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Abstract
This paper proposes an approximate optimal approach for output tracking and regulation of a class of nonlinear systems.
This class includes systems which are decomposable into a linear part and a nonlinear part. It is shown that the Hamilton–
Jacobi–Bellman equation associated with optimal control of such systems, under an assumption on form of its solution, can
be approximated as an algebraic equation. Decomposition of this algebraic equation into a linear part and a nonlinear part
and their subsequent solutions together form an approximate value function. This value function is found to be nearly optimal
locally around the origin. Thus, a locally stabilizing controller with the proposed value function as feedback gain is proposed.
This approach achieves output tracking and regulation by converting these into a stabilization problem through internal model
principle resulting in a near-optimal tracking and regulation. This proposed algebraic equation can be used for estimation too,
i.e., it plays the same role in nonlinear settings as that played by an algebraic Riccati equation in linear quadratic regulation and
linear quadratic estimation. Finally, the proposed approach can compensate integral windup effects due to actuator saturation
through modification of filtering characteristics of internal model. Simulation results for an undamped spring-mass system
are given for efficacy of the approach.

Keywords Nonlinear tracking · Nonlinear regulation · Nonlinear estimation · Optimal control · Internal model principle

1 Introduction

Linear and nonlinear output regulation problems were
solved, respectively, by Francis, Davison, and Wonham in
[1] and Isidori and Byrnes in [2]. The subject of output reg-
ulation of dynamical systems had matured by mid-2000s
marked by the publication of four monographs [2–5]. [2]
focused on local output regulation of nonlinear systems,
[3] provided results for semi-global output regulation, [4]
attempted global regulation of uncertain nonlinear system,
and finally, [5] dealt with regional output regulation through
Jacobian analysis of nonlinear systems. Optimality has not
been a goal in research on nonlinear output regulation except
for a solitary attempt by Byrnes in [6]. Byrnes explored Ric-
cati partial differential equation for nonlinear optimal control
in order to seek a counterpart of algebraic Riccati equation
(ARE) in nonlinear settings. The results presented in [6]were
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too abstract to be of practical use. Thus, optimal output reg-
ulation of nonlinear systems is an open problem. This paper
provides an approach for output tracking/regulation of a class
of nonlinear systems with some degree of optimality.

Traditionally, anoptimal nonlinear control problem requires
solving the Hamilton–Jacobi–Bellman equation (HJBE) that
is a nonlinear partial differential equation (NPDE). Since
there is no general theory for analytical solutions of NPDEs,
various approximate solutions of HJBE have been reported
in the literature. Four approximate-analytical approaches to
optimal nonlinear control are inverse optimal control by
Freeman and Kokotovic in [7], patchy solutions by Navasca
and Krener in [8], dynamic value functions by Sassano and
Astolfi in [9], and state-dependent-Riccati equations (SDRE)
by Cloutier et al. in [10]. Approaches of Patchy Solutions
and dynamic value functions solve the stabilization problem
of nonlinear systems. On the other hand, output regulation
of nonlinear systems is better investigated by the other two
approaches of inverse optimal control and SDRE. For an
excellent research on optimal tracking control, [11–13] can
be referred.
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Inverse optimal control traces its origin to the discovery
by Freeman and Kokotovic in [7,14] according to which
solution of an HJBE associated with optimal control of a
system is related to a control Lyapunov function of the sys-
tem. Kristic and Tsitoris in [15] proposed inverse optimal
control which uses control Lyapunov functions to stabilize
nonlinear systems without bothering about cost functionals.
However, determination of control Lyapunov function is not
a trivial task for nonlinear systems. An optimal output reg-
ulation through an inverse optimal controller embedded in
Lyapunov redesign framework is proposed by Memon in
[16].

SDRE approach totally ignores the partial derivatives
of an HJBE converting it into a functional equation. This
approach has shown promising local results to optimal non-
linear control problems though it lacks rigorous justification
for the elimination of partial derivatives. Nonetheless, easy
implementation of SDRE approach for local and subopti-
mal regulation of practical nonlinear systems makes it a very
popular choice. Two recent application of SDRE method
for nonlinear tracking are given in [17,18]. A survey on
the stability and optimality results of SDRE is given in
[19].

The main contribution of this paper is an approach to
control weakly nonlinear systems with regard to optimal-
ity and actuator saturation. Weakly nonlinear systems are
those which can be decomposed into a linear part and a
nonlinear part. Mathematically, such a system can be stated
in matrix form as a linear system with constant param-
eters and a linear system with state-dependent nonlinear
parameters. Now, the associated HJBE needed to be solved
can be converted into an algebraic equation (AE) through
two assumptions, which are (i) partial derivatives of the
HJBE replaced with their first-order approximations and
(ii) decomposition of state dynamics into two parts. This
AE is found to be decomposable into a linear component
and a nonlinear component. Linear component, being an
ARE, is solved first for a constant solution matrix which is
then used in solving the nonlinear component for a state-
dependent solution matrix. These two solutions together
form (i) an approximate value function, and (ii) state-
dependent gain of a stabilizing state-feedback controller.
The idea of a two-component control law is based upon
an earlier work of ours [20]. In [20], we proposed a vari-
able gain controller composed of an LQR controller whose
gains were modifiable with respect to the size of parametric
uncertainty.

There are two salient features of this paper. Firstly, it is
shown that the tracking and regulation problems for weakly
nonlinear systems can be solved by converting these into a
stabilization problem through internal model principle. Aug-
mentation of internal models of reference signals, generated
by linear exosystems, into linear component of a decomposed

system achieves tracking/regulation with acceptable steady-
state accuracy. Motivated by the fact that linear quadratic
regulation and linear quadratic estimation problems are dual
of each other, this paper proposes a dual of the proposed
AE for estimator design. It is to be noted that the estima-
tor design is carried out for unaugmented system. Secondly,
the proposed approach provides anti-windup compensation
against actuator saturation. It is shown that the fast Fourier
transform of closed-loop dynamics shows a signal with a
significant gain at a frequency other than the frequency
of reference signal. It is shown that this unwanted signal
can be filtered out by relocation of zero(s) of the internal
model.

The rest of the paper is organized as follows: Section 2
states the problem; Section 3 provides the main result; Sec-
tion 4 discusses the approximation of HJBE; Section 5
discusses the observer-based tracking/regulation; Section 6
presents the anti-windup compensation; andfinally, Section 7
concludes the paper.

2 Problem Statement

Consider a SISO nonlinear system

ẋ = f (x) + Bu

y = Cx (1)

where x ∈ Rn represents the state vector, u ∈ R rep-
resents the control input vector, y ∈ Rv represents the
measured output vector. It is assumed that origin x = 0
is an origin of the system. Moreover, f (x) : Rn → Rn is
continuously differentiable in all its arguments. We consider
a class of nonlinear systems in which the state dynamics
are decomposable into a linear part and a nonlinear part,
i.e., ẋ = Ax + f1(x) + Bu. This decomposition is simi-
lar to ‘Additive-State Decomposition’ in [21]. Furthermore,
the remaining nonlinear part can be factorized in an infinite
number of ways, i.e., f1(x) = A(x)x . This factorization is
based on the idea of extended linearization used in [22] for a
suboptimal nonlinear control technique referred to as SDRE
control. Hence, the (1) is modified as

ẋ = Ax + A(x)x + Bu = f2(x)x + Bu (2)

where f2(x) = A+ A(x). Note that the function f1(x) does
not include unmodeled dynamics. Considering unmodeled
dynamics too renders the proposed approach as more prac-
tical. This direction of research has been mentioned as the
future work while concluding this paper. It is assumed that
the system is driven by a scalar control input. The problem
is to possibly devise a controller design procedure that deals
with the following three items in the requirement list
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1. Approximation of HJBE The intractability of solving an
HJBE be reduced through an approximation.

2. Observer-based output tracking and regulation It is
desired that the controlled systembeable to track/regulate
its actual or observedoutput at anyof these reference sig-
nals, i.e., limt→∞ error(t) = e(t) = r(t) − y(t) = 0,
where y(t) is the tracked output. Reference signals such
as step-input, ramp-input, and sinusoidal-input are to be
regulated or tracked. All these signals are generated by
a linear exosystem.

3. Actuator Saturation Control mechanism be able to deal
with input constraints such as actuator saturation. The
saturation limit, however, is not allowed to affect the
asymptotic stability achieved through observer-based
output tracking and regulation.

Next section presents the main result of this paper.

3 Main Result

Themain result of this paper is that aweakly nonlinear system

ẋ = Ax + A(x)x + Bu = f2(x)x + Bu (3)

can be stabilized near optimally by a two-component state-
feedback controller given as

u = −R−1BT (P + ρ(x))x (4)

with feedback gains P andρ(x)being, respectively, solutions
of an ARE

φ1 := AT P + PA + Q − PBR−1BT P = 0 (5)

and a nonlinear algebraic equation

φ2(A, A(x), P, ρ(x), B, R)

:= PBR−1BT 3

2
ρ(x) + 3

2
ρ(x)BR−1BT P

+ 3

2
ρ(x))BR−1BT 3

2
ρ(x) − AT (x)P + PA(x)

− f2(x)
T ρ(x) − 2ρ(x) f2(x) = 0. (6)

The proposed controller in (4) is similar in form to the con-
troller proposed in [11,13]. Now, we proceed to Sect. 4 that
discusses the conversion of HJBE into an algebraic equation.

4 Approximation of Hamilton–Jacobi–
Bellman Equation into an Algebraic
Equation

The aforementioned approximation of anHJBE into anAE is
predicated upon an assumption on form of the value function
which is the solution ofHJBE.This value function is assumed
to consist of two components as V (x) = xT Px + xT ρ(x)x .
Determination ofmatrices P andρ(x) is preceded by an anal-
ysis of stabilizing capability of the proposed two-component
controller u = −R−1BT (P + ρ(x))x . If this controller is
found to be stabilizing at least locally around the origin, then
we can proceed to find an approximate value function. This
idea is based on converse theorem used in nonlinear con-
trol systems by which existence of a Lyapunov function is
guaranteed upon existence of a stabilizing controller, refer to
Khalil [23].

Proving the boundedness of state trajectories of open-loop
weakly nonlinear systems is trivial. Banks in [24] has proven
the boundedness in case of closed-loopweakly nonlinear sys-
tems controlled by a general two-component controller. The
proposed approach modifies this proof in context of optimal
control theory. Closed-loop system is given as

ẋ = (A − BR−1BT P)x + (A(x) − BR−1BT ρ(x))x (7)

The proof is to be preceded by a few necessary assumption
to make the problem well-posed.

Assumption 1 Pair ( f2(x), B) is stabilizable in a ball ε1
around the origin, i.e., x ∈ ε1.

Assumption 2 Continuous differentiability of f (x) requires
A(x) to be continuous as well around a ball ε2 around the
origin, i.e., Bε2(0) = {x : ‖x − 0‖ < ε2}. Subsequently,
the state-dependent gain ρ(x) is required to be continuous
around the origin.

Remark 1 Ball of stabilizability is smaller than or equal to
the ball of continuity, i.e., ε1 ⊆ ε2

Assumption 3 The state-dependent part of the control
signal is proportional to the state vector such that lim‖x‖→0

‖ρ(x)‖ = 0

Proof begins here. A stable linear part of the closed-loop
systems dynamics in (7) means that all Eigenvalues λ of
A − BR−1BT P must be such that Re(λ) < −β for β > 0.
As for the nonlinear part in (7), lets equate it to h(x) =
g(x)x resulting in the following closed-loop dynamics
representation
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ẋ = (A − BR−1BT P)x + h(x). (8)

By assumptions 2 and 3, we can conclude that h(x) satisfies
the following property locally around the origin

lim‖x‖→0

‖h(x)‖
‖x‖ = 0 (9)

for ‖x(t)‖ ≤ ε3, where ε3 > 0. This property leads to the
bounding of g(x), i.e., ‖g(x)‖ ≤ ζ , where ζ > 0 leads
to ‖h(x)‖ ≤ ζ‖x‖. By variations of parameters formula,
solution of (8) can be given as

x(t) = e(A−BR−1BT P)t x(0)

+
∫ t

0
e(A−BR−1BT P)(t−s)h(x(s))ds. (10)

Taking the norm on both sides results in

‖x(t)‖ = ‖e(A−BR−1BT P)t‖‖x(0)‖
+ ζ

∫ t

0
‖e(A−BR−1BT P)(t−s)‖‖x(s)‖ds. (11)

The factor ‖e(A−BR−1BT P)t‖ is bounded by
‖e(A−BR−1BT P)t‖ ≤ Ge−βt for G > 0. Thus, (11) becomes

‖x(t)‖ = ‖e(A−BR−1BT P)t‖‖x(0)‖
+ ζ

∫ t

0
‖e(A−BR−1BT P)(t−s)‖‖x(s)‖ds. (12)

Now for a positive constant G the factor ‖e(A−BR−1BT P)t‖
is bounded as follows

‖e(A−BR−1BT P)t‖ ≤ Ge−βt (13)

that modifies (12) as

‖x(t)‖ ≤ Ge−βt‖x(0)‖ + ζG
∫ t

0
e−β(t−s)‖x(s)‖ds. (14)

Finally, multiplying both sides by eβt and utilizing Gronwall
inequality, we get

‖x(t)‖ ≤ G‖x(0)‖e−(β−ζG). (15)

Hence, if the factor β − ζG > 0, we can guarantee local
asymptotic stability of origin, i.e., x = 0. Proof ends here.

After the aforementioned establishment of local asymp-
totic stability of the origin, we begin constructing the
approximate value function. This process starts by equating
a quadratic cost functional to a quadratic Lyapunov function,
i.e., V (x(t)) = xT (t)(P + ρ(x(t)))x(t). Here, matrix P is

assumed as a symmetric-positive-definite (s.p.d.) matrix and
ρ(x) as a symmetric-indefinite (s.i.) matrix. This equation is
mathematically written as

T∫

t0

(xT (t)Qx(t) + uT (t)Ru(t))dt = V (x(t)) (16)

with differential form stated as

xT (t)Qx(t) + uT (t)Ru(t) = ∂V (x(t))

∂t

∣∣∣∣
T

t0
+ dV (x(t))

dt

∣∣∣∣
T

t0
(17)

The aforementioned equation is an HJBE whose time-
invariant form makes the first term zero on the right-hand
side of equality. Moreover, with t0 = 0 and T = ∞, it
becomes an infinite-horizon optimal control problem

xT (t)Qx(t) + uT (t)Ru(t) = dV (x(t))

dt

∣∣∣∣
T

t0

= ∂V (x(t))

∂x
ẋ

∣∣∣∣
∞

0
(18)

Furthermore, with fixed terminal state, i.e., x(∞) = 0, (18)
modifies to

xT0 Qx0 + uT0 Ru0 = −ẋ T0 (P + ρ(x0))x0

− xT0 (P + ρ(x0))ẋ0 − xT0 ˙(P + ρ(x0))x0 (19)

where x0 = x(0) and u0 = u(0) are the initial values of
states and control signal, respectively. We deal with the first
two terms on the right-hand side of Eq. (19) separately from
the third term on this side. Straightforward algebraic manip-
ulation of the first two terms results in

ẋ T0 (P + ρ(x0))x0 + xT0 (P + ρ(x0))ẋ0

= xT0

{
f2(x0)

T (P + ρ(x0)) + (P + ρ(x0)) f2(x0)
}
x0

+ 2BT (P + ρ(x0))x0u0 (20)

After dealing with the first two terms, we focus on the
third term which is important with respect to optimal-
ity requirement in problem statement. The third term,
xT0 ˙(P + ρ(x0))x0, is modified into xT0 ρ̇(x0)x0 as time
derivative of constant matrix P is a zero-matrix. By Chain
rule, xT0 ρ̇(x0)x0 can be changed into xT0 {∇ρ(x0).ẋ0}x0,
where ∇ represents gradient of matrix ρ(x0). We use a
second-order multivariable Taylor series to approximate
∇ρ(x0) resulting in ∇ρ(x) = ρ(x0)−ρ(0)

x0
+ 1

2Hx0, where

H represents the Hessian matrix. We ignore the term 1
2Hx0

simplifying remaining analysis at a price of rendering the
proposed approach suboptimal. Hence, this approximation
results in
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∇ρ(x0) = ρ(x0) − ρ(0)

x0
+ O(x0)

≈ ρ(x0) − ρ(0)

x0
(21)

There are two important aspects of the aforementioned
approximation. Firstly, the difference between an absolutely
optimal design and the proposed approach varies only lin-
early with farther initial values of system states from origin.
Secondly, matrix ρ(x) is a zero-matrix at the origin, i.e.,
ρ(0) = 0 which further simplifies Eq. (21). This means that
our proposed suboptimal approach is almost optimal near the
origin. Third term in Eq. (19) thus becomes

xT0 ρ̇(x0)x0 = xT0 ρ(x0) f2(x0)x0 + xT0 ρ(x0)Bu0 (22)

Inserting Eqs. (20) and (22) into Eq. (19) yields a multivari-
able function. Minimization of this function by exploiting its
geometry results in form of the minimizer, i.e., the optimal
control law. Note that this function is required to be mini-
mized at all times from t = 0 to t = ∞, thus dropping the
initial condition dependence yields the following multivari-
able function

F(u, x) = min
u

[
uT Ru + BT (2P + 3ρ(x))xu

+ xT
(
f2(x)

T (P + ρ(x))

+ (P + 2ρ(x)) f2(x) + Q
)
x

]
(23)

The goal is to find a u that will minimize the above objec-
tive function. This objective function is quadratic in both
control signal u and state vector x . This is a case of multivari-
able quadratic equation which can be solved by considering
it as a single-variable quadratic equation. Such a consider-
ation is also mentioned in [25]. A single-variable quadratic
equation is solved through the following quadratic formula

x = −b ± √
b2 − 4ac

2a
(24)

Locus of solution points of the above equation form a
parabola. The position of a parabola on the coordinate
axes plane depends upon a factor known as a discriminant,
D = b2 − 4ac. When D = 0 and a > 0, the minimum of
the parabola occurs on x − axis at vertex. Figure (1) shows
the position of a parabola with respect to difference cases of
D. It is possible to consider the argument of the objective
function as a single-variable quadratic equation. Using the
quadratic formula in (24) to obtain a solution for u yields

u = −BT (2P + 3ρ(x))x ± √
φ

2R
(25)

Fig. 1 Position of a parabola with respect to discriminant D

where

φ =
(
BT (2P + 3ρ(x))x

)2

− 4RxT
(
f2(x)

T (P + ρ(x)) + (P + 2ρ(x)) f2(x) + Q
)
x

(26)

Since we know that both the matrices P and ρ(x) are
symmetric, this expression for φ becomes

φ = 4RxT
((

P + 3

2
ρ(x)

)
BR−1BT

(
P + 3

2
ρ(x)

)

− f2(x)
T (P + ρ(x)) − (P + 2ρ(x)) f2(x) − Q

)
x

(27)

Geometric analysis of the foregoing expression allows stat-
ing conditions for feasibility of minimization of objective
function in (23). These conditions are

1. Existence of Minimum In order to ensure that a mini-
mum of the aforementioned objective function exists,
the coefficient R of term u2 must be positive-definite,
i.e., R > 0.

2. Asymptotic Stability Setting φ = 0 yields (i) form of
the optimal control law u appearing as

u = −R−1BT Px − 3

2
R−1BT ρ(x)x, (28)

and (ii)minimumof the objective function lies at the axis
f (x, u) = 0 leading to the asymptotic stability of the
system. Since u = f (x), minimum of F(x, u) occurs
only when x = 0.

3. Optimality Setting φ = 0 is also required in the pro-
posed suboptimal approach as would be required in
an optimal case without the aforementioned approxi-
mation. We know that the system evolves with state(s)
starting from an initial condition, i.e., x(0) �= 0meaning
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that the factor
(
(P + 3

2ρ(x))BR−1BT (P + 3
2ρ(x)) −

f2(x)T (P + ρ(x)) − (P + 2ρ(x)) f2(x) − Q
)

= 0 at

all times from t = 0 to t = ∞.

It is now shown how the proposed approach simplifies
to traditional equations for optimal control of linear sys-
tems. For a linear system ẋ = Ax + Bu with a quadratic
cost functional and Lyapunov function V = xT Px-objective
function, multivariable quadratic equation, φ, and resulting
optimal control are given, respectively, as

F(u, x) =
min
u

{
uT Ru + 2BT Pxu + xT (AT P + PA + Q)x

}

uT Ru + 2BT Pxu + xT (AT P + PA + Q)x = 0 (29)

φ := AT P + PA + Q − PBR−1BT P = 0 (ARE) (30)

u = −R−1BT Px (LQR) (31)

The next subsection discusses the solution of the equation
φ = 0. Solving φ = 0 will consist of finding both the matri-
ces P and ρ(x).

4.1 Solving φ = 0

Solving φ for a closed-form solution is challenging as φ = 0
is apparently an equationwith two variables, P and ρ(x), and
there cannot be a unique solution. Rearranging φ = 0 reveals
a possibility of solving it sequentially. Proceeding with the
derivation, φ = 0 can be rearranged with a left-hand side and
a right-hand side as shown below

f2(x)
T (P + ρ(x)) + (P + 2ρ(x)) f2(x) + Q

=
(
P + 3

2
ρ(x)

)
BR−1BT

(
P + 3

2
ρ(x)

)
(32)

Rearranging both sides of the above equation results in

AT P + PA + Q + AT (x)P + PA(x)

+ f2(x)
T ρ(x) + 2ρ(x) f2(x)

= PBR−1BT P + PBR−1BT 3

2
ρ(x)

+ 3

2
ρ(x)BR−1BT P + 3

2
ρ(x))BR−1BT 3

2
ρ(x) (33)

A further rearrangement results in

AT P + PA + Q − PBR−1BT P + AT (x)P + PA(x)

+ f2(x)
T ρ(x) + 2ρ(x) f2(x)

= PBR−1BT 3

2
ρ(x) + 3

2
ρ(x)BR−1BT P

+ 3

2
ρ(x))BR−1BT 3

2
ρ(x) (34)

In the aforementioned matrix equation, there are two
unknown matrices P and ρ(x). Hence, solution of this
matrix equation is not unique. Now, there can be infinitely
many solutions of this matrix equation by determining one
unknown matrix and finding the other with respect to the
first one. Note that the above rearrangement clearly shows
the appearance of an ARE which can be solved for P . Once
P is found, ρ(x) can also be found. The splitting of (34)
into an ARE and a remaining nonlinear part is based upon
the notion of splitting of PDEs. Splitting a PDE is routinely
carried out in numerical solution method such as Galerkin
methods. Nonetheless, splitting a PDE in analytical domain
is possible too as reported in [26]. Hence, we divide φ into φ1

and φ2 and sequentially solve these where former preceding
the latter. So,

φ1 := AT P + PA + Q − PBR−1BT P = 0 (35)

and

φ2(A, A(x), P, ρ(x), B, R) := PBR−1BT 3

2
ρ(x)

+ 3

2
ρ(x)BR−1BT P + 3

2
ρ(x))BR−1BT 3

2
ρ(x)

− AT (x)P − PA(x) − f2(x)
T ρ(x) − 2ρ(x) f2(x)

= 0 (36)

Thepossibility of solvingφ = 0 sequentially, as stated above,
justifies the choice of dynamical systems—systems separable
into linear and nonlinear subdynamics. Linear subdynamics
are treated acausally, and nonlinear subdynamics are treated
causally. Such a treatment is discussed in [27] too. Determi-
nation of solution of φ2 for ρ(x) is a formidable task. This
difficulty can be reduced by assuming specific forms of input
matrix B and ρ(x).

Assumption 4 For second-order nonlinear systems, as in (3),
control inputs are required to be scalar, i.e., B = [0 1]T or
B = [1 0]T .
Remark 2 Matrix P + ρ(x) can be dominated by matrix P
to render P + ρ(x) positive-definite.
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Typical second-order nonlinear systems include a pendulum
system and a spring-mass system as given in [28]. Thus, a
general second-order nonlinear system with A = [

a b
c d

]
,

and A(x) =
[
ax bx
cx dx

]
, B = [

0
1

]
, P = [ p1 p2

p2 p3

]
and

ρ(x) = [ 0 ρ2
ρ2 ρ3

]
; the resulting equations in terms of ρ2 and

ρ3,
respectively, are

9ρ2
2

4
+ 3p2ρ2 − 2p1ax − 3cρ2 − 2p2cx = 0 (37)

9ρ2
3

4
+ 3p3ρ3 − 2dρ3 − 2p2bx − 3bρ2 − dρ3 − 2p3dx = 0

(38)

Assumptions 4 and 5 lead to a modified form of (28) with
respect to the considered second-order nonlinear system as
shown below

u = −
(
p2 + 3

2
ρ2

)
x1 −

(
p3 + 3

2
ρ3

)
x2 (39)

where ρ2 and ρ3 are solutions of (37) and (38), respectively.
The aforementioned proposition is applicable to higher-

dimensional nonlinear systems too. For example, a three-
dimensional system with a scalar inputs B = [0 0 1]T , B =
[0 1 0]T , and B = [1 0 0]T will, respectively, have the

forms ρ(x) =
[

0 0 ρ3
0 0 ρ5
ρ3 ρ5 ρ6

]
, ρ(x) =

[
0 ρ2 0
ρ2 ρ4 ρ5
0 ρ5 0

]
, and

ρ(x) =
[

ρ1 ρ2 ρ3
ρ2 0 0
ρ3 0 0

]
. We now show the optimality and

stabilizing capability of the proposed controller as in (39)
through a motivating example

4.2 Motivating Example

Lets consider stabilization problem for the following nonlin-
ear undamped spring-mass system,

ẋ1 = x2

ẋ2 = −x1 + x31 + u, (40)

and assume the following quadratic cost functional

J =
∞∫

0

(q1x
2
1 + q2x

2
2 + Ru2)dt (41)

and

P + ρ(x) =
[
p1 p2
p2 p3

]
+

[
0 ρ2
ρ2 ρ3

]

=
[

p1 p2 + ρ2
p2 + ρ2 p3 + ρ3

]
. (42)

Decomposition of the system into a linear part and a nonlinear
part results in

[
ẋ1
ẋ2

]
=

[
0 1

−1 0

] [
x1
x2

]
+

[
0 0
x21 0

] [
x1
x2

]
+

[
0
1

]
u. (43)

Now, solution of φ1 = 0 is

P =
[
p1 p2
p2 p3

]
. (44)

Solving φ2 = 0, solutions ρ2 and ρ3 from equations (37) and
(38), respectively, can be obtained as follows

ρ2 = 2

3

(
−1 + x21 − p2 +

√
p22 + 2p2 + x41 − 2x21 + 1

)

(45)

ρ3 = 2

3

(
−p3 +

√
p23 + 3ρ2

)
. (46)

Resulting stabilizing controller, through (39), is given as

u = −
{
−1 + x21 +

√
p22 + 2p2 + x41 − 2x21 + 1

}
x1

−
{√

p23 + 2(−1 + x21 − p2 +
√
p22 + 2p2 + x41 − 2x21 + 1)

}
x2

(47)

u = x1 − x31 −
{√

p22 + 2p2 + x41 − 2x21 + 1

}
x1

−
{√

p23 + 2(−1 + x21 − p2 +
√
p22 + 2p2 + x41 − 2x21 + 1)

}
x2

(48)

Remark 3 The aforementioned control law in (48) has a feed-
back linearizing part in the form of x1 − x31 for the system in
(40).

It is now in order to evaluate the proposed approximate value
function. This value function is given as

V (x1, x2) = [x1 x2]
[

p1 ...

−1+x21+
√
p22+2p2+x41−2x21+1 ...

... −1+x21+
√
p22+2p2+x41−2x21+1

...

√
p23+2(−1+x21−p2+

√
p22+2p2+x41−2x21+1)

] [
x1
x2

]
. (49)

Figure (2) shows comparison of value functions obtained
through the proposed approximation and through lineariza-
tion of system in (40) at origin. States are in ranges −1 ≤
x1 ≤ 1 and −1 ≤ x2 ≤ 1 with state penalizations
q1 = 1 and q2 = 1. It is interesting to find the error
between these two value functions which is defined as
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Fig. 2 Comparison of value functions obtained through the proposed
approximation and after linearization of system in (40) in ranges −1 ≤
x1 ≤ 1 and −1 ≤ x2 ≤ 1 with state penalizations q1 = 1 and q2 = 1

Fig. 3 Error between value functions obtained through the proposed
approximation and after linearization of system in (40). Error is zero
around the origin and increases when state trajectories are away

E(x1, x2) = V (x1, x2)|approximate − V (x1, x2)|lineari zed .
Figure (3) shows the error E(x1, x2) between value func-
tions obtained through the proposed approximation and after
linearization of system in (40).

5 Tracking/Regulation and Estimation

Both tracking/regulation and estimation can be achieved
through the proposed approach explained in detail in the pre-
vious section. It is to be noted that the AE to be solved for
tracking/regulation will have a higher dimension than that
which is to be solved for estimation. This is due to the incor-
poration of internal model of the reference signal to achieve
tracking/regulation.Weproceedwith tracking/regulation and
later discuss estimation.

5.1 Tracker/Regulator Design

This section explains how tracking/regulation canbe achieved
within the proposed suboptimal stabilization approach. Since
the reference signals such as step-input, ramp-input, and
sinusoidal-input are generated by linear exosystems, their
respective internal models can be straightforwardly aug-
mented into the linear part of a decomposed system. These
reference signals can all be generated by the following simple
dynamical exosystem,

rd + a1r
(d−1) + · · · + adr = 0, and (50)

ẇ =

⎡
⎢⎢⎢⎣

0 1 0 · · ·
0 0 1 · · ·
...

...
. . .

...

−ad · · · −a2 −a1

⎤
⎥⎥⎥⎦w = Mw (51)

r = [1 0 · · · ]w (52)

whereM ∈ Rd . Augmentation of the abovementioned inter-
nal model can be done using the following state-space model

χ̇ = A∗χ + A∗(χ)χ + B ∗ u (53)

y = Cχ (54)

where χ ∈ Rn+d and u ∈ Rm+d and partitioned matrices

A∗ =
⎡
⎣ 01×n

M −H
0n×n A

⎤
⎦ , A∗(χ) =

[
0 0
0 A(x)

]
, B∗ =

[
0
B

]
,

and C∗ = [
C 0

]

The proposition is now applied on the nonlinear undamped
spring-mass system to enable one of its outputs track a sinu-
soidal reference signal. Let’s introduce the error dynamics
as

χ̇1 = χ2

χ̇2 = −χ1 + χ3
1 + u

lim
t→∞ e(t) = r(t) − χ1(t) = 0 (55)

The task is to make the state track, i.e., χ1(t) → r(t) =
0.5sin(t), where ω = 1rad/s and f = ω

2π = .159Hz. The
quadratic cost functional is given as

J =
∞∫

0

(q1χ
2
1 + q2χ

2
2 + qi1χ

2
i1 + qi2χ

2
i2 + Ru2)dt, (56)

where qi1 and qi2 are state penalizations for internal model
and q1 and q2 are state penalizations for system. Decomposi-
tion and augmentation of internal model lead to the following
system dynamics
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⎡
⎢⎢⎣

χ̇i1

χ̇i2

χ̇1

χ̇2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
−1 0 −1 0
0 0 0 1
0 0 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

χi1

χi2

χ1

χ2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 0
0 0 0 0
0 0 0 0
0 0 χ2

1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

χi1

χi2

χ1

χ2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣
0
0
0
1

⎤
⎥⎥⎦ u +

⎡
⎢⎢⎣
0
1
0
0

⎤
⎥⎥⎦ r (57)

Solving φ1 = 0 for the nonlinear system in the above form
would result in

P =

⎡
⎢⎢⎣
p1 p2 p3 p7
p2 p4 p5 p8
p3 p5 p6 p9
p7 p8 p9 p10

⎤
⎥⎥⎦ (58)

To solve φ2 = 0, we choose

P + ρ(x) =

⎡
⎢⎢⎣
p1 p2 p3 p7
p2 p4 p5 p8
p3 p5 p6 p9
p7 p8 p9 p10

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣
0 0 0 ρ7
0 0 0 ρ8
0 0 0 ρ9
ρ7 ρ8 ρ9 ρ10

⎤
⎥⎥⎦ (59)

Solving φ2 = 0 results in ρ7 = 0, ρ8 = 0,

ρ9 = 2

3

(
− 1 − p9 + χ2

1 +
√
p29 + 2p9 + χ4

1 − 2χ2
1 + 1

)
,

and ρ10 = 2

3

(
− p10 +

√
p210 + 3ρ9

)
. (60)

Table 1 Three cases of state-feedback with corresponding state penal-
izations and gains

Cases State penalizations
qi1, qi2, q1, q2

Controller gains
p7, p8, p9, p10

Case I 10,10,10,10 1.5, − 4.2, 2.6, 2.4

Case II 1,1,50,50 0.8, − 1.1, 3.5, 5.8

Case III 1,1,100,100 0.9, − 1.0, 5.7, 8.7

Fig. 4 Responses of state x1 for cases I, II, and III of state-feedback.
Initial values of tracked state is x1(0) = 1

Thus, the optimal control law for tracking is given as

u = − p7χi1 − p8χi2 + χ1 − χ3
1

−
{√

p29 + 2p9 + χ4
1 − 2χ2

1 + 1

}
χ1

−
{√

p210 + 2(−1 − p9 + χ2
1 +

√
p29 + 2p9 + χ4

1 − 2χ2
1 + 1)

}
χ2

(61)

We describe three cases of controller gains in state-feedback,
in Table 1, which will be used to evaluate corresponding
transient and steady-states responses. Figure (4) shows state
response of x1 for Case I, Case II, and Case III of controller
gains.

5.2 Estimator Design

Linear quadratic regulation and linear quadratic estima-
tion problems are dual of each other, i.e., the same ARE
with slight modifications can be used to deal with both
the problems. In Sect. 4, the AE in (32) was solved to
obtain a stabilizing controller. A dual of AE in (32) is now
solved for state(s) estimation of considered class of sys-
tems. The state-space representation of the observer, with
respect to the unaugmented system in (1), can be given as
˙̂x = (A(x̂) + A(t))T x̂ + CT x̃ , where x̂ and x̃ are estimated
state vector and error vector (x−x̂), respectively.An assumed
quadratic cost functional is Jo = ∫ T

t0
(x̂ T Qox̂ + x̃ T Rox̃)dt

where Qo = [ qo1 0
0 qo2

]
. Thus, the ARE to estimate states

can be given as

AΣ + Σ AT + Qo − ΣCT R−1
o CΣ = 0 (62)

where if the pair {A,C} is observable then this ARE has a
s.p.d. solution Σ . Matrices Q0 and R0 can be used as tuning
parameters for the quality of state(s) estimation.

For nonlinear systems whose dynamics can be decom-
posed into an observable linear subdynamics, observer can
be designed exactly the same way that the regulator was
designed. Therefore, for the decomposable system dynamics
(A + A(x̂))x̂ , the solution matrix Σ is also modifiable to be
Σ + σ(x̂) with σ(x̂ assumed as an s.i. matrix. The resulting
observer is designed as follows

˙̂x = Ax̂ + A(x̂)x̂ + Bu + L(y − ŷ), (63)

where x̂ ∈ Rn . Similar observers are reported in [29] and
[30]. Closed-loop system dynamics along with the observer
is shown in Fig. (5). Now L = (Σ +σ(x̂))CT R−1. Matrices
Σ and σ(x̂) can also be obtained sequentially as was done in
stabilization and tracking. The algebraic observer equation,
being dual of (36), is given as
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Fig. 5 Observer-based closed-loop system

f2(x̂)(Σ + σ(x̂)) + (Σ + 2σ(x̂)) f2(x̂)
T + Q0

−
(

Σ + 3

2
σ(x̂)

)
CT R−1

0 C

(
Σ + 3

2
σ(x̂)

)
= 0 (64)

As an example,we design an observer for the systemgiven
in (55). It is to be noted that the observer is to be designed
for the unaugmented system. Thus, the stabilizing solution
of (64) for (55) is given as

Σ0 = Σ + σ(x̂) =
[
s1 s2
s2 s3

]
+

[
σ1 σ2
σ2 0

]
, (65)

where

σ1 = 2

3

(
− s1 +

√
s21 + 3σ2

)
(66)

and

σ2 = 2

3

(
− 1 + x̂21 − s2 +

√
s22 + 2s2 + x21 − 2x1 + 1

)

(67)

Subsequently, resulting gain L can be given as

L = (Σ + σ(x̂))CT R−1 (68)

Finally, the two cases of observers are shown in Table 2
which will be used in unconstrained- and constrained track-
ing. As for the unconstrained tracking, two cases of observer
gains are used with the Case II of controller gains. Figure (6)
shows responses of states x1 and x̂1 for Case II and Case
I of controller and observer gains, respectively. It can be

Table 2 Two cases of output-feedback with corresponding state penal-
izations and gains

Cases State penalizations q01, q02 Observer gains s1, s2

Case I 10,10 2.3, −2.1

Case II 100,100 9.6, −3.5

Fig. 6 Responses of state x1 and estimated state x̂ for Case
II(Controller)/Case I(Observer) gains

Fig. 7 Responses of state x1 and estimated state x̂ for Case
II(Controller)/Case II(observer) gains

Fig. 8 Convergence of states x̂1 to x1 and x̂2 to x2 for Case
II(controller)/Case II(observer) gains

seen that the estimated state not only converges relatively
late but also worsens the transient response of x1. Figure (7)
shows responses of states x1 and x̂1 for Case II and Case II
of controller and observer gains, respectively. It is obvious
that convergence time is reduced as well as an improvement
in transient response is seen. Finally, Figure (8) shows the
phase portrait of convergence of estimated state trajectories
to actual state trajectories.

6 Integral Windup Compensation

This section discusses compensation of integral windup
effect in output tracking of nonlinear systems at sinusoidal
reference signals. Integral windup due to actuator saturation
results in a deteriorated transient response. Severe actuator
saturation disturbs the steady-state response too in the form
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of reduced steady-state accuracy. The proposed approach can
compensate for a deteriorated transient response provided the
actuator saturation is not severe enough to affect the steady-
state response.

Conventional methods of anti-windup compensation are
conditional integration, back calculations, and observer-
based anti-windup. Conditional integration is easy to be
applied on controllers; however, it comes with problem of
chattering. Back calculations are applicable to only those
controllers which are driven by PID signal. Observer-based
compensation is applicable to those controllers for which
observers are easily designed. Interested reader is referred to
[31] for a more elaborate explanation.

One way of looking at a deteriorated transient response
is to consider a disturbance signal entering from plant input
and having magnitude and frequency comparable to those
of the sinusoidal reference signal. This disturbance signal
gets propagated in the closed loop and appears at the input
of the internal model too. Fourier transform of the signal
appearing at the input verifies this consideration as shown
in simulation results. The effect of an input disturbance is
usually mitigated through incorporating an extra pole, hav-
ing the same frequency as that of disturbance, in the transfer
function of internal model. This new pole appears as a zero in
numerator of transfer function of closed-loop system, thereby
allowing for possible cancelation of pole generated by input
disturbance. However, addition of pole(s) in internal model
means addition of integrator(s) which only makes the prob-
lemworse aswindup occurs due to the presence of integrators
in feedback loop.

We propose frequency domain anti-windup compensa-
tion. The proposed compensation eliminates the undesired
frequency by modifying the filtering characteristics of inter-
nal model. Knowing that increasing the number of poles in
internal model will only make the problem worse, we alter
the filtering characteristic of internal model by relocating its
zero(s). A practical means of this relocation is through the
choice of state penalization qi1, qi2, q1, and q2. Sincewindup
deteriorates the transient response of the tracked state x1, this
state has to be penalized more than others . Actual system
states, x1 and x2, are penalized through q1 and q2, respec-
tively, in the cost functional. As a result, location of poles and
zeros corresponding to the three cases of controller gains is
given in following Table 3.

Table 3 State penalization with corresponding locations of pole and
zero

Case qi1, qi2, q1, q2 Zero (Hz) Pole (Hz)

I 10,10,10,10 0.45 −0.159i,0.159i

II 1,1,50,50 0.22 −0.159i,0.159i

III 1,1,100,100 0.18 −0.159i,0.159i

Fig. 9 FFT of x̂1 for unconstrained, windup and anti-windup tracking

Fig. 10 Filter characteristics of internal model for a windup and two
anti-windup trackings

Fig. 11 Response of tracked state x1 showing overshoots in windup
and no-overshoots in anti-windup

The actuator saturation limit is set as ±3.5 above and
below which the undesired frequency does not have enough
magnitude to hinder either the transient response or the
steady-state response. At exactly this saturation limit, only
the transient response gets worsened in form of overshoots.
A saturation limit set within the range ±3.5 and closer to
0 results in worsening of both transient and steady-state
response beyond any compensation. Coming to the simu-
lation results, Figure (9) shows the Fourier transform of
the observed state x̂1 for unconstrained, windup and anti-
windup trackings. In case of windup, an additional harmonic
occurs at 0.47Hz which is eliminated in anti-windup com-
pensation. Figure (10) shows the Bode plot of the gain of
filtering characteristics of internal model. It is obvious that
Cases II & III of controller gains provide better attenu-
ation of the disturbance than Case I. Figure (11) shows
the overshoots experienced by the tracked state x1 due to
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Fig. 12 Convergence of states x̂1 to x1 and x̂2 to x2 for Case
II(controller)/Case II(observer) gains

Fig. 13 Control signal u experiencing saturation in windup tracking
and no-saturation in anti-windup tracking. Saturation limit is ±3.5

Fig. 14 Transient and steady-state responses of error e = r − x1 for
windup tracking and anti-windup tracking

windup and the suppression of these overshoots through
anti-windup compensation. Figure (12) shows the phase por-
trait of convergence of estimated state trajectories to actual
state trajectorieswith anti-windup compensation. Figure (13)
shows the control signal experiencing saturation at the limit
±3.5. Anti-windup compensation eliminates this clipping of
control signal. In the end, Figure (14) shows the exponential
stability achieved through anti-windup compensation com-
pared with only the asymptotic stability with windup.

7 Stability Analysis of Closed-Loop System

The stability of the closed-loop system can be established
by two different methods [32]. In the classical approach, a
control system is designed and then it is checked for stability.
In an opposite approach, conditions of stability are described
first and then a controller is designed within limits of these

conditions. We have used the latter method in our work as
shown in Sects. 4 and 5 so the proposed regulator and esti-
mator are already stable. But for the sake of completeness,
we use the classical approach to determine the stability of the
closed-loop system, independently with state-feedback and
output-feedback.

7.1 State-Feedback

The Lyapunov function is chosen as V = χT (P+ρ(χ))χ =
χT Prχ where P > 0 and P(χ) ≥ 0. Proceeding by taking
the time derivative

V̇ = χ̇T Pr x + xT Pr χ̇ + χT ˙ρ(χ)χ

= χT { f T2 (χ)Pr + Pr f2(χ)}χ + 2BT Prχu

+ χT ρ(χ) f2(χ)χ + χT ρ(χ)Bu

= χT { f T2 (χ)Pr + (P + 2ρ(χ)) f2(χ)}χ
+ BT (2P + 3ρ(χ))χu (69)

Inserting u = −R−1BT (P + 3
2ρ(χ))χ and adding and sub-

tracting χT Qχ above give

= χT { f T2 (χ)Pr + (P + 2ρ(χ)) f2(χ) + Q}χ
− 2χT

{(
P + 3

2
ρ(χ)

)
BR−1BT

(
P + 3

2
ρ(χ)

)}
χ

− χT Qχ

= χT { f T2 (χ)Pr + (P + 2ρ(χ)) f2(χ) + Q}χ
− χT

{(
P + 3

2
ρ(χ)

)
BR−1BT

(
P + 3

2
ρ(χ)

)}
χ

− χT
{
Q +

(
P + 3

2
ρ(χ)

)
BR−1BT

(
P + 3

2
ρ(χ)

)}
χ

(70)

The arguments inside the brackets of the first two terms in
the foregoing expression form φ. Since φ = 0 to obtain a
minimum according to (36), thus

V̇ = −χT
{
Q + (P + 3

2
ρ(χ))BR−1BT

(
P + 3

2
ρ(χ)

)}

︸ ︷︷ ︸
>0

χ

(71)

Since the time derivative of the Lyapunov function turns out
to be negative-definite, the closed-loop system with state-
feedback is asymptotically stable.

7.2 Output-Feedback

The Lypunov function for the closed-loop system with
output-feedback is assumed to be asV = χT Prχ+x̂ TΣ0 x̂ T .
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Stability of the closed-loop systemwith output-feedbackwill
be established following the same line that was adopted for
the state-feedback. We use the system in (55) without the
loss of generality for determination of closed-loop stabil-
ity with output-feedback. It is to be noted that the control
law will now be dependent on estimated state(s), i.e., u =
−R−1BT (P + 3

2ρ(χ))x†, where x† = [χi1 χi2 x̂1 x̂2]T .
Since we know that

⎡
⎢⎢⎣

χi1

χi2

x̂1
x̂2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

χi1

χi2

x1 − x̃1
x2 − x̃2

⎤
⎥⎥⎦ . (72)

Hence, a bit of manipulation leads to

V̇ = −χT
{
Q +

(
P + 3

2
ρ(χ)

)
BR−1BT

(
P + 3

2
ρ(χ)

)}
χ

− x̂ T
{
Q0 +

(
Σ + 3

2
σ(x̂)

)
CT R−1

0 C

(
Σ + 3

2
σ(x̂)

)}
x̂

+ χT
(
P + 3

2
ρ(χ)

)
BR−1BT

(
P + 3

2
ρ(χ)

)
⎡
⎢⎢⎣
0
0
x̃1
x̃2

⎤
⎥⎥⎦ (73)

It is to be noted that the third term reduces the negativity
in the above equation andmay cause instability of the closed-
loop system because, (i) (P+ 3

2ρ(χ))BR−1BT (P+ 3
2ρ(χ))

is positive by construction, (ii) stateχ and error

⎡
⎢⎢⎣
0
0
x̃1
x̃2

⎤
⎥⎥⎦ vectors

may become positive when actual states are more positive
than the estimated states, i.e., x > x̂ . Such anunstable closed-
loop system can be stabilized back by increasing either the
gains P or Σ through tuning factors Q and R or Q0 and
R0, respectively. Stabilization can also be achieved if the
initial errors are taken small enough, i.e., x̃1 ≈ 0 and x̃2 ≈ 0
rendering the effect of third term negligible.

7.3 With Saturation-Type Input Constraint

Actuator saturation in the present context is mathematically
stated as u = sat(−R−1BT (P + 3

2ρ(χ))χ). Assum-
ing that the saturation limit is labeled as η, then u =
sat(−R−1BT (P + 3

2ρ(χ))χ) �⇒ sat(R−1BT (P +
3
2 ρ(χ))χ) = −|η|. Inserting this saturated control input into
(73) results in

V̇ = − χT Qχ

− χT
(
P + 3

2
ρ(χ)

)
B sat

[
R−1BT

(
P + 3

2
ρ(χ)

)
χ

]

− x̂ T
{
Q0 +

(
Σ + 3

2
σ(x̂)

)
CT R−1

0 C

(
Σ + 3

2
σ(x̂)

)}
x̂

= − χT Qχ − χT
(
P + 3

2
ρ(χ)

)
B (−|η|)

− x̂ T
{
Q0 +

(
Σ + 3

2
σ(x̂)

)
CT R−1

0 C

(
Σ + 3

2
σ(x̂)

)}
x̂

= − χT Qχ + χT (P + 3

2
ρ(χ))B |η|

− x̂ T
{
Q0 +

(
Σ + 3

2
σ(x̂)

)
CT R−1

0 C

(
Σ + 3

2
σ(x̂)

)}
x̂ .

(74)

The second term in (74) shown above can potentially ren-
der the time derivative of the Lyapunov function nonnegative
which in turn shows the instability of closed-loop dynamics
for larger initial values of states for a particular saturation
limit, i.e., η. The instability in actuality can happen due to
the positive nature of this second term as it is being added
that reduces the negativity of the expression because, (i)
(P + 3

2ρ(χ))B and |η| are both positive, and (ii) χ can have
positive initial values of all its states.

8 Conclusion

This paper presents output tracking/regulation of weakly
nonlinear systems addressing the optimality and actuator sat-
uration too. Hamilton–Jacobi–Bellman equation has been
approximated as an algebraic equation which is solved for
both stabilization and estimation just as an algebraic Riccati
equation can be solved for both cases in linear settings. It is
found out that reference signals such as a sinusoidal one are
appropriate for tracking because their linear internal models
are easily augmented in the linear part of the overall sys-
tem. This conversion of a tracking/regulation problem into
a stabilization problem allows for near-optimal asymptotic
stability locally around the origin. Performance of state-
feedback is recoverable through output-feedback too. The
proposed approach also provides a frequency domain anti-
windup compensation through relocation of internal model
zeros. This relocation does not warrant any additional hard-
ware as it is carried out by altering the penalization of
systemstates in the cost functional corresponding to regulator
design. As for the future, work can be pursued in three direc-
tions. First direction is exploration of stability and optimality
in the presence of external disturbances. Second direction is
to repeat the results after including the effects of unmodeled
dynamics. Third direction can be hardware implementation
of the research work on a practical problem.
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