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Abstract
In this paper, a closed-form analytical solution is presented for a fully developed mixed-convection laminar flow of nanofluids
between two vertical parallel plates. The Buongiorno model, which considers the Brownian motion and thermophoresis
force, is employed to investigate the hydrodynamic and heat transfer behavior of the nanofluid flow. The equations for
the conservation of mass, momentum, energy, and the nanoparticle concentration field have been analytically solved, and
expressions for the velocity, temperature, and nanoparticle concentration profiles as well as for the Nusselt number are given.
The results show that in addition to the mixed-convection buoyancy parameter (Gr /Re), the immersed-particle buoyancy
parameter additionally enriches the momentum and enhances the heat transfer inside the channel. Moreover, in the mixed-
convection regime, in contrast to the case of forced convection, the heat transfer rate decreases sharply and then gradually as
the solid/fluid thermal conductivity ratio increases. The present results contradict the prevailing perception that higher thermal
conductivities of nanoparticles are always desirable and boost heat transfer. The study findings will be helpful in selecting an
appropriate nanoparticle material that would provide a high heat transfer rate based on the application’s thermal conditions.
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List of symbols
b Channel spacing
Cp Specific heat at constant pressure
dp Nanoparticle diameter
DB Brownian diffusivity, = KBOT /3πμbfdp
DT Thermophoresis diffusivity, = 0.26kbf/(2kbf +

kp) ∗ μbf/ρbf ∗ φ0

Gr Grashof number, gβbfq1b4

υ2Kbf
K Thermal conductivity
KBO Boltzmann constant
Kr Solid/fluid thermal conductivity ratio, Kp/Kbf

NBT Ratio of Brownian and thermophoretic diffusiv-
ities, = DB/DT

Nu Nusselt number
p Fluid pressure at any cross section
p′ Pressure defect at any cross section, p − ps
p0 Fluid pressure at channel entrance
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ps Hydrostatic pressure, −ρ0 gz
P Dimensionless pressure at any cross section,

p′−p0
ρ0u20

Pr Prandtl number
rq Heat flux ratio, q2

q1

Re Reynolds number, = uob
υ

T Temperature at any point
T0 Inlet temperature
Tm Mean temperature in each cross section Tm(z)
uo Entrance axial velocity
u Longitudinal velocity component at any point
U Dimensionless longitudinal velocity, = u/uo
y Horizontal coordinate
Y Dimensionless horizontal coordinate, y/b
z Vertical coordinate
Z Dimensionless vertical coordinate, z/(bRe)

Greek symbols
υ Kinematic fluid viscosity
ρ Fluid density
μ Dynamic fluid viscosity
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θ Dimensionless temperature at any point,
[= kbf (T−Tm)

q1b
]

β Thermal expansion coefficient
φ Particle volume fraction
Φ Rescaled nanoparticle volume fraction, [= φ

φ0
]

γ Immersed-particle buoyancy parameter,

= 0.78π
μ2
bf

ρbf

dp
KBOβbfT 2

0
(

ρp
ρbf

− 1)

Subscripts
bf Base fluid
nf Nanofluid
m Mean
w Wall
p Particle
1 Duct wall at Y = 0
2 Duct wall at Y = 1
0 Condition at the entrance

1 Introduction

Thermal conductivity of the classic heat transfer fluids such
as oil and water is low, which restricts the use of these
fluids as a coolant medium in several engineering appli-
cations that require the dissipation of high heat flux. The
need to develop high-thermal-conductivity coolants capa-
ble of dissipating the high heat flux encountered in such
applications, and the advances in modern nanotechnology
have led to the development of the innovative technique of
suspending nanoscale particles in a fluid to form a dilute
mixture called a “nanofluid” [1]. Nanoparticles have been
found to possess several advantages over milliparticles and
microparticles: they produce long-term stable nanofluids [2],
have higher surface-area-to-volume ratios, exhibit useful ran-
dom movement [3], can act as lubricating medium [4], have
less particle clogging [5], and have abnormally high ther-
mal conductivity at quite low particle concentration [6]. The
development of an appropriate model for the convective
transport of nanofluids is the key to utilizing a particular
nanofluid for heat transfer applications. Three main models
are used to theoretically evaluate the heat transfer enhance-
ment due to the addition of low-concentration nanoparticles
to conventionalworkingfluids: homogeneous (single-phase),
dispersion, and nonhomogeneous models. In the homoge-
neous model, the nanofluid is treated as a conventional fluid
with a modified transport coefficient to take into account
the effect of solid particles dispersed in the base fluid [7].
The unique transport properties of nanofluids compared
to pure fluids result in heat transfer enhancement; how-
ever, several experimental studies [8,9] have shown that the
increase in the heat transfer coefficient remarkably exceeds
the supposed increment because of the enhancement in the

thermophysical properties of the nanofluid. In the thermal
dispersionmodel [10], anomalous heat transfer enhancement
is attributed to the irregular movements of nanoparticles;
these movements are treated as perturbations in the energy
equation. The nonhomogeneous model takes into account
the relative velocity between nanoparticles and the base
fluid [11]. Buongiorno [12] analyzed seven slip mechanisms
that can generate a relative velocity between a nanosolid
and the base fluid and found that only Brownian diffusion
and thermophoresis are influential mechanisms in nanoflu-
ids. He developed a two-component four-equation nonho-
mogeneous equilibrium model for convection transport in
nanofluids.

These three models have been extensively used to investi-
gate the problem of fully developed convection heat transfer
in nanofluids inside channels. Chen et al. [13] numerically
investigated the heat transfer performance of a mixed-
convection nanofluid flow in a vertical channel with an
isothermal boundary condition. They employed the homo-
geneous model and observed a reduction in the average
entropy generation of the nanofluid compared to that of
pure water. Heris et al. [14] used the dispersion model to
numerically investigate the laminar convective heat trans-
fer enhancement of nanofluids inside a tube. They found
that the heat transfer coefficient decreases with the nanopar-
ticle size at a particular concentration. The homogeneous
model was employed to obtain an analytical solution for the
opposing mixed-convection flow in an inclined channel [15].
It was found that the volume fraction delays the occur-
rence of flow reversal. The same model was used to study
fully developed buoyancy-assisted and buoyancy-opposed
flows in a vertical channel filled with nanofluids [16]. The
nanoparticle volume fraction was found to enhance the
heat and mass transfer characteristics of the fluids. The
nonhomogeneous Buongiorno model was used to obtain
closed-form analytical solutions of laminar mixed convec-
tion between two vertical plates with isothermal boundary
conditions [17]. It was shown that Brownian motion and
thermophoresis have a significant effect on the shape of
the velocity and temperature profiles. The same model
was used to study the steady laminar forced convection
between two plates involving nanofluids with periodic and
linearly varying boundary conditions [18]. In the case of
periodic boundary conditions, it was found that migration
has an obvious effect on the solution; however, in the
case of a longitudinally linearly varying boundary tem-
peratures, the volumetric concentration of nanoparticles
was found to be a weak function of the temperature pro-
file.

The previous studies reveal that nanoparticle migration
has noticeable effects on the thermal performance of nanoflu-
ids [17,18]. Until now, a few investigators have studied the
effect of the migration phenomenon in the mixed-convection
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channel flow with isothermal boundary conditions. In these
studies, the distribution of the nanoparticles at the bound-
ary is assumed to be constant, which could be practically
unrealistic. The problem is still not well understood, and
the interaction of Brownian motion and thermophoresis with
buoyancy force needs further investigation. Moreover, to
the best of the author’s knowledge, the problem of a fully
developed mixed-convection flow of nanofluids between
two vertical parallel plates with isoflux boundary conditions
while considering nanoparticle migration has not yet been
solved. The present work is motivated by the importance
of this problem in many engineering applications such as
electronic device cooling, heat exchanger operations, nuclear
system operations, and thermal waste heat management of
new power weapons [19,20]. Therefore, the present study
aims to analytically solve this problem using the Buon-
giorno model. The nanoparticle distribution at the boundary
is determined as part of the solution using the nanoparti-
cle conservation equation and applying “the no mass flux
of solid particle condition” at the walls. The effects of the
mixed-convection buoyancy parameter, immersed-particle
buoyancy parameter, volume fraction, thermal conductivity
ratio, and heat flux ratio on the solution are investigated.

2 Mathematical Formulation and Solution

2.1 Problem Description and Thermophysical
Properties

In the present study, a fully developed mixed-convection
flow of a water-based nanofluid between two vertical parallel
plates is considered where asymmetric heating is imposed on
the two surfaces of the channel formed by the plates. The flow
is assumed to be steady and laminar with uniform velocity
(u0), temperature (T0), and volume fraction (φ0) distributions
at the channel entrance [21]. The nanoparticles and base fluid
are assumed to form a dilute mixture and to be in thermal
equilibrium. These two assumptions have been theoretically
proven to be justified by Buongiorno [12]. Furthermore, for
(φ0 < 1%), nanofluids appear macroscopically as homoge-
neous fluids and their transport properties can be accurately
determined based on the physical principle of the mixture
rule. Escher et al. [22] experimentally found that the ther-
mophysical properties of nanofluids deviate less than 10%
from the general rule of mixtures even at a high volume frac-
tion (up to 3%). The schematic geometry of the problem is
shown in Fig. 1, and the thermophysical properties of the
base fluid and nanoparticles used in the present work are
listed in Table 1. The viscosity, density, heat capacity at a
constant pressure, and thermal conductivity of the nanofluid
are defined as follows [23]:

             Uniform flow: u0, T0, 0 

b 

g 

q1   q2 

z 

y 

Fig. 1 Schematic geometry of problem and coordinate system

Table 1 Thermophysical properties of basefluid andnanoparticles [24–
26]

Properties Water Cu Al2O3 SiO2

ρ (kg/m3) 997 8933 3920 2200

K (W/mk) 0.613 400 36 1.38

μ (kg/ms) 0.000866 – – –

μnf = μbf

(1 − φo)
2.5

ρnf = (1 − φo) ρbf + φoρp

Cpnf = φ0ρpCpp + (1 − φ0)ρbfCbf

ρnf

Knf = Kbf

[
Kp + 2Kbf − 2φ0

(
Kbf − Kp

)
Kp + 2Kbf + φo

(
Kbf − Kp

)
]

2.2 Nanoparticle Migration

Two main nanoparticle migration mechanisms are signifi-
cant in nanofluids: Brownian and thermophoretic diffusiv-
ities [12]. In Brownian motion, the continuous collisions
between solid particles and liquid molecules lead to random
swimming of suspended particles in the base fluid. Thus, the
Brownian diffusion is proportional to the concentration gra-
dient and causes a nanoparticlemass flux that can be obtained
from the following relationship:

jp,B = −ρpDB∇φ (1)

Here, DB is the Brownian diffusion coefficient given by the
Einstein–Stokes equation:
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DB = kBT

3πμbfdp

On the other hand, thermophoresis causes nanoparticle
migration from warmer to colder regions (i.e., in the direc-
tion opposite to the temperature gradient). The nanoparticle
flux due to thermophoresis can be given as follows:

jp,T = −ρpDT
∇T

T
(2)

Here, DT is the thermal diffusion given by

DT = 0.26
kbf

2kbf + kp

μbf

ρbf
φ

Therefore, the continuity equation for the nanoparticles can
be written in the following form:

DB
d2φ

dy2
+ DT

Tm

d2T

dy2
= 0 (3)

2.3 Governing Equations

In the absence of a chemical reaction, radiation transfer,
and viscous dissipation and by employing the Oberbeck–
Boussinesq approximation, the equations for the conserva-
tion of momentum and energy in the fully developed region
can be written as follows [17]:

−dP

dz
+ μnf

d2u

dy2
+ [(1 − φ0)ρbf0βbf(T − Tm)

−(ρp − ρbf)(φ − φ0)]g = 0 (4)

(ρCP)nfu
dT

dz
= knf

d2T

dy2
(5)

It is worthmentioning that themean fluid temperature in each
cross section Tm(z) has been selected as a reference fluid
temperature, as proposed by Barletta and Zanchini [27].

The above momentum and energy equations in addition
to the nanoparticle concentration equation [Eq. (3)] embody
the problem under consideration, and these three equations
can be written in dimensionless forms as follows:

d2U

dY 2 − (1 − φ0)
2.5 dP

dZ

+Gr

Re

[
(1 − φ0)

3.5 θ

− γ

2 + Kr
φ0 (1 − φ0)

2.5 NBT (Φ − 1)

]
= 0 (6)

Pr

[
φ0

(
ρCp

)
p(

ρCp
)
bf

+ (1 − φ0)

]
U

∂θ

∂Z

=
[
Kr + 2 − 2φ0 (1 − Kr)

Kr + 2 + φ0 (1 − Kr)

]
∂2θ

∂Y 2 (7)

NBT
∂2Φ

∂Y 2 + ∂2θ

∂Y 2 = 0 (8)

The definitions of the nondimensional quantities in the above
equations are found in List of symbols.

The pressure gradient in the momentum equation can be
determined by employing the mass flux concentration of the
nanoparticles.

1∫
0

Φ dy = 0 (9)

2.4 Boundary Conditions

The boundary conditions are

U (0) = 0 and U (1) = 0 (10)
∂θ

∂Y
|y=0 = −Kbf

Knf
and

∂θ

∂Y
|y=1 = Kbf

Knf
rq (11)

Moreover, because the wall is impermeable, one can
write [28]

NBT
∂θ

∂Y
|Y=0 + ∂θ

∂Y
|Y=0 = 0 at Y = 0 and

NBT
∂θ

∂Y
|Y=1 + ∂θ

∂Y
|Y=1 = 0 at Y = 1 (12)

At the channel entrance, the boundary conditions are

U = 1, θ = 1 andΦ = 1 at Z = 0 (13)

The dimensionless parameters used in the above boundary
conditions are defined in the List of symbols section.

2.5 Analytical Solution

By integrating Eq. (8) twice and applying the boundary con-
ditions [Eqs. (12) and (13)], one can find a solution for the
particle concentration as a function of the temperature distri-
bution inside the channel as

Φ = − 1

NBT
θ + 1 (14)

By considering an energy balance inside the channel for a
thermally fully developed flow, the first gradient of the tem-
perature can be written as

∂θ

∂Z
== 1 + rq

Pr+Prφo

[
(ρcp)p
(ρcp)bf

− 1

] (15)

123



Arabian Journal for Science and Engineering (2019) 44:739–752 743

Thus, the energy equation can be written as

U = β
∂2θ

∂Y 2 (16)

where

β = Kp + 2Kbf − 2φo
(
Kbf − Kp

)
Kp + 2Kbf + φo

(
Kbf − Kp

) (
1 + rq

)
Substituting Eq. (14) into the momentum equation [Eq. (6)]
gives

d2U

dY 2 − (1 − φo)
2.5 dP

dZ

+Gr

Re

[
(1 − φo)

3.5 + γ

(2 + Kr)
φo (1 − φo)

2.5
]

θ

= 0 (17)

Rearranging Eq. (17) gives

θ =
[
−d2U

dY 2 + (1 − φo)
2.5 dP

dZ

]
/

{
Gr

Re

[
(1 − φo)

3.5

+ γ

(2 + Kr)
φo (1 − φo)

2.5
]} (18)

Taking the second derivative of the above equation onY gives
the following equation:

∂2θ

∂Y 2 = − d4U

dY 4 /

{
Gr

Re

[
(1 − φo)

3.5

+ γ

(2 + Kr)
φo (1 − φo)

2.5
]} (19)

Substituting Eq. (19) into Eq. (16) yields

U = −a4
d4U

dY 4 (20)

where a =
[

β

Gr
Re

[
(1−φo)

3.5+ γ
(2+Kr )

φo(1−φo)
2.5

]
]0.25

The exact solution of the above equation can be written in
the following form:

U (Y ) = C1 exp (aY ) cos (aY ) + C2 exp (−aY ) cos (aY )

+C3 exp (aY ) sin (aY ) + C4 exp (−aY ) sin (aY )

By applying the four boundary conditions given in Eqs. (10)
and (11), the four unknown constants can be obtained as

C1 = sin(a) [b1 sin(a) − b2 sinh(a)]

2a3 [−2 + cos(2a) + cosh(2a)]
= −C2

C3 = −
{
−2b2e

−a sin(a) + b1
(
1 − e−2a + sin(2a)

)
−2b2 cos(a) sinh(a)}

C4 = e−a
{
b1e

3a + b2 cos(a) − b2e
2a [cos(a) + 2 sin(a)]

+ b1e
a [−1 + sin(2a)]

}
/
{
4a3 (−2+cos(2a)+cosh(2a))

}

where

b1 = Kbf

Knf

{
Gr

Re

[
(1 − φo)

3.5 + γ

(2 + Kr)
φo (1 − φo)

2.5
]}

b2 = −Kbf

Knf
rq

{
Gr

Re

[
(1 − φo)

3.5 + γ

(2 + Kr)
φo (1 − φo)

2.5
]}

By using Eq. (14), one can write Eq. (9) in the following
form:

1∫
0

θdY = 0 (21)

The above equation is consistent with the definition of θ , and
from Eq. (18), the pressure gradient can be expressed in the
following form:

dP

dZ
=

[
dU

dY
|Y=1 − dU

dY
|Y=0

] /
(1 − φo)

2.5

Further, one can write the pressure gradient in the following
form:

dP

dZ
= (b1 − b2) {sin(a) + sinh(a)}

2a2 (1 − φo)
2.5 {sin(a) − sinh(a)} (22)

Now, Eq. (18) can be used to derive the following form for
the dimensionless temperature:

θ = [− {
2a2 cos(aY )

(
C3e

aY − C4e
−aY)

+2a2C2 sin(aY )
(
e−aY + eaY

)} + (1 − φo)
2.5 dP

dZ

]/
{
Gr

Re

[
(1 − φo)

3.5 + γ

(2 + Kr)
φo (1 − φo)

2.5
]}

(23)

The local Nusselt number on the first wall is defined in the
present study as

Nu = −b ∂T
∂ y |y=0

Tw − Tm

Knf

Kbf

= −Kr
∂θ
∂Y |Y=0

θw

Hence, the following form is deduced for theNusselt number:
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Table 2 Comparison between the present results and the correlation of Xuan and Roetzel [29] for heat transfer enhancement for forced-convection
laminar flow (Gr/Re = 0.001, γ = 112,000, rq = 1)

Cu SiO2

Φ0 hnf/hbf (Xuan
and Roetzel [29])

hnf/hbf (present
work)

Deviation % hnf/hbf (Xuan
and Roetzel [29])

hnf/hbf (present
work)

Deviation %

0.002 1.018060894 1.018062262 0.000134415 1.005310267 1.005447457 0.013646535

0.004 1.036411452 1.036414159 0.000261153 1.010645592 1.010918023 0.026956196

0.006 1.055056034 1.055058872 0.000268985 1.016006086 1.01641579 0.040324985

0.008 1.073999065 1.074003706 0.000432124 1.021391861 1.02193682 0.053354549

0.01 1.093245039 1.093249908 0.000445358 1.026803028 1.0274832 0.066241638

Uniform flow: u0, T0, φ0

Fig. 2 Dimensionless velocity distribution of nanofluid for different values of φ0 (Gr/Re = 100, γ = 1,120,000, Kr = 652): a rq = 1 and b
rq = 0

Fig. 3 Dimensionless temperature distribution of nanofluid for different values of φ0 (Gr/Re = 100, γ = 1,120,000, Kr = 652): a rq = 1 and b
rq = 0

Nu =
{
2a2b1 (−2 + cos(2a) + cosh(2a))

}
/{(

(b1 − b2) cos(2a) + (−b1 + b2) cosh(2a) − 4ab2 cosh(a) sin(a) + 2ab1 sin(2a)+
4 (−ab2 cos(a) + ab1 cosh(a) + (−b1 + b2) sin(a)) sinh(a)

)} (24)
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Fig. 4 Dimensionless nanoparticle distribution for different values of φ0 (Gr/Re = 100, γ = 1,120,000, Kr = 652): a rq = 1 and b rq = 0

Fig. 5 Dimensionless velocity distribution of nanofluid for different values of Gr/Re (φ0 = 0.001, γ = 1,120,000, Kr = 652): a rq = 1 and b
rq = 0

Fig. 6 Dimensionless temperature distribution of nanofluid for different values of Gr/Re (φ0 = 0.001, γ = 1,120,000, Kr = 652): a rq = 1 and
b rq = 0

Note that the present approach and the solution are limited to
tiny nanoparticles (dp < 100 nm) and to dilute suspensions
(φ < 1%).

2.6 Validation

In the forced-convection regime, the heat transfer enhance-
ment is mainly due to the increase in the effective thermal

conductivity of the nanofluids. Xuan and Roetzel [29]
obtained the following correlation for heat transfer enhance-
ment for laminar flow:

hnf
hbf

≈
(
knf
kbf

)3

(25)

To validate the present results, the heat transfer enhancement
when Gr/Re ≈ 0 (i.e., pure forced convection) is calculated
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Fig. 7 Dimensionless particle distribution of nanofluid for different values of Gr/Re (φ0 = 0.001, γ = 1,120,000, Kr = 652): a rq = 1 and b
rq = 0

Fig. 8 Dimensionless velocity distribution of nanofluid for different values of γ (φ0 = 0.001, Gr/Re = 100, Kr = 652): a rq = 1 and b rq = 0

Fig. 9 Dimensionless temperature distribution of nanofluid for different values of γ (φ0 = 0.001, Gr/Re = 100, Kr = 652): a rq = 1 and b
rq = 0

for two different types of nanoparticle materials (SiO2 and
Cu) at different values of volume fraction by using Eq. (24)
to calculate Nunf and Nubf (i.e., when φ0 ≈ 0) and then
applying the following relationship:

hnf
hbf

= Nunf
Nubf

kr (26)

Table 2 compares the results with the correlation of Xuan and
Roetzel [29] [Eq. (25)]. The comparison shows an excellent
agreement between the two solutions with a maximum devi-
ation of 0.066%.

In addition, the current solution for the velocity field in
the absence of suspended nanoparticles (φ0 = 0) is identical
to the solution given obtained previously [30] for the same
parameter values. Additionally, the temperature distribution
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Fig. 10 Dimensionless particle distribution of nanofluid for different values of γ (φ0 = 0.001, Gr/Re = 100, Kr = 652): a rq = 1 and b rq = 0

Fig. 11 Dimensionless velocity distribution of nanofluid for different values of Kr (φ0 = 0.001, Gr/Re = 100, γ = 1,120,000): a rq = 1 and b
rq = 0

Fig. 12 Dimensionless temperature distribution of nanofluid for different values of Kr (φ0 = 0.001, Gr/Re = 100, γ = 1,120,000): a rq = 1 and
b rq = 0

for the pure fluid case (i.e., φ0 = 0) exactly matches that
presented previously [27]. Moreover, the closed-form ana-
lytical expressions presented in this paper for the velocity
and its second derivative, pressure gradient, temperature and
its second derivative, and nanoparticle distribution satisfy
both the momentum and energy equations and the associ-
ated boundary conditions, and hence, the present analytical
solutions are validated.

3 Results and Discussion

The addition of solid nanoparticles into the base fluid in the
fully developed region produces three controlling parameters
in addition to the well-known mixed-convection buoyancy
parameter (Gr/Re) and the heat flux ratio (rq = q2/q1).
These three parameters are the immersed-particle buoyancy
parameter (γ ), nanoparticle volume fraction, and solid/fluid
thermal conductivity ratio (Kr = Kp/Kbf ). The effect of
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Fig. 13 Dimensionless particle distribution of nanofluid for different values of Kr (φ0 = 0.001, Gr/Re = 100, γ = 1,120,000): a rq = 1 and b
rq = 0

Fig. 14 Variations in local Nusselt number with φ0 as a function of Gr/Re (γ = 1,120,000, Kr = 652): a rq = 1 and b rq = 0

Fig. 15 Variations in local Nusselt number with φ0 as a function of γ (Gr/Re = 100, Kr = 652): a rq = 1 and b rq = 0

these five parameters on the hydrodynamic and thermal per-
formance is investigated and discussed.

Figure 2a, b shows the velocity distribution for three differ-
ent values of the volume fraction during symmetric (rq = 1)
and asymmetric (rq = 0) heating, respectively. It is clear
from the figures that the axial velocity near the heated wall
increases as the volume fraction increases. On the other hand,

the velocity decreases in the core region of the channel dur-
ing symmetric heating and near the unheated wall during
asymmetric heating, which causes flow reversal. This effect
is interpreted to be due to an increase in the immersed-particle
buoyancy, which is caused by an increase in the volume
fraction even when the mixed-convection buoyancy force
decreases.
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Fig. 16 Variations in local Nusselt number with Kr as a function of φ0 (Gr/Re = 100, γ = 1,120,000): a rq = 1 and b rq = 0

Fig. 17 Variations in local Nusselt number with Kr as a function of φ0 (Gr/Re = 0.001, γ = 1,120,000): a rq = 1 and b rq = 0

Fig. 18 Variations in local Nusselt number with φ0 for three different kinds of nanoparticles (Gr/Re = 0.001, γ = 1,120,000): a rq = 1 and b
rq = 0

In addition, an increase in the nanoparticle concentration
in the base fluid increases the thermal conductivity of the
nanofluid and hence enhances the heat transfer inside the
channel. Therefore, the fluid temperatures near the heated
wall decrease and those in the core region (during symmetric
heating) or near the unheated wall (during asymmetric heat-
ing) increase, as shown in Fig. 3a, b (i.e., lower-temperature
gradient inside the channel). Consequently, the thermophore-
sis force decreases, leading to particle migration from the

high- to the low-particle-concentration region, as shown in
Fig. 4a, b.

Figure 5a, b shows the effect of Gr/Re on the velocity
profile during symmetric and asymmetric heating, respec-
tively. The figures indicate an increase in the fluid velocities
close to the heated wall and a decrease in the central chan-
nel during symmetric heating or close to the unheated wall
during asymmetric heating, which, in turn, enhance the heat
transfer rate at the heated wall because of momentum enrich-
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Fig. 19 Variations in local Nusselt number with φ0 for three different kinds of nanoparticles (Gr/Re = 100, γ = 1,120,000): a rq = 1 and b
rq = 0

ment, as shown in Fig. 6a, b. In addition, the thermophoresis
force increases as Gr/Re increases because of a decrease in
the fluid density. This, in turn, leads to nanoparticle deple-
tion close to the heated wall and nanoparticle accumulation
at the channel core during symmetric heating and close to the
cold wall during asymmetric heating, as shown in Fig. 7a, b,
respectively.

When nanoparticles are suspended in the fluid, the
immersed-particle buoyancy parameter (γ ) appears, which
parameterizes the fluid motion due to solid/fluid density dif-
ferences. When γ increases, the relative velocity between
the solid nanoparticles and base fluid increases, leading to
momentum productivity. Hence, the effects of γ on the
velocity and temperature profiles are similar to those of the
mixed-convection buoyancy parameter, as shown in Fig. 8a, b
(velocity profile) andFig. 9a, b (temperature profile). Increas-
ing γ (by increasing either ρp or dp) decreases the Brownian
diffusion, resulting in particle migration that is controlled by
the thermophoresis force, as shown in Fig. 10a, b.

Another factor investigated in the present problem is the
solid/fluid thermal conductivity ratio (Kr). Its effects on the
velocity, temperature, and particle concentration profiles are
shown in Figs. 11, 12, and 13, respectively. On the one hand,
conduction heat transfer increases as Kr increases. On the
other hand, as Kr increases, the thermophoresis force acting
on the nanoparticles immersed in the base fluid decreases and
the immersed-particle buoyancy effect decreases, as shown
in Fig. 11a, b. The reduction in the immersed-particle buoy-
ancy effect decreases the heat transfer rate inside the channel,
as shown in Fig. 12a, b. The nanoparticles eject themselves
from the heated region toward the channel core during sym-
metric heating (Fig. 13a) or toward the cold plate during
asymmetric heating (Fig. 13b) for low values of Kr. As Kr
increases, the thermophoresis force decreases and the par-
ticle concentration tends to be uniform inside the channel,
as shown in Fig. 13a, b. Given these observations, when the

forced-convection flow is dominant (Gr/Re < 1), the use of
high-thermal-conductivity nanoparticle solids is preferred to
enhance conduction heat transfer. In contrast, low-thermal-
conductivity particles are desirable for mixed-convection
flow to enhance buoyancy.

The local Nusselt number on the heated wall is shown as a
function of φo for three selected values of Gr/Re in Fig. 14
and for three selected values of γ in Fig. 15. As expected
from the effects of these parameters on the hydrodynamic
and heat transfer behavior explained earlier, Nu increases
remarkably with Ge/Re, γ , and φo. The effects of Kr on
the local Nusselt number are shown in Figs. 16 and 17 for
mixed-convection (i.e., Gr/Re > 1) and forced-convection
(i.e., Gr/Re < 1) flows, respectively. Nu decreases sharply
and then gradually as Kr increases for mixed-convection
flow. However, when forced convection is dominant, as Kr
increases, Nu increases sharply and then gradually until it
reaches an asymptotic value at Kr ≈ 50, as shown in the two
figures. In addition, the figures indicate that the heat trans-
fer performance is affected considerably by Kr variations at
low and moderate values. However, its variation effects are
negligible for forced-convection flow for Kr ≥ 50 and have
relatively small significance for mixed-convection flow at
high values of Kr (Kr ≥ 600). This result confirms the afore-
mentioned conclusion that for better thermal performance,
high-thermal-conductivity nanoparticles are preferred when
the flow is driven solely by forced convection, whereas low-
thermal-conductivity nanoparticles are desirable when the
flow is driven by combined forced and natural convection. To
test this result in practical materials, the variation in Nu with
the volume fraction is analyzed for three selected nanoparti-
cle materials—Cu, Al2O3, and SiO2—for forced-convection
flow (Fig. 18, Gr/Re = 0.01) and mixed-convection flow
(Fig. 19, Gr/Re = 100). Cu, which has the highest thermal
conductivity, has the highest Nu for forced-convection flow,
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whereas SiO2, which has the lowest thermal conductivity,
has the highest Nu in the mixed-convection mode.

4 Conclusion

In this study, the mixed-convection flow of nanofluids
between two asymmetrically heated vertical parallel plates
in the fully developed region is considered. The momen-
tum, energy, and nanoparticle concentration equations of
the Buongiorno model are analytically solved. The solu-
tion is limited to tiny nanoparticles (diameter < 100 nm),
for which the Brownian motion and thermophoresis force
are significant. Closed-form formulas are deduced for the
nanofluid velocity, temperature, and nanoparticle profiles as
well as for the pressure gradient and Nu. The solution is
strongly affected by themixed-convection buoyancy parame-
ter, immersed-particle buoyancy parameter, volume fraction,
solid/fluid conductivity ratio, and heat flux ratio.

In particular, the results reveal the following:

• Nu significantly increases (up to 100%) with increas-
ing volume fraction in the mixed-convection dominant
regime and slightly increases (less than 10%) in the
forced-convection dominant regime.

• In the mixed-convection dominant regime, Nu signif-
icantly decreases with increasing solid/fluid thermal
conductivity ratio, and the reduction could be more than
60% at high values of Gr/Re.

• In the forced-convection dominant regime, Nu non-
significantly increaseswith increasing solid/fluid thermal
conductivity ratio and reaches its asymptotic value at
Kr = 50.

In viewof the above remarks, the suspension of high-thermal-
conductivity nanoparticle materials into the base fluid is
useful when the flow is driven solely by forced convection.
In contrast, low-thermal-conductivity nanoparticle materi-
als are beneficial for improving heat transfer performance
in the mixed-convection regime. These results are important
for designing effective heat exchange systems in many engi-
neering applications. For example, for nuclear applications,
selecting copper nanoparticles is more useful to enhance the
heat transfer in a forced-convection loop of a nuclear reac-
tor. For cooling high-power electronic devices, where the
buoyancy is comparable to the inertia force, SiO2 nanoparti-
cles are preferable. However, the thermophysical properties
of nanofluids are strongly dependent on the nonuniform
nanoparticle concentration in the channel. Hence, further
study should be conducted to analyze the coupling of the
nanoparticle concentration equation with the conservation
equations of mass, momentum, and thermal energy.
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