∼131 131∼147

T2 T4 T6 * T13 T14 T15 *

Table 8 Gantt chart for HEFT scheduling

VM4 0∼12 12∼13 13∼28 28∼42 42∼91 91∼105 105∼152

CS2 T3 * T5 T7 * T13 *

VM3 0∼13 13∼25 25∼38 38∼51 51∼64 64∼152

T1 * T6 T8 T9 *

VM2 0∼82 82∼103 103∼152

CS1 * T12 *

VM1 0∼14 14∼26 26∼39 39∼71 71∼82 82∼104 104∼120 120∼136 136∼152

T2 * T4 * T10 T11 * T14 T15

Temp_ECTi, j =
T4
T5
T6
T7
T8

⎛
⎜⎜⎜⎜⎜⎜⎝

VM1 VM2 VM3 VM4

39 46 42 43
48 49 34 28
42 32 38 43
45 45 41 42
49 51 26 30

⎞
⎟⎟⎟⎟⎟⎟⎠

After that, the normalization of Temp_ECTi, j has been done
stepby step.Nowaccording toThrsh(dTi) the tasks are placed
into small batch or large batch similar to previous steps for T1,

T2 and T3 at level-1. For this, the overall task-VM mapping
and scheduling is demonstrated in Table 4.

The Gantt chart for the montage workflow application
of Fig. 1 against the ECT matrix of Table 3 is shown in
Table 5. It is noteworthy that an asterisk (‘*’) represents the
idle time slot of virtual machine and ‘∼’ denotes duration of
the assigned task in the Gantt chart.

We also produce the Gantt charts for the existingmin–min
DAG scheduling [11], max–min DAG scheduling [11] and

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7955

Table 9 Makespan and average cloud utilization comparison for NMMWS, Min–Min, Max–Min, DLS and HEFT scheduling algorithm

NMMWS Min–Min Max–Min DLS HEFT

Makespan 124 140 147 197 152

Avg. cloud utilization (in %) 46.37 39.821 38.77 31.97 36.18

100

110

120

130

140

150

160

170

180

190

200

M
ak

es
pa

n

(a)

20

25

30

35

40

45

50

Av
g.

 c
lo

ud
-u

til
iz

at
io

n
(in

 %
)

(b)

Fig. 2 Makespan and avg. cloud utilization comparison for a given montage workflows. a Makespan and b avg. cloud utilization

HEFT scheduling [9] algorithm as shown in Tables 6, 7 and
8, respectively.

From the above Gantt charts, we can see that proposed
workflowscheduling algorithmNMMWSperforms far better
than the existing algorithm in terms of cloud makespan and
average cloud utilization. It is also well visualized in Table 9
and Fig. 2

5 Experimental Results and Performance
Evaluation

The cloud makespan and average cloud utilization are two
metrics which are desirable to evaluate the performance of
the proposed algorithm.

5.1 Simulation Setup

We simulated the proposed algorithm for five benchmark
workflow applications, namely Cybershake, Epigenomic,
Inspiral, Montage and Sipht by generating various CCRs
(e.g., 0.05, 0.5, 1, 2 and 4) without violating the core struc-
ture of theseworkflows.Our simulation setup usesMATLAB
R2012a running the entire simulation on Microsoft Win-
dows 7 Professional operating system 64-bit with the system
configuration as Intel core i5-3230M CPU @ 3.20GHz. In
general, to assess the performance of the simulation results,

we arrange every workflow into three different three distinc-
tive sizes. The workflow of 30–50 numbers of tasks is set in
small workflow group and the workflows having around 100
tasks is put in medium size work process. Another work-
flow classification having around 1000 tasks is put in the
vast (large) size of the workflow. Aside from this, we addi-
tionally produced distinctive value of CCR DAGs without
changing the core structure of the workflows. The CCR is
the DAG property by which we can find the nature or type
of the workflow. Extremely lower estimated value of the
CCR is termed as the compute-intensiveworkflow and higher
estimated value of the CCR termed as the data-intensive
workflow application. So by taking distinctive mixes of ECT
and DT, a matrix is formed according to the uniform as well
as random distribution of real data value, we also created
a range from lower to higher CCR workflows for execution
assessment of the proposed algorithm.

5.2 Simulation Run on BenchmarkWorkflow
Applications

To evaluate the proposed scheduling algorithm, we have
tested the algorithm on benchmark workflow applications
which belong to different scientific domain. Theseworkflows
are well described in [1,2] that we used for the simulation of
proposed algorithm. The brief description of theseworkflows
is given as follows:

123

7956 Arabian Journal for Science and Engineering (2018) 43:7945–7960

(1) Cybershake: The Cybershake workflows are used to
depict earthquake threats in any region by fabricating
seismic exposure curve. It is an earthquake deathtraps
presentation which is prerequisite high amount of data
loading time and I/O operation. Therefore, Cybershake
is recognized as the data-intensive workflow.

(2) Epigenomic: This type ofworkflows record the genomic
state of humanoid cell through genome inclusive mea-
surement. Fundamentally, it is a bioinformatics solici-
tation which is prerequisite a lot of records transmission
time along with high computation time. Therefore,
Epigenomic workflows categorize in both categories
(1) data-intensive and (2) compute-intensive workflow
applications.

(3) Inspiral (LIGO): This class of workflow belongs to
gravitational physics application for analyzing the grav-
itational surfs twisted by different event happening in
the space. They necessitate huge data storage time as
well as computation time.Therefore, Inspiralworkflows
are classified as the compute-intensive workflow.

(4) Montage: It is a cosmological application which is
needed a lot of data transfer time rather than the com-
putation time. Montage workflows are the collection of
mosaics data which is obtained from the telescope as
astronomical image mosaic engine. Therefore, it also
categorized as the data-intensive workflows.

(5) Sipht: This workflow belongs to bioinformatics project
at Harvard which systematizes the search for untrans-
lated RNAs (sRNAs) for bacteriological replicators in
the NCBI database.

Figure 3 represents a structural overview of all type
of workflow applications (from Fig. 3a–e). The exhaustive
description of all five workflows is given in [1]. In Fig. 3,
we can take a look of the diverse combinations of task nodes
and workflow properties (i.e., data distribution, data aggre-
gation and pipelining). Here, for the simulation run we took
five types of scientific workflows in which each workflow
has of five different CCR value (0.05–4.00). These work-
flows are generated from the DAX (XML file format) using
MATLAB R2014a by applying uniform distribution on task
nodes and edges weights. These XML files are converted in
to a 2-D array of size [n,m] estimated computation (ECT)
matrix and upper triangular adjacency square matrix DTi, j

holding task dependencies among the tasks. We follow the
random increasing order to generate ECT matrix and fixed
task dependencies forDTi, j as per the simulation model [2].
The detail descriptions are as follows.

Step 1:We set a wide range and variety of task nodes such as
25–30, 50–60, 100 and 1000 and a set of VMs as 5, 10, 20 and
50 those are deployed on up to 4 different cloud servers. We
followed the interval of eachECT instance so that all the tasks
of the workflow applications are holding float value in the
interval of [907.654, 100,000.123]. Step 2:We also generate
five different CCR value-based dependencies among tasks
nodes as DTi, j using uniform distribution of edge weights.
Step 3: We evaluate workflow scheduling by incorporating
compute-intensiveness to data-intensiveness corresponding
to the CCR value.

(a) (b) (c)

(e)(d)

Fig. 3 Structure of all different five workflows from the various scientific domains. a Cybershake, b Epigenomic, c Inspiral, d Montage, e Sipht

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7957

5.2.1 Comparison of Makespan

It is clearly visualized fromFig. 4a–e that NMMWSprovides
minimum makespan for all small size workflow applications
having the range from .05 to 4.0 of CCR value. NMMWS
shows comparatively better performance for all the medium
and large size workflow applications of huge size, i.e., upto
100–1000 task nodes. It is also clearly shown in Fig. 5a, b.
Here, we can observe that NMMWS lags behind min–min,
max–min, HEFT and DLS in almost all cases.

5.2.2 Comparison of Average Cloud Utilization

We can observe from Fig. 6 that NMMWS provides better
average cloud utilization for every type of workflow appli-
cations. The differences are much remarkable, and it shows
that the overall performance of NMMWS is far better than
DLS, min–min, max–min and HEFT for all the five scientific
workflow applications.

5.3 Analysis of Variance (ANOVA) test

Here, we validate the performance of the proposed algorithm
through the popular statistical testANOVA[18]which is used
to decide if means of experimental results of various algo-
rithms have any significant statistical differences. To fulfill
this purpose, we define a null hypothesis as:

H0: μNMMWS = μMax–Min = μ Min–Min = μHEFT = μDLS.

Similarly, the alternative hypothesis can be defined as
H1:Means are not equal. Conversely, it is to be assumed that
at least one of the means is unlike in substitute hypothesis.
We conducted the ANOVA for each five workflows on differ-
ent CCR value by supposing that alpha is 0.05. The outcomes
of ANOVA test are shown in Tables 10, 11, 12, 13 and 14
for Cybershake, Epigenomic, Inspiral, Montage and Sipht
workflows, respectively. Note that, we deliberate 20 different
instances of each algorithm for the ANOVA test of bench-

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
105

106

107

M
ak

es
pa

n

Small size cybershake workflows

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 30 task nodes 60 task nodes

(a)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
104

105

106

107

Small size epigenomic workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 24 task nodes 47 task nodes

(b)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
104

105

106

107

Small size ispiral workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 30 task nodes 50 task nodes

(c)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
104

105

106

107

Small size montage workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

25 task nodes 50 task nodes
CCR
Value

(d)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
102

103

104

Small size sipht workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 60 task nodes30 task nodes

(e)

Fig. 4 Comparison of makespan for all small size workflows on different CCR value: a Cybershake, b Epigenomic, c Inspiral, d Montage and d
Sipht workflows

123

7958 Arabian Journal for Science and Engineering (2018) 43:7945–7960

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
104

105

106

107

108

Medium and large size cybershake workflows
M

ak
es

pa
n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 100 task nodes 1000 task nodes

(a)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
104

106

108

Medium and large size epigenomic workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 997 task nodes100 task nodes

(b)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0

104

105

106

107

108
Medium and large size ispiral workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 100 task nodes 1000 task nodes

(c)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0

104

106

108

Medium and large size montage workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 1000 task nodes100 task nodes

(d)

0.05 0.5 1.0 2.0 4.0 0.05 0.5 1.0 2.0 4.0
102

103

104

105
Medium and large size sipht workflows

M
ak

es
pa

n

Min−Min
Max−Min
DLS
HEFT
NMMWS

CCR
Value 100 task nodes 1000 task nodes

(e)

Fig. 5 Comparison of makespan for all medium and large size workflows on different CCR value: a Cybershake, b Epigenomic, c Inspiral, d
Montage and d Sipht Workflows

10

20

30

40

50

60

70

80

A
V

G
.

C
LO

U
D

-U
TI

LI
ZA

TI
O

N
 (

%
)

Min-Min Max-Min DLS HEFT NMMWS

Cybershake IspiralEpigenomic Montage Sipht

Fig. 6 Avg. cloud utilization comparison for all type workflows

mark workflow applications. As Fstatistic > Fcritical, so we
discard the null hypothesis for all the benchmark workflows.
It also shows that themeans of the all the groups of algorithms
are not equal because the Pvalue is much smaller than alpha
(value is 0.05). In the tables (from Tables 10, 11, 12, 13, 14)
SS refers as the sum of square and SV refers as source of
variation, respectively.

6 Conclusion

In this paper, we have presented a dynamic list-based work-
flow scheduling algorithm. The main objective of the pro-
posed work is to minimize makespan by keeping maximum
average cloud utilization. We have shown the simulation
results for five benchmark scientific workflow applications
on differentCCR value, and performance evaluation has been
done by comparing the experimental results with min–min,
max–min, HEFT and DLS as per their adequacy. The com-
parison results have displayed that the proposed algorithm
performs better than these algorithms. By considering varia-
tion in the CCR value, we have also shown that the proposed
algorithm is quite capable to schedule both data-intensive and
compute-intensive workflows. Moreover, the experimental
results has been validated by the well-known statistical test
ANOVA.However, the proposed algorithm lacks in consider-
ing the other aspects such failure of VMs, handling multiple
workflows and dynamicworkflow scheduling. Therefore, the
combination of these issues opens a direction of our future

123

Arabian Journal for Science and Engineering (2018) 43:7945–7960 7959

Table 10 ANOVA test results
for all size Cybershake
workflows

Source of variation SS df MS Fvalue Pvalue Fcritical

Between groups 1.24299e+16 04 3.11e+15 18.27645 5.08e−11 2.472927

Within groups 1.53024e+16 90 1.7e+14

Total 2.77323e+16 94

Table 11 ANOVA test results for all size Epigenomic workflows

Source of variation SS df MS Fvalue Pvalue Fcritical

Between groups 2.90674e+17 04 7.26686e+16 4.477618016 0.002403686 2.472927039

Within groups 1.46064e+18 90 1.62293e+16

Total 1.75131e+18 94

Table 12 ANOVA test results for all size Inspiral workflows

Source of variation SS df MS Fvalue Pvalue Fcritical

Between groups 2.57081e+18 04 6.42703e+17 7.994636911 1.46312e−05 2.472927039

Within groups 7.23526e+18 90 8.03918e+16

Total 9.80607e+18 94

Table 13 ANOVA test results for all size Montage workflows

Source of variation SS df MS Fvalue Pvalue Fcritical

Between groups 2.29744e+18 04 5.74359e+17 6.60216954 0.000104986 2.472927039

Within groups 7.8296e+18 90 8.69955e+16

Total 1.0127e+19 94

Table 14 ANOVA test results for all size Sipht workflows

Source of variation SS df MS Fvalue Pvalue Fcritical

Between groups 1.2005e+12 04 3.00125e+11 9.117881244 3.138e−06 2.472927039

Within groups 2.96245e+12 90 32916086927

Total 4.16295e+12 94

works. The attempt will also be made to simulate any newly
proposed algorithms in the real cloud environment.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Juve, G.; Chervenak, A.; Deelman, E.; Bharathi, S.; Mehta, G.;
Vahi, K.: Characterizing and profiling scientific workflows. Future
Gener. Comput. Syst. 29(3), 682–692 (2013)

2. https://confluence.pegasus.isi.edu/display/pegasus/ Workflow
Generator. Accessed on 25 Nov 2016

3. Wieczorek, M.; Prodan, R.; Fahringer, T.: Scheduling of scientific
workflows in the ASKALON grid environment. ACM SIGMOD
Rec. 34(3), 56–62 (2005)

4. Cooper, K.; Dasgupta, A.; Kennedy, K.; Koelbel, C.; Mandal,
A.; Marin, G.; Mazina, M.; Mellor-Crummey, J.; Berman, F.;
Casanova, H.; Chien, A.: New grid scheduling and rescheduling
methods in the GrADS project. In: 18th International on Parallel
and Distributed Processing Symposium. IEEE (2004)

5. Alkhanak, E.N.; Lee, S.P.; Rezaei, R.; Parizi, R.M.: Cost optimiza-
tion approaches for scientific workflow scheduling in cloud and
grid computing: a review, classifications, and open issues. J. Syst.
Softw. 113, 1–26 (2016)

6. Durillo, J.J.; Prodan, R.; Barbosa, J.G.: Pareto tradeoff scheduling
ofworkflowson federated commercial clouds. Simul.Model. Pract.
Theory 58, 95–111 (2015)

7. Buyya, R.; Vecchiola, C.; Selvi, S.T.:Mastering Cloud Computing:
Foundations and Applications Programming. Morgan Kaufmann,
Los Altos (2013)

123

https://confluence.pegasus.isi.edu/display/pegasus/

7960 Arabian Journal for Science and Engineering (2018) 43:7945–7960

8. Bochenina, K.; Butakov, N.; Boukhanovsky, A.: Static scheduling
of multiple workflows with soft deadlines in non-dedicated het-
erogeneous environments. Future Gener. Comput. Syst. 55, 51–61
(2016)

9. Topcuoglu, H.; Hariri, S.; Min-You, W.: Performance-effective
and low-complexity task scheduling for heterogeneous computing.
IEEE Trans. Parallel Distrib. Syst. 13, 260–274 (2002)

10. Ullman, J.D.: NP-complete scheduling problems. J. Comput. Syst.
Sci. 10(3), 384–393 (1975)

11. Cao, H.; Jin, H.; Wu, X.; Wu, S.; Shi, X.: DAGMap: efficient and
dependable scheduling of DAGworkflow job in grid. J. Supercom-
put. 51(2), 201–223 (2010)

12. Li, J.; Qiu, M.; Ming, Z.; Quan, G.; Qin, X.; Gu, Z.: Online opti-
mization for scheduling preemptable tasks on IaaS cloud system.
J. Parallel Distrib. Comput. 72, 666–677 (2012)

13. Panda, S.K.; Jana, P.K.: Normalization-based task scheduling algo-
rithms for heterogeneousmulti-cloud environment. Inf. Syst. Front.
(2016). https://doi.org/10.1007/s10796-016-9683-5

14. Panda, S.K.; Jana, P.K.: Uncertainty-based QoS min–min algo-
rithm for heterogeneous multi-cloud environment. Arabian J. Sci.
Eng. 41(8), 3003–3025 (2016)

15. Ding, Y.; Qin, X.; Liu, L.; Wang, T.: Efficient scheduling of virtual
machines in cloudwith deadline constraint. Future Gener. Comput.
Syst. 50, 62–74 (2015)

16. Braun, T.D.; Siegel, H.J.; Beck, N.; Boloni, L.L.; Maheswaran,M.;
Reuther, A.I.; Robertson, J.P.; Theys, M.D.; Yao, B.; Hensgen, D.;
Freund, R.F.: A comparison of eleven static heuristics for map-
ping a class of independent tasks onto heterogeneous distributed
computing systems. J. Parallel Distrib. Comput. 61(6), 810–837
(2001)

17. Panda, S.K.; Jana, P.K.: Efficient task scheduling algorithms for
heterogeneous multi-cloud environment. J. Supercomput. 71(4),
1505–1533 (2015)

18. Muller, K.E.; Fetterman, B.A.: Regression and ANOVA: An Inte-
grated Approach Using SAS Software. SAS Publisher Cary (2002)

19. Vasile, M.; Pop, F.; Tutueanu, R.; Cristea, V.; Kolodziej, J.:
Resource-aware hybrid scheduling algorithm in heterogeneous dis-
tributed computing. Future Gener. Comput. Syst. 51, 61–71 (2015)

20. Celaya, J.; Arronategui, U.: Fair scheduling of bag-of-tasks appli-
cations on large-scale platforms. Future Gener. Comput. Syst. 49,
28–44 (2015)

21. Mao, M.; Humphrey, M.: Auto-scaling to minimize cost and
meet application deadlines in cloud workflows. In: Proceedings of
International Conference for High Performance Computing Net-
working, Storage and Analysis. ACM (2011)

22. Gorbenko, A.; Popov, V.: Task-resource scheduling problem. Int.
J. Autom. Comput. 9, 429–441 (2012)

23. Panda, S.K.; Jana, P.K.: A multi-objective task scheduling algo-
rithm for heterogeneousmulti-cloud environment. In: International
Conference on Electronic Design, Computer Networks and Auto-
mated Verification, pp. 82–87. IEEE (2015)

24. Gupta, I.; Kumar, M.S.; Jana, P.K.: Compute-intensive workflow
scheduling in multi-cloud environment. In: International Confer-
ence onAdvances inComputing, Communications and Informatics
(ICACCI), pp. 315–321. IEEE (2016)

25. Ming, G.; Li, H.: An improved algorithm based on max–min for
cloud task scheduling. In: Recent Advances in Computer Science
and Information Engineering, Lecture Notes in Electrical Engi-
neering, vol. 125, pp. 217–223 (2012)

26. Ibarra, O.H.; Kim, C.E.: Heuristic algorithms for scheduling inde-
pendent tasks on nonidentical processors. J. ACM (JACM) 24(2),
280–289 (1977)

27. Malawski, M.; Juve, G.; Deelman, E.; Nabrzyski, J.: Cost-and
deadline-constrained provisioning for scientific workflow ensem-
bles in IaaS clouds. Future Gener. Comput. Syst. 48, 1–8 (2015)

28. Liu, Y.; Zhang, C.; Li, B.; Niu, J.: DeMS: a hybrid scheme of
task scheduling and load balancing in computer clusters. J. Netw.
Comput. Appl. 83, 213–220 (2015)

29. Ergu, D.; Kou, G.; Peng, Y.; Shi, Y.; Shi, Y.: The analytic hierarchy
process: task scheduling and resource allocation in cloud comput-
ing environment. J. Supercomput. 64, 835–848 (2013)

30. OpenNebula, http://archives.opennebula.org/documentation:rel4.
4:schg. Accessed on 16 July 2016

31. Rodriguez,M.A.; Buyya, R.: Deadline based resource provisioning
and scheduling algorithm for scientific workflows on clouds. IEEE
Trans. Cloud Comput. 2, 222–235 (2014)

32. Yu, B.; Yuan, X.; Wang, J.: Short-term hydro-thermal schedul-
ing using particle swarm optimization method. Energy Convers.
Manag. 48(7), 1902–1908 (2007)

33. Rashvand, H.F.; Salah, K.; Calero, J.M.A.; Harn, L.: Distributed
security for multi-agent systems review and applications. IET Inf.
Secur. 4(4), 188–201 (2010)

34. www.nimbusproject.org/docs/2.5/changelog.html. Accessed on
15 July 2016

35. Freund, R.F.; Gherrity, M.; Ambrosius, S.; Campbell, M.; Halder-
man,M.; Hensgen, D.; Keith, E.; Kidd, T.; Kussow,M.; Lima, J.D.;
Mirabile, F.;Moore, L.; Rust, B.; Siegel,H.J.: Scheduling resources
in multi-user. In: Heterogeneous, Computing Environments with
SmartNet, 7th IEEE Heterogeneous Computing Workshop, pp.
184–199 (1998) Comput. Mach. 24(2), 280–289 (1977)

36. Braun, F.N.: https://code.google.com/p/hcspchc/source/browse/
trunk/AE/ProblemInstns/HCSP. Accessed on 15 May 2016

37. Salah, K.; Elbadawi, K.; Boutabaa, R.: An analytical model for
estimating cloud resources of elastic services. J.Netw.Syst.Manag.
24(2), 285–308 (2016)

38. Nudd, G.R.; Kerbyson, D.J.; Papaefstathiou, E.; Perry, S.C.;
Harper, J.S.; Wilcox, D.V.: PACEA toolset for the performance
prediction of parallel and distributed systems. Int. J. High Perform.
Comput. Appl. 14(3), 228–251 (2000)

123

https://doi.org/10.1007/s10796-016-9683-5
http://archives.opennebula.org/documentation:rel4.4:schg
http://archives.opennebula.org/documentation:rel4.4:schg
www.nimbusproject.org/docs/2.5/changelog.html
https://code.google.com/p/hcspchc/source/browse/trunk/AE/Problem Instns/ HCSP
https://code.google.com/p/hcspchc/source/browse/trunk/AE/Problem Instns/ HCSP

	Efficient Workflow Scheduling Algorithm for Cloud Computing System: A Dynamic Priority-Based Approach
	Abstract
	1 Introduction
	2 Related Work
	3 Cloud Model and Problem Formulation
	3.1 Cloud Model
	3.2 Workflow Scheduling Problem Formulation
	3.2.1 Workflow Application
	3.2.2 Cloud Resources or VM Instances
	3.2.3 Estimated Computation Time (ECT)
	3.2.4 Cloud Makespan
	3.2.5 Average Cloud Utilization (CU)

	3.3 Notations and Preliminaries

	4 Proposed Algorithm
	4.1 An Illustration

	5 Experimental Results and Performance Evaluation
	5.1 Simulation Setup
	5.2 Simulation Run on Benchmark Workflow Applications
	5.2.1 Comparison of Makespan
	5.2.2 Comparison of Average Cloud Utilization

	5.3 Analysis of Variance (ANOVA) test

	6 Conclusion
	References

