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Abstract
Recently, the deployment of cloud data centers (CDCs) and the adoption of cloud technologies have transformed the way we
do computation, storage and networking. Typically in a CDC, virtual machines (VMs) are allocated to physical machines.
Estimating correctly the number of needed VMs to meet a given workload and QoS parameters is important for cost and
resource efficiency. In this paper, we develop a queuing model to aid in studying and analyzing performance in CDC. We
model the CDC platforms with an open queuing system that can be used to estimate the expected quality of service (QoS)
parameters such as the throughput, the drop rate, the CPU utilization and the response time. In addition, we present an energy
consumption model to study and estimate the energy consumption in the CDC. We give numerical examples to show how the
proposed model estimates the number of needed VMs to meet a given level of QoS parameters. The results obtained from
our analysis as well as the simulation models show that the proposed model is able to correctly and effectively estimate the
number of VM instances required to achieve QoS targets under different workload conditions.

Keywords Cloud data center · Virtualization · Quality of service · Queuing theory · Performance analysis · Energy
consumption

1 Introduction

Cloud computing technology is a computing paradigm in
which data can be accessed by clients worldwide via a
web browser. This technology has four main components
[1]: clients, resources allocation, VMs and PMs. The client
submits a service request that contains detailed resource
requests (for CPU, physical memory, storage, etc.). Then,
these resources are provisioned as VM instances in real- time
subject to service-level agreement (SLA) document. Finally,
the VMs are allocated to a set of PMs to run the application
or service to be hosted. This process also takes into account
economic factors. This mainly concerns the operator whose
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objective is to maximize revenue and minimize operational
cost. Computing resources (servers, storage, networks, plat-
forms, and software) are offered to clients by cloud providers
either dynamically or elastically, according to the client’s
request and form of payment [2]. Cloud computing has been
often used with three computing services: Infrastructure as a
Service (IaaS), Platformas aService (PaaS) andSoftware as a
Service (SaaS) [3]. In IaaSmodel, the client can exploit many
virtualized computing resources in the form of VM instances
in order to deploy applications which may include operating
systems and other applications over the Internet [4]. In PaaS
model, the client has the possibility to use the programming
languages and tools supported by the cloud provider [5]. For
the SaaS model, the consumer has the capability to use the
applications and services of the provider which are running
on a cloud infrastructure. However, many client devices have
access to applications by means of a thin client interface like
a web browser. Furthermore, the customer is not responsible
for controlling or monitoring the infrastructure of the cloud
data center (e.g., network, operating systems, storage and
servers) on which the applications run [6].
In an IaaS CDC, such as Amazon EC2 [7], when a client
demands aVM, its instance is first created in accordancewith
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the client’s resource request and the cloud provider deter-
mines a PM to host the VM instance. A single PM can be
habitually shared by many VM instances according to the
CPU, memory and disk capacities requested by each VM.
When the VM instance is running, this client can remotely
connect and use it. The VM instance is released when the
client terminates the work [8]. With pay-as-you-go charging
model, clients are capable of renting their VMs with per-
formance separation on CPU, memory and disk resources
[9]. The required QoS is a major factor of the SLA contract
establishedbetween cloudproviders and clients. Ensuring the
desired QoS is a key business element for a cloud comput-
ing provider [10]. Thus, the client makes service requests for
processing at the CDC hosted by the cloud provider accord-
ing to the negotiated SLA at a given price. A typical desired
QoS defines a collection of performance parameters: block-
ing probability, waiting time, response time, queue length
and throughput.
There are several methods to model and evaluate the perfor-
mance of cloud computing systems, such as measurement,
simulation and analytical modeling. On the one hand, eval-
uating with measurement can be costly, requiring extensive
experimentations with different workloads and system con-
figurations, which may not be feasible or practical in cloud
computing systems due to the great number of key parame-
ters and the dynamic traffic generated by clients. On the other
hand, using simulation to evaluate cloud computing systems
is flexible, but it requires many and independent runs to get
an average result, which might be time-consuming to gain
dependable results. Furthermore, multiple and independent
runs of the simulation are required to evaluate the impact of
different input parameters of simulationmodel, whichmakes
the running times more rigorous. Using analytical modeling
to evaluate such system can be highly costly and efficient
when compared to experimental approach. It can also facili-
tate quick performance results to be obtained under different
conditions and architecture [11]. Also, the queuing model-
ing has been used as an important method to evaluate the
effects of different cloud resources and to predict the proper
corresponding costs and benefits [3]. To this end, we pro-
pose, in this paper, an analytical queuingmodeling to evaluate
the performance in terms of throughput, drop rate, CPU uti-
lization and the response time in CDC. Besides, an energy
consumption model is proposed to study and estimate the
energy consumption in the CDC.
Energy efficiency is one of the top priorities in a CDC. That
is why ways to reduce energy consumption without sacri-
ficing performance are among the most important research
topics [12]. For a virtualized CDC optimizing dynamically,
the placement and the migration of VMs are one of the best
effective methods for power savings [13]. The energy con-
sumption of CDC can be divided into physical resources and
computing resources [14]. VirtualizedCDCproviders seek to

maximize QoS and minimize infrastructure costs. However,
an important challenge to save power is, therefore, to explore
the trade-offs that can result in an optimal balance between
QoS performances and energy consumption and the relations
among CDC components. In the literature, the performance
of CDC has been the subject of several research papers. The
majority of these works have been mostly interested in eval-
uating the performance of data center in terms of energy
consumption [15–17] or QoS parameters [18–21]. However,
the objective of this article is to provide the performances in
terms of energy consumption and QoS parameters.
Our contributions in this article are summarized as follows:

• A stochastic queuing model to aid in studying and ana-
lyzing performance in CDC is proposed and discussed.
At any given workload, the model can estimate the num-
ber of VMs that are required to satisfy given SLA or QoS
parameters.

• Ananalyticalmodel is presented, andmathematical equa-
tions are derived for key performance measures for the
proposed queuing model.

• An energy consumption model is presented based on
continuous- time Markov chain (CTMC) to study and
estimate the energy consumption in the CDC.

• Numerical examples are given to illustrate how this
model can be utilized to satisfy key QoS parameters and
to estimate the needed number of VMs needed under
diversity of conditions for the incoming workload.

• The proposed analytical models are cross-validated with
a simulation model based on JavaModeling Tools (JMT)
simulator.

This article is a major extension of our preliminary short ver-
sion [22]whichprimary focusedon studying theperformance
of services hosted in cloud data centers. In this extended ver-
sion, we provided greater details for our performance model.
Also we give more results and analysis for the performance
of two use cases: cloud-based database services and web
services. More importantly, we have included a new and a
detailed mathematical model for energy consumption and
reviewed existing works for modeling energy consumption
in CDC. Furthermore, we provided numerical and simulation
results with new figures and substantial discussion on energy
consumption in CDC.
The rest of this article is organized as follows: Sect. 2 summa-
rizes the related existing works. The proposed CDC model
is presented in Sect. 3. Section 4 presents mathematical
model for the proposed CDC model. In Sect. 5, we briefly
introduce the energy consumption issues and a detailedmath-
ematical model for energy consumption in CDC. Section 6
presents numerical analysis and discusses the limitations of
the proposed approach as well as suggesting further research.
Finally, Sect. 7 is devoted to the conclusion and future works.
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2 RelatedWork

Cloud computing has earned a lot of attraction, and there are
many papers regarding the performance evaluation of CDC
environment. In [18], a mathematical performance model
of VM live migration is evaluated. This model shows that
an effective VM live migration can reduce service rejec-
tion probability and the mean total delay. The authors in
[19] obtained a distribution of response time using a classic
open queuing network, assuming that inter-arrival and ser-
vice times are exponentially distributed and fixed. Using the
obtained distribution, they demonstrated that the analytical
model could be used to identify the relationship between the
number of required computing servers, the maximum num-
ber of requests and the highest level of service. The work
in [20] studied the performance of M/M/m queuing model
to describe a synthetic method to optimize the service per-
formances in cloud computing. The simulation result shows
that the proposed queuing model can allow less waiting time,
less queue length and less number of customers using the
synthetic optimization function when the number of servers
increases. The work [23] proposed an interacting model to
get better performance and quantification of a large-scale vir-
tualized IaaS CDC. The analytical results show the impact
of the system characteristics and customers workload on two
performancemeasures:mean response time and job-rejection
probability. About the service driver [24], they developed an
optimization and cost analysis framework by using stochas-
tic availability performance models of an IaaS cloud. Their
model takes service requirement variables like downtime and
job-rejection rates and then calculates the type and number
of nodes you would need to meet those requirements with
the least amount of operating cost.
The authors in [25] developed analytical models for IaaS
cloudwhere user’s requests are processed byVMs.The effec-
tiveness of VM replication in terms of request completion
time performance and energy consumption is also analyzed.
They introduced a power consumption modeling approach
which discusses the measurement of power consumption
at different modes of operation (cold, warm and hot) and
the associated energy consumption. The proposed model
has been validated with CloudSim simulator. The numerical
examples show the effectiveness of VM replication schemes
on energy consumption and on job completion time. The
work in [21] constructed a complex queuing model to mea-
sure the performance of heterogeneous CDC. They analyzed
different QoS parameters. The obtained results demonstrate
the accuracy of the proposed model and its convenience to
analyze heterogeneous data centers. The work in [26] devel-
oped a new technique based on queuing models for efficient
live migration of multiple VMs. They modeled the request
arrival using the M/M/C/C queue in order to evaluate the
blocking rate of client requests. Similarly, they modeled the

arrival request using theM/M/Cqueue to evaluate the average
waiting queue length, the average queue length, the average
waiting time and the average sojourn time. The proposed
model is evaluated by conductingmathematical analysis. The
numerical results show that the proposed approach outper-
forms the existing literature approach.
The authors in [27] proposed simple performance approaches
for evaluating the response times of applications executed
in a SaaS cloud. They deployed the proposed models on a
real virtualized platform. The experiment results show that
the models allow predicting response times of SaaS applica-
tions accurately. Thework in [28] presented a comprehensive
modeling of a disaster tolerant data center (DTDC) using
stochastic reward nets (SRN). The obtained results show the
availability progress ofDTDCand featured system responses
corresponding to the selected variables (downtime analysis
cost and sensitivity analysis). In [29], the authors proposed a
queuing model that can be used to warrant proper elasticity
for cloud clients. The proposed model predicts the needed
number of VMs to satisfy a predefined service SLA perfor-
mance requirement. A test-bed setup on the AWS platform
is used to conduct experimental measurements that validated
the analytical model.
There are several works that consider power management
in virtualized CDC by means of hardware- and software-
based solutions [15–17,30]. In [15], the authors considered
Containers- as-a-Service approach and presented a method
for finding efficient VM sizes for hosting containers. They
analyzed clouds trace logs from Google and taking into con-
sideration the cloud workload variances which is crucial for
testing and validating the proposed models. The experimen-
tal results showed that the proposed model up to 7.55% of
improvement in the mean energy consumption compared to
the existing scenarios where the VM sizes are fixed. Fur-
thermore, the number of instantiated VMs for hosting the
containers is also improved by 68% on average. The work
in [16] developed a dynamic VM placement algorithm based
on the evolutionary game theory. A model of energy con-
sumption for computing the amount of energy consumed
during the process of dynamic adjustment of the VMs place-
ment is built. By adjusting VMs placement dynamically, the
obtained experimental results demonstrate that the energy
consumption can be reduced. In [17], the authors proposed a
power management problem for parallel services computa-
tions in CDC. They adopt an optimal energy/time allocation
among levels of tasks and equal power supply to tasks at
the same level and show significant performance improve-
ment. The authors in [30] introduced a unique replication
solution which considers both energy efficiency and band-
width consumption in geographically distributed CDC. The
proposedmodel improves network bandwidth and communi-
cation delay between geographically dispersed CDC as well
as inside each CDC.

123



7792 Arabian Journal for Science and Engineering (2018) 43:7789–7802

Fig. 1 A typical architecture of the cloud data center system

In contrast to prior work reported in the literature, in our
proposed model, we optimize cloud resources allocation and
workload scheduling to minimize the overall resources cost
by allocating the smallest number of VM nodes needed to
meet the required performance parameters. The model can
also be used in scalability solutions and dynamic scaling
in which resources are allocated as the incoming workload
changes. So if the incoming workload goes up, more VM
nodes have to be allocated tomeet such increase. Conversely,
if the workload goes down, the number of provisioned VM
nodes has to decrease. In addition, none of the prior works
have focused on determining the number of VM nodes
required to meet SLA performance parameters for cloud ser-
vices with an estimation of the overall energy consumption.
Also, some prior works reported in the literature ignore the
role of the load balancer which is a key in dispatching, mon-
itoring and tracking the availability of compute instances at
the CDC.

3 Modeling Cloud Data Centers

Weconsider a large CDChostingmultiple physicalmachines
(or PMs), whereby the cloud compute unit or virtual
machines (i.e., VMs) run on the top of PM according to the
VMs requests. Typically, a CDCas those seen inAWSCloud,
Microsoft Azure, Google, Facebook, Yahoo, etc., contains
tens of thousands of PMs [31]. Each VM is allocated to one
PM, whereas a PM can be allocated multiple VMs through
a hypervisor. We propose a multi-server queuing model [32]
to model the CDC depicted in Fig. 1.

The load balancing (LB) server retains the scheduled queue
to receive all incoming requests from clients. A request from
a client is transmitted to the LB server [33], associated with
a SLA document. Client requests are received by LB queue
and then processed on the first-in first-out (FIFO) basis. The
inter-arrival durations between successive arriving requests
are typically independent and exponentially distributed with
rate 1/λ. Queued requests are distributed to different PMs.
We assume that the service time of the LB server is expo-
nentially distributed with mean service time 1/μ and the LB
server is modeled as an M/M/1/C queuing model [34]. The
LB works as follows: when a new client request arrives, if
the number of client requests in the queue is more than the
threshold C, then the new client request will be blocked; oth-
erwise, it will be accepted.
We suppose there are N PMs in the CDC. The requests are
uniformly distributed by the LB server to each PM with the
same probability 1/N . Accordingly, the arrivals of client
requests at each PM follow Poisson process with arrival rate
λ/N .We assume the PMs in aCDCare homogeneous service
and the server time of each PM has an exponential distribu-
tion with a mean service time of 1/μ1. Wemodel each PM in
the CDC as an M/M/K/m queue [34]. Each PM may support
up to mVMs.We assume that the service times and the inter-
arrival time of client requests are exponentially distributed.
If the queue obtains its maximum limit, the extra requests are
dropped. If the resource is available, then request is accepted
and routed by the LB to the corresponding VM. It is assumed
that all VMs allow the same web services with the same
functionality to clients via Internet. Each VM necessitates
a set of computing resources including network bandwidth,
CPU, memory and storage space. As the maximum number
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Fig. 2 Queuing model for workload distribution

of requests in the system is C, we assume that C is equal to
the number of PM times and to the number of VMs that can
be allocated to a single PM. So, C is calculated by using the
following formula

C = N × K (1)

The proposed queuing model of the CDC is shown in Fig. 2.
An arriving request will be dropped when it finds the LB
queue full. Otherwise, it must wait in the LB queue until
the LB processes it on a FIFO basis. We assume we operate
in a homogenous cloud environment whereby all PMs are
equal in processing capacity and sizes. Each PM queue has a
buffer which can contain at most K −1 requests. The incom-
ing request is put into a PM waiting queue with free buffer
space if it exists. Where all PMs waiting buffers are over-
flow, the arrival client request is dropped. Consequently, a
client request may be queued in a PMwaiting buffer, dropped
because all waiting buffers are full, or because of the insuf-
ficient LB buffer space.
It is worth noting that, in our model, we focus on the main
queue related to load balancing (scheduling queue) and the
queues (local’s queues) allocated to PM nodes in the cloud
data center. The load balancer receives requests from end
users and then distributes them evenly among the VM nodes
in CDC. End users in the model are represented by the gen-
erated requests, whereas scheduling queue and local queue
are the processing stations for these requests. In addition,
we focus on deriving the QoS-related formulas and equa-
tions that capture the behavior and performance of the entire
system that contains two layers (scheduling and cloud data
center).
For our analysis, we assumed that the arrival rate of client
requests follows a Poisson arrival and the service times are
exponentially distributed. These assumptions may not neces-
sarily always hold. In fact, the incoming request behavior in

such system must rely on more complex traffic models than
a simple Poisson process (such as semi-Markov, self-similar
behavior, Markov modulated Poisson processes, business
behavior and long-range dependency). Also, the distribution
of services times may not always be exponential. It is worth
noting that an analytical solution becomes intractable when
considering non-Poisson arrivals, and when also considering
general service times. On the other hand, assuming Poisson
arrivals and exponential service time has been used in the
literature and can provide adequate approximation of real
systems [8,20,21,23,29,32,33,35].

4 Analytical QueuingModel

4.1 Load Balancing QueuingModel

Request LB is an increasingly available feature of cloud com-
puting offerings. A LB dispatches received requests from
clients to servers in CDC according to a load dispatching
policy. Dispatching policies differ for the decision approach
and for the amount of information they use. In this paper,
the LB is modeled as a M/M/1/C queue [35]. The queuing
system has a maximum capacity of C , i.e., the maximum
queue length is C − 1. The arrival request waits in queue
if it finds less than C requests in the system; otherwise, the
request is dropped as the request cannot be accommodated
in the queue. From the balanced equations and by applying
the normalization condition, we can express the steady-state
probability of k requests in the LB system as follows

πk = 1 − ρ1

1 − ρC+1
1

ρk
1 (2)

where ρ1 = λ/μ represents the incoming workload at LB
server.
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We can derive important performances parameters in the LB
system. First, the mean throughput is

X = λ
1 − ρC

1

1 − ρC+1
1

(3)

The average number of requests in the LB system is

E(k) =
C∑

k=1

kπk = ρ1

1 − ρ1

1 − (C + 1)ρC
1 + CρC+1

1

1 − ρC+1
1

(4)

The loss probability due to lack of space in LB queue is given
by

Ploss = πC = 1 − ρ1

1 − ρC+1
1

ρC
1 (5)

Finally, by using the Little’s law formula [36] we obtain the
average response time at the LB system as

E(rb) = E(k)

X
(6)

4.2 Cloud Data Center QueuingModel

We model each PM as an M/M/m/K queue. Each PM can
have up to m VMs, and K is the maximum number of the
client requests in the PM. VM refers to the software imple-
mentation of computer that runs its own operating system
and applications as if it is a PM. Figure 3 shows the tran-
sition diagram for M/M/m/K queuing modeling for a single
PM.

Let πi (n) denote the steady-state probability of having
n requests in PMi (i = 1, 2, . . . , N ). Using the balanced
equations and we note α = λ/N , we find that

πi (n) =
{

π0(α)n

n!μn
1

, ∀n < m
π0(α)n

m!mn−mμn
1
, ∀n ≥ m

(7)

where π0 is given by

π0 =
[
1 + (mρ)m(1 − ρk+1−m)

m!(1 − ρ)
+

m−1∑

i=1

(mρ)i

i !

]−1

(8)

where ρ denotes the incoming workload and is expressed as

ρ = α

mμ1
(9)

We deduce the performances parameters as follows. Firstly,
the rate of drop or loss can be expressed as

v = απi (K ) (10)

The effective rate of arrivals, λeff , to the service can be given
as follows

λeff = α(1 − πi (K )) (11)

The central processing unit utilization of each VM is given
by

UVM = λeff

mμ1
= ρ(1 − πi (K )) (12)

The average number of requests in the PMi can be expressed
as

E(n) =
K∑

j=1

jπi ( j) (13)

The average number of requests waiting in the PMi can be
obtained from

E(nw) =
K∑

j=m+1

( j − m)πi ( j) (14)

Finally, we can express the mean waiting time and the mean
response time in the PMias follows

E(w) = E(nw)

α(1 − πi (K ))
, E(rc) = E(n)

α(1 − πi (K ))
(15)

The response time for a request in CDC is defined as the
time (in seconds or milliseconds) from the moment when the
client request arrives at the CDC to the time when execution
is complete. Based on Fig. 2, we compute the response time
T for a request on a system, the probability that a request is
served below a specific time t is given by

T = E(rb) + E(rc) (16)

Fig. 3 Continuous time Markov chain for new request in a single PM
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5 Modeling Energy Consumption

5.1 Energy Consumption in Cloud Data Center

The continued and rapid growth in the demand for IT
resources by different cloud services expressed by telecom-
munication operators, banks, etc., has led to a fast multipli-
cation of large CDC with millions of PMs [37]. Thus, CDC
being large-scale computing resources needs a huge energy
budget which leads to various energy efficiency issues. Sev-
eral methods can be used to achieve energy efficiency, such
as energy efficient hardware, improvement of applications
algorithms, dynamic voltage and frequency scaling (DVFS)
[38] and virtualization of computer resources [39]. Using vir-
tualization method to improve the energy efficiency in CDC
is one of the ways that many researches are focusing on [37].
Virtualization technology refers to the act of creating mul-
tiple VMs on a single PM. By this technology, data centers
can improve the resource utilization and reduce energy con-
sumption by switching PMs off or turning to the idle mode.
An important quantity of power is consumed even when the
PM is idle, thus opening a possibility for VMs migration in
CDC for reducing energy cost [40]. Therefore, many studies
[41–45] demonstrate that in average an idle PM consumes
about 70% of the power consumed by the PM running at full
CPU utilization. This fact justifies the technique of switching
idle PMs off to reduce total energy consumption.
The energy consumed by a CDC can be classified into two
categories [46]: (1) the energy consumed by infrastructure
facilities (e.g., cooling systems and power conditioning sys-
tems) and (2) the energy consumed by IT equipments (e.g.,
PMs, storage, network bandwidth). Nonetheless, modeling
the energy consumption behavior of a CDC, either at the
individual component level or at the whole system level, is
not easy. Indeed, the energy consumption in a CDC depends
on different factors such as workload, hardware specifica-
tions, applications types and cooling requirements, which
cannot be estimated facilely. Since running PMs consume
electricity, the cloud provider decides dynamically howmany
PMs to run by intermediary of a resources allocation policy.
The principal objective is to get the optimal number of PMs,
which should be switched on in order to optimize the cloud

provider’s profit [47]. The number of running PMs should
change in response to the change in the workload condi-
tions; the issue is how to estimate the best number of PMs
that switched on in order to achieve QoS targets. In order to
achieve this objective, we proposed in this section a CTMC
model to estimate the energy consumption in CDC.

5.2 Energy ConsumptionModel

Besides the advantages offered by the virtualization in cloud
computing, the use of this technology can lead to a high
level of power consumption due to resource utilization and
to the expansion of the number of VMs needed to satisfy the
clients’ requests. This leads to look at the behavior of CDC in
terms of energy consumption related to the resources virtu-
alization. Previous works in the literature that studied energy
consumption in the data center consider that each PM con-
tains a single VM [37,41,47–52]. To this end, we developed
a model of energy consumption where each PM supports
more than one VM. Due to the dynamic change of resource
requests of VMs, the changes in energy consumption form a
stochastic process [53]. For evaluating the energy consump-
tion, we define additional states for PM (Off and Idle states).
With this, our energy consumption model is modeled with a
two-dimensional CTMC shown in Fig. 4. This CTMC cap-
tures the details of queuing at the PM input queue in order to
estimate the energy consumption.
The state index of the CTMC is denoted by ( j, x), where j
indicates the number of requests in the queue and x denotes
the state of the PM where the VM request is undergoing
provisioning. The states O , F and I mean that the PM isOn,
the PM isOff , and the PM is Idle, respectively. The Idle PMs
without serving requests will be turned Off to save power.
States of the form (n, F)(n = 1, 2, . . . , K ) indicate the PM
is empty which means there are no service requests and there
are n requests in the PM. States of the form (n, O)(n =
1, 2, . . . , K ) signify states in which the VM serves a request
and there are in total n requests in the PM. The state (0, I )
signifies that the PM is idle and that there are no requests in
the queue and the client arrival request will be accepted. At
the arrival of first request, the system moves to state (1, O)

which means that the request will be treated immediately in

Fig. 4 Energy consumption Markov chain for a single PM
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the PM. Another request has arrived, and the system transits
to state (2, O) with rate α. A PM accepts the request and
processes it. So the system moves back to state (1, O) with
rate μ1. Once a PM in the states F and I, we do not have any
requests to process. Afterward, the PMmoves fromOff state
to On state with rateδ. The PM moves from (0, I ) to (1, F)

with rate α. Finally, the PMmoves from (1, O) to (0, I ) state
with rate μ1. After obtaining the On PM, the request runs in
the cloud and releases the PM when it finishes. We assume
that homogenous requests (one PMfor each request, the same
mean service time for all requests). The waiting queue size
is K .
In Fig. 4, we remark that starting from any state (i, O)(i =
1, 2, . . . , K ) it is not possible to do transitions to states
( j, F)(i = 1, 2, . . . , K ) without visiting firstly state (0, I ).
From the proposed CTMC, it is possible to compute the
stationary probability and performance parameters under
various request strategies. Letπ j,x be the equilibrium steady-
state probabilities at state ( j, x). From CTMC depicted in
Fig. 4, the balance equations can be written as follows.

π0,Iα = π1,Oμ1 (17)

πn,F (α + δ) = πn−1,Fα, n = 2, . . . , K − 1 (18)

πK ,Fδ = πK−1,Fα (19)

π1,O(α + μ1) = π1,Fδ + π2,O2μ1 (20)

π2,O(α + 2μ1) = π1,Oα + π2,Fδ + π3,O3μ1 (21)

π3,O(α + 3μ1) = π2,Oα + π3,Fδ + π4,O3μ1 (22)

πi,O(α + 3μ1) = πi−1,Oα + πi,Fδ + πi+1,O3μ1,

i = 3, . . . , K − 1 (23)

πK ,O3μ1 = πK−1,Oα + πK ,Fδ (24)

By iterating Eqs. (18) and (19), taking into account Eq. (17),
we obtain

πn,F = μ1

α
σ nπ1,O , n = 1, . . . , K − 1 with

σ = α

α + δ
(25)

πK ,F = μ1

α
σ K−1π1,O (26)

From Eqs. (21) and (25), we have

π2,O = α(μ1 + α + δ)

2μ1(α + δ)
π1,O (27)

From Eq. (23) it follows that (πn,O : n = 3, . . . , K ) is a
solution of the non-homogeneous linear difference equation
with constant coefficients

3μ1xn+1 − (α + 3μ1)xn + αxn−1

= −δμ1

α
σ nπ1,O , n = 2, . . . ,m (28)

where the last equation is due to Eq. (25). Using the same
approach used in [54] for solving such equations,we consider
the corresponding characteristic equation

3μ1x
2 − (α + 3μ1)x + α = 0 (29)

which has two roots α/3μ1 and 1. The general solution
of the homogeneous version of Eq. (28) is given from [49]
as xhomn = A1n + B (α/3μ1)

n . The general solution xgenn of
Eq. (28) is given as xgenn = xhomn + xspecn , where xspecn is a
specific solution of Eq. (28). Because the non-homogeneous
part − δr

α
σ nπ1,O of Eq. (28) is geometric with parameter σ ,

we can also use the approach used [54] in to get a specific
solution. Therefore,we propose specific solutions of the form
Cσ n [49]. Substituting xn = Cσ n in Eq. (28), we have

C = 3μ1(α + δ)

α(3μ1 − α − δ)
π2,O (30)

Thus, the general solution of Eq. (28) is calculated by

xgenn = A1n + B

(
α

3μ1

)n

+ Cσ n, n = 2, 3, . . . , K − 1

(31)

where the constantC is given by Eq. (30) and the coefficients
A, B are to be calculated. Using the same method in [49],
we obtain A = 0 and B = − 3μ1(α+δ)

α(3μ1−α−δ)
π2,O , thus, from

Eq. (31)

πn,O = 3μ1(α + δ)

α(3μ1 − α + δ)

(
σ n −

(
α

3μ1

)n)
π2,O ,

n = 3, 4, . . . , K − 1 (32)

πK ,O = α

3μ1
πK−1,O + δ

3μ1
πK ,F (33)

⇒ πK ,O =
(

(α + δ)

(3μ1 − α + δ)

(
σ K

−
(

α

3μ1

)K
)

+ δ

3α

)
(34)

from which together with the normalization equation

π0,I +
K∑

i=1

(πi,O+πi,F ) = 1 (35)

We obtain steady-state probabilities π j,x , and the perfor-
mance measures such as probability of blocking due to
insufficient resources in the PM

Pbloc = πK ,O + πK ,F (36)
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The energy consumption by a single PM is the total quan-
tity of work performed by a PM over a duration period t
(measured in seconds) can be expressed as [37]

EPM = PPM ∗ t (37)

where PPM is the power of PM and is the rate at which the
work is performed by the PM.
We assume that the time spent inOn and Idle states is tOn and
tIdle, respectively. From CTMC depicted in Fig. 4, we have

tOn =
K∑

i=1

1

1 − πi,O
and tIdle = 1

1 − π0,I
(38)

When a PM is processing requests, it is in the On state and
we denote its energy consumption by EOn. If there are no
requests to process, the PMcan remain Idle and be turnedOff.
Moreover, the energy consumption EIdle of a PM remained
Idle is not null, and EIdle < EOn. If the PM is turned Off,
it consumes zero energy. Then 0 = EOff < EIdle < EOn.
Therefore, EOn and EIdle are expressed as follows

EOn = POn ∗ tOn and EIdle = PIdle ∗ tIdle (39)

where POn and PIdle are the power of PM in POn and idle
states, respectively. The mean energy consumption in PM is
as follows

Econsumption = EOn + EIdle (40)

6 Simulation and Numerical Results

There are several publicly and commercially available net-
work simulators. A number of these simulation tools are
designed particularly for cloud networks (e.g., iCanCloud,
CloudSim, MDCSim and EMUSIM) [55,56], and some
other simulators are generic in natures (e.g., J-Sim, OPNET,
OMNeT, NS) [57]. All of these simulators did not have the
capabilities to capture precisely the internal behavior and
dynamics of the CDC. For that, we choose the JMT tool
[58,59] to implement the performance of the proposedmodel.
The simulation is carried out on a high-end workstation with
Intel Core i5 CPU @ 2.40 GHz, 4 GB of memory and a
250 GB permanent storage.

Simulation Environment We consider a scenario of a small-
scale CDC where the CDC has 10 PMs, with a mean arrival
rate of 1000 client requests by second and a mean client
request service time by the LB server of 0.0001s. Two types
of common requests are considered, namely (1) web requests
and (2) database requests. The average service time at the
PMs of a web requests is 10milliseconds, while of a database

Table 1 Input parameters and their values

Parameters Description Values

λ Request arrival rate [1000 to 3000] (Req/s)

1/μ Mean request LB service
time

0.0001 (s)

1/r Mean web request VM
service time

0.01 (s)

1/r Mean database request VM
service time

0.015 (s)

C Maximum number of client
requests in the system

300

K Maximum number of the
client requests in the PM

30

N Number of PMs in the data
center

10

requests require on average 15milliseconds. Note that we
vary some of these parameters depending on the simulation
scenarios, whereas the others remain fixed. The parameters
in Table 1 are used in our simulation.

Performance Analysis The simulation results presented in
this section and the respective figures are the mean of five
simulation runs. Simulation results are represented by the
black circles, whereas the analysis results are represented by
lines. The numerical results are shown in Figs. 5 and 6. We
plotted the web and database performance curves using mul-
tipleVM instances as function of requests arrival rate. In each
figure, the performance values are computed from analysis
and simulations models by varying arrival rates. The per-
formance measures we considered are those of the response
time, drop rate throughput and CPU utilization are plotted in
the figures.Wevalidate the proposedmodel by comparing the
numerical results with the results obtained from simulation.
Figure 5 shows performance results obtained in a simula-
tion and analysis for web requests, whereas Fig. 6 exhibits
those results for database requests. All of these figures depict
clearly the impact of the number of VMs on key performance
metrics. Specifically, in Fig. 5a, b, it is clear that when the
requests arrival rate reaches the 2200 requests per second, we
can discuss the impact of the number of the VM instances
on the throughput and the response time measures. It is obvi-
ous that as the number of VMs increases, the throughput
increases. However in the data performance case, when the
arrival rate reaches the 1400 requests per second, we see that,
as the requests arrival rate and the number of VMs increases,
the throughput increases and the response time decreases.
The drop rate variation versus requests arrival rate depicted
inFig. 5c demonstrates that from1800 requests per second, as
the number ofVM instances increases the drop rate decreases
and reaches 700 requests per second. Considering the CPU
utilization parameter depicted in Fig. 5d, we observe that for
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Fig. 5 Web performance curves using multiple VM instances as a function of arrival rate
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Fig. 6 Database performance curves using multiple VM instances as a function of arrival rate
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Table 2 Comparison of simulation results with analysis for web service

Response time(s) Drop rate(Req/s) CPU utilization(%)

Analysis Simulation Analysis Simulation Analysis Simulation

Avg Avg Min Max Avg Avg Min Max Avg Avg Min Max

10 VMs at a rate of
1000 Req/s

0.150 0.155 0.148 0.161 33.517 32.463 29.528 36.047 97.7 96.6 94.8 98.3

20 VMs at a rate of
2000 Req/s

0.078 0.080 0.078 0.082 64.997 66.350 60.489 73.469 96.3 96.6 95.1 98.1

30 VMs at a rate of
3000 Req/s

0.054 0.053 0.052 0.055 102.938 98.890 87.949 112.941 96.7 97.0 95.5 98.5

Table 3 Comparison of simulation results with analysis for database service

Response time(s) Drop rate(Req/s) CPU utilization(%)

Analysis Simulation Analysis Simulation Analysis Simulation

Avg Avg Min Max Avg Avg Min Max Avg Avg Min Max

10 VMs at a rate of
1000 Req/s

0.418 0.423 0.415 0.431 332.527 336.149 326.998 345.827 99.3 98.9 97.15 100

20 VMs at a rate of
2000 Req/s

0.212 0.209 0.204 0.213 670.517 665.074 650.657 680.145 98.3 98.6 97.1 100

30 VMs at a rate of
3000 Req/s

0.140 0.141 0.138 0.144 1008.219 1010.704 982.794 1040.245 99.1 98.8 97.1 100

the first three values of arrival rate, the curve is approximately
linear but when using 23 VM instances, we observe that this
metric reaches the 100% when we have 2200 requests per
second and so on.
Figure 6a, c exhibits that when we increase the number of
VM instances and the requests arrival rate, the response
time and drop rate metrics decrease. Figure 6d shows the
CPU utilization for multiple numbers of VMs. The curves of
CPU utilization reach 100% when the rate of arrival request
approaches the 2200 requests by second. As a result, when
the number of VMs decreases, the CPU utilization metric
becomes higher.
Our analytical model is validated by Tables 2 and 3 which
compare analytical results with simulations results for some
performance parameters: CPU utilization, response time and
drop rate. Specifically, we considered 10 VMs, 20 VMs and
30 VMs, with 1000, 2000 and 3000 requests/s, respectively.
From the tables, it was observed that the results from the ana-
lyticalmodel are conforming to the simulationmeasurements
which validate our analytical model. The examination of the
minimum and maximum values for the recorded measure-
ments shows considerable fluctuation and variability. This
can be explained by the virtualization technology imple-
mented at the CDC. Besides, other actions carried out by
other cloud applications and services, which might be run-
ning at the same time in the CDC, can explain this significant
fluctuation. The workload and traffic that can be introduced

by these cloud-hosted applications and services can signifi-
cantly impact the total network delay and performance.
It is worth noting that the simulation cannot produce instant
results and takes time to be performed. In fact, the simula-
tion requires many independent runs which may take long
time to produce accurate results. The input values for the
various parameters as well as the actual running of simula-
tion program or software usually have to be done manually
and cannot be integrated with elasticity and scalability algo-
rithms, whereas analytical methods can obtain instantaneous
results and with mathematical formulas being easily inte-
grated with other algorithms.
Clearly, it can be concluded that from the obtained results
which are reported in the figures for response time crite-
ria, the simulation and analytical results show that with a
fixed number of VM instances, if the workload increases,
the response time increases, and inversely, if the workload
decreases, the response time decreases. Consequently, it is
important to scale up and down VM instances as function
of the incoming workload. This will help the cloud provider
minimize the cost by determining the minimum number of
VMs needed to handle the offered workload and at the same
time guaranteeing QoS by satisfying the SLA requirements.
Precisely, from Fig. 5b, 21 number of VM instances are only
needed to satisfy a response time of 0.12 s, given a work-
load of 2600 web requests/second. In the case of databases
requests, from Fig. 6b, to satisfy a response time of 0.2 s, 20
VM instances are needed given a workload of 1700 database
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Fig. 7 Energy consumption curves in relation to CPU utilization

requests/second. However, when the workloads are under
approximately 1600 requests/second, a SLA response time
latency of 0.15 s is well satisfied by using 22 VM nodes.

Evaluating Energy Consumption For estimating and evaluat-
ing the energy consumption in CDC, we assume that POn =
100W and PIdle = 0.6POn. Restarting an off PM necessitates
a mean time of 1/δ = 100s. The parameter values used in
this paper are based on empirical measurements from prior
works [37,41,47–52]. Since the JMT tools cannot capture the
CTMCenergy consumptionmodel, we used SHARPE (Sym-
bolic Hierarchical Automated Reliability and Performance
Evaluator) [60], for evaluating the energy consumption
model. The SHARPE implements description techniques for
Markov chains, multi-chain product-form queuing networks,
and others reliability engineering models [61]. The energy
consumption metrics as we vary the CPU utilization and
request arrival rate are plotted in Figs. 7 and 8.
The change in the energy consumedbyaPMinCDC is princi-
pally due to changes in the CPU utilization. To quantify these
changes, we estimated the amount of energy drawn by a PM
in the presence of an increasing requests arrival rate. Figure 7
plots the energy consumption for the cloud web and database
requests in relation to CPUutilization. The curves reported in
Fig. 7 show a dependency between the energy consumption
and CPU utilization. The energy consumption has been eval-
uatedwith different values of CPUutilization in both cases of
web and databases requests. The obtained results prove that
as the CPU utilization increases, the energy consumption
increases. We observe that with the web requests according
to CPU utilization consume less energy when compared with
database requests. This can be explained by the fact that the
database request took longer CPU time than web request.
When the CPU utilization reaches 100%, the energy con-
sumption tends to 3000 Watts and 4000 Watts, respectively,
in web requests and databases requests.
Figure 8 plots the energy consumption versus the requests
arrival rate regarding two types of requests: web and
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Fig. 8 Energy consumption curves in relation to arrival rate

databases requests. The figure shows that when the databases
request arrival rate increases, the energy consumption incre-
ases as well which is natural and expected. Considering the
web request arrival rate, it is evident that the consumption of
energy is less than for database requests. Figure 8 quantifies
the impact of both types of request rates.

7 Conclusion

In this article, we proposed analytical and simulation mod-
els that can be immensely useful for capacity engineering
for cloud compute resources within a CDC environment.
We considered the typical architecture in which a CDC
has a collection of PMs and with each PM having multi-
ple VMs. We derived closed-form formulas from analytical
models for key performance measures such as throughput,
response time, drop rate and CPU utilization. The analytical
models were cross-validated by JMT simulator. In addi-
tion, we have presented an energy consumption model to
estimate the energy consumption for a typical CDC envi-
ronment. For this, we used SHARPE toolkit to study and
estimate the energy consumption by varying the CPU uti-
lization and the incoming request arrival rate for web and
database request. We observed that the energy consumption
in relation to CPU utilization is less for web requests than
those for database requests. The analysis and the simula-
tion results are in good agreement—which implies that our
proposed analytical model is correct. As a future work, we
plan to extend our model for study cloud-hosted container-
ized services and applications. We will consider both types
of containers: VM hosted and PM hosted.

Acknowledgements The authors thank the anonymous reviewers for
their valuable comments, which helped us to considerably improve the
content, quality and presentation of this paper.

123



Arabian Journal for Science and Engineering (2018) 43:7789–7802 7801

References

1. Voorsluys, W.; Broberg, J.; Buyya, R.: Introduction to cloud com-
puting. Cloud computing: principles and paradigms, pp. 1–44
(2011)

2. Furht, B.: Cloud Computing Fundamentals. Handbook of Cloud
Computing, pp. 3–19. Springer, US (2010)

3. El Kafhali, S.; Salah, K.: Performance analysis of multi-core VMs
hosting cloud SaaS applications. Comput. Stand. Interfaces 55,
126–135 (2018)

4. Huang, W.; Ganjali, A.; Kim, B.H.; Oh, S.; Lie, D.: The state of
public infrastructure-as-a-service cloud security. ACM Comput.
Surv. 47(4), 68 (2015)

5. Alam, A.F.; Soltanian, A.; Yangui, S.; Salahuddin, M.A.; Glitho,
R.; Elbiaze, H.: A cloud platform-as-a-service for multimedia con-
ferencing service provisioning. In: Proceedings of the 21st IEEE
Symposium on Computers and Communications, IEEE ISCC’16,
Messina, Italy (2016)

6. Schafer, J.; Lichter, H.: Changes in requirements engineering
after migrating to the software as a service model. In: Full-Scale
Software Engineering/Current Trends in Release Engineering, pp.
25–30 (2016)

7. Amazon, E.: Amazon elastic compute cloud. Retrieved Feb, Vol.
10 (2009)

8. Ghosh, R.; Trivedi, K.S.; Naik, V.K.; Kim, D.S.: End-to-end
performability analysis for infrastructure-as-a-service cloud: an
interacting stochastic models approach. In: Proceedings of the 16th
Pacific Rim International Symposium on Dependable Computing,
PRDC’10, Tokyo, Japan, pp. 125–132 (2010)

9. Jennings, B.; Stadler, R.: Resource management in clouds: survey
and research challenges. J. Netw. Syst. Manag. 23(3), 567–619
(2015)

10. Kim,W.:Cloud computing: today and tomorrow. J.Object Technol.
8(1), 65–72 (2009)

11. Chen, H.; Yao, D.D.: Fundamentals of QueueingNetworks: Perfor-
mance, Asymptotics, and Optimization, vol. 46. Springer, Berlin
(2013)

12. Khojasteh, H.; Misic, J.; Misic, V.B.: Characterizing energy con-
sumption of IaaS clouds in non-saturated operation. In: Proceed-
ings of the IEEEConference on Computer CommunicationsWork-
shops (INFOCOM WKSHPS), INFOCOM’14, Toronto, Canada,
pp. 398–403 (2014)

13. Masdari, M.; Nabavi, S.S.; Ahmadi, V.: An overview of virtual
machine placement schemes in cloud computing. J. Netw. Comput.
Appl. 66, 106–127 (2016)

14. Wen, Y.-F.: Energy-aware dynamical hosts and tasks assignment
for cloud computing. J. Syst. Softw. 115, 144–156 (2016)

15. Piraghaj, S.F.; Dastjerdi, A.V.; Calheiros, R.N.; Buyya, R.: Effi-
cient virtual machine sizing for hosting containers as a service
(services 2015). In: Proceedings of the IEEE 11th World Congress
on Services, SERVICES’15, New York, pp. 31–38 (2015)

16. Xiao, Z.; Jiang, J.; Zhu, Y.; Ming, Z.; Zhong, S.; Cai, S.: A solution
of dynamic VMs placement problem for energy consumption opti-
mization based on evolutionary game theory. J. Syst. Softw. 101,
260–272 (2015)

17. Li, K.: Power and performance management for parallel compu-
tations in clouds and data centers. J. Comput. Syst. Sci. 82(2),
174–190 (2016)

18. Khazaei, H.; Misic, J.; Misic, V.B.: Performance of an IaaS cloud
with livemigration of virtualmachines. In: Proceedings of the IEEE
Global Communications Conference (GLOBECOM), GLOBE-
COM’13, Aalanta, USA, pp. 2289–2293 (2013)

19. Xiong, K.; Perros, H.: Service performance and analysis in cloud
computing. In: Proceedings of the 1st IEEE Congress on Services,
SERVICES’09, LosAngeles, California,USA, pp. 693–700 (2009)

20. Guo, L.; Yan, T.; Zhao, S.; Jiang, C.: Dynamic performance opti-
mization for cloud computing using m/m/m queueing system. J.
Appl. Math. 2014 (2014)

21. Bai, W.-H.; Xi, J.-Q.; Zhu, J.-X.; Huang, S.-W.: Performance anal-
ysis of heterogeneous data centers in cloud computing using a
complex queuing model. Math. Probl. Eng. 2015 (2015)

22. ElKafhali, S.; Salah,K.: Stochasticmodelling and analysis of cloud
computing data center. In: 20th ICIN Conference Innovations in
Clouds, Internet and Networks, IEEE, Paris, France, pp. 122–126
(2017)

23. Ghosh, R.; Longo, F.; Naik, V.K.; Trivedi, K.S.: Modeling and per-
formance analysis of large scale iaas clouds. FutureGener. Comput.
Syst. 29(5), 1216–1234 (2013)

24. Ghosh, R.; Longo, F.; Xia, R.; Naik, V.K.; Trivedi, K.S.: Stochastic
model driven capacity planning for an infrastructure-as-a-service
cloud. IEEE Trans. Serv. Comput. 7(4), 667–680 (2014)

25. Mondal, S.K.; Muppala, J.K.; Machida, F.: Virtual machine repli-
cation on achieving energy-efficiency in a cloud. Electronics 5(3),
37 (2016)

26. Sun, G.; Liao, D.; Anand, V.; Zhao, D.; Yu, H.: A new technique for
efficient live migration of multiple virtual machines. Future Gener.
Comput. Syst. 55, 74–86 (2016)

27. Cheikh, H.B.; Doncel, J.; Brun, O.; Prabhu, B.: Predicting response
times of applications in virtualized environments. In: Proceedings
of the 3rd Symposium on Network Cloud Computing and Appli-
cations, NCCA’14, Rome, pp. 83–90 (2014)

28. Nguyen, T.A.; Kim, D.S.; Park, J.S.: Availability modeling and
analysis of a data center for disaster tolerance. Future Gener. Com-
put. Syst. 56, 27–50 (2016)

29. Salah, K.; Elbadawi, K.; Boutaba, R.: An analytical model for esti-
mating cloud resources of elastic services. J. Netw. Syst. Manag.
24(2), 285–308 (2016)

30. Boru, D.; Kliazovich, D.; Granelli, F.; Bouvry, P.; Zomaya, A.Y.:
Energy-efficient data replication in cloud computing datacenters.
Cluster Comput. 18(1), 385–402 (2015)

31. Katz, R.H.: Tech titans building boom. IEEE Spectr. 46(2), 40–54
(2009)

32. Salah, K.; El Kafhali, S.: Performance modeling and analysis of
hypoexponential network servers. J. Telecommun. Syst. 65(4),
717–728 (2017)

33. Vilaplana, J.; Solsona, F.; Teixido, I.; Mateo, J.; Abella, F.; Rius,
J.: A queuing theory model for cloud computing. J. Supercomput.
69(1), 492–507 (2014)

34. Bolch, G.; de Greiner, S.; Meer, H.; Trivedi, K.S.: Queueing Net-
works and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. Wiley, London (2006)

35. ElKafhali, S.; Salah,K.: Efficient and dynamic scaling of fog nodes
for IoT devices. J. Supercomput. 73(12), 5261–5284 (2017)

36. Nelson, R.: Probability, Stochastic Processes, and Queueing
Theory: The Mathematics of Computer Performance Modeling.
Springer, Berlin (2013)

37. Dayarathna, M.;Wen, Y.; Fan, R.: Data center energy consumption
modeling: a survey. IEEE Commun. Surv. Tutor. 18(1), 732–794
(2016)

38. Semeraro, G.; Magklis, G.; Balasubramonian, R.; Albonesi, D.H.;
Dwarkadas, S.; Scott, M.L.: Energy-efficient processor design
using multiple clock domains with dynamic voltage and frequency
scaling. In: Proceedings of the IEEE 8th International Symposium
on High Performance Computer Architecture, HPCA’02, Cam-
bridge, pp. 29–40 (2002)

39. Beloglazov, A.; Buyya, R.: Energy efficient resource manage-
ment in virtualized cloud data centers. In: Proceedings of the 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, CCGrid’10, Melbourne, Victoria, Australia, pp. 826–
831 (2010)

123



7802 Arabian Journal for Science and Engineering (2018) 43:7789–7802

40. Radhakrishnan, A.; Kavitha, V.: Energy conservation in cloud data
centers byminimizing virtualmachinesmigration through artificial
neural network. Computing 98(11), 1185–1202 (2016)

41. Gandhi, A.; Harchol-Balter, M.; Das, R.; Lefurgy, C.: Optimal
power allocation in server farms. In: ACM SIGMETRICS Perfor-
mance Evaluation Review, SIGMETRICS’09, vol. 37, no. 1, pp.
157–168 (2009)

42. Kusic, D.; Kephart, J.O.; Hanson, J.E.; Kandasamy, N.; Jiang,
G.: Power and performance management of virtualized computing
environments via lookahead control. Clust. Comput. 12(1), 1–15
(2009)

43. Raghavendra, R.; Ranganathan, P.; Talwar, V.; Wang, Z.; Zhu, X.:
No power struggles: coordinated multi-level power management
for the data center. In: ACM SIGOPS Operating Systems Review,
ASPLOS’08 vol. 42, no. 2, pp. 48–59 (2008)

44. Verma, A.; Ahuja, P.; Neogi, A.: pmapper: power and migration
cost aware application placement in virtualized systems. In: Pro-
ceedings of the 9th ACM/IFIP/USENIX International Conference
on Middleware, Middleware’08, Leuven, Belgium, pp. 243–264
(2008)

45. Awada, U.; Li, K.; Shen, Y.: Energy consumption in cloud com-
puting data centers. Int. J. Cloud Comput. Serv. Sci. 3(3), 145–162
(2014)

46. Yeo, S.; Hossain,M.M.; Huang, J.-C.; Lee, H.-H.S.: Atac: Ambient
temperature-aware capping for power efficient datacenters. In: Pro-
ceedings of the ACMSymposium on Cloud Computing, SoCC’14,
Seattle, WAACM, pp. 1–14 (2014)

47. Mazzucco, M.; Dyachuk, D.; Dikaiakos, M.: Profit-aware server
allocation for green internet services. In: Proceedings of the IEEE
International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication System, MASCOTS’10,
Miami, Florida, USA, pp. 277–284 (2010)

48. Gandhi, A.; Harchol-Balter, M.; Adan, I.: Server farms with setup
costs. Perform. Eval. 67(11), 1123–1138 (2010)

49. Burnetas, A.; Economou, A.: Equilibrium customer strategies in a
single server markovian queue with setup times. Queueing Syst.
56(3–4), 213–228 (2007)

50. Gandhi, A.; Harchol-Balter, M.: M/g/k with exponential setup,
Tech. Rep. CMU-CS-09-166, School of Computer Science,
Carnegie Mellon University (2009)

51. Nguyen, B.M.; Tran, D.; Nguyen, Q.: A strategy for server man-
agement to improve cloud service qos. In: Proceedings of the
IEEE/ACM 19th International Symposium on Distributed Simula-
tion andReal TimeApplications, IEEE/ACMDS-RT’15,Chengdu,
China, pp. 120–127 (2015)

52. Mazzucco, M.; Dyachuk, D.: Balancing electricity bill and perfor-
mance in server farms with setup costs. Future Gener. Comput.
Syst. 28(2), 415–426 (2012)

53. Han, Z.; Tan, H.; Chen, G.; Wang, R.; Chen, Y.; Lau, F.: Dynamic
virtual machine management via approximate markov decision
process. In: Proceedings of the 35th Annual IEEE International
Conference on Computer Communications, IEEE INFOCOM’16,
San Francisco, CA, USA, pp. 1–9 (2016)

54. Elaydi, S.: An Introduction to Difference Equations. Springer,
Berlin (2005)

55. Bahwaireth, K.; Benkhelifa, E.; Jararweh, Y.; Tawalbeh, M.A.:
Experimental comparison of simulation tools for efficient cloud
and mobile cloud computing applications. EURASIP J. Inf. Secur.
2016(1), 1–14 (2016)

56. Tian, W.; Xu, M.; Chen, A.; Li, G.; Wang, X.; Chen, Y.: Open-
source simulators for cloud computing: comparative study and
challenging issues. Simul. Model. Pract. Theory 58, 239–254
(2015)

57. Fahmy, H.M.A.: Simulators and emulators for WSNs. In: Wire-
less Sensor Networks. Signals and Communication Technology.
Springer, Berlin, pp. 381–491 (2016)

58. Bertoli,M.; Casale, G.; Serazzi, G.: JMT: performance engineering
tools for system modeling. ACM SIGMETRICS Perform. Eval.
Rev. 36(4), 10–15 (2009)

59. Sarna, D.E.: Implementing and Developing Cloud Computing
Applications. CRC Press, Boca Raton (2010)

60. Trivedi, K.S.; Sahner, R.: Sharpe at the age of twenty two. ACM
SIGMETRICS Perform. Eval. Rev. 36(4), 52–57 (2009)

61. Sharpe. https://sharpe.pratt.duke.edu/

123

https://sharpe.pratt.duke.edu/

	Modeling and Analysis of Performance and Energy Consumption  in Cloud Data Centers
	Abstract
	1 Introduction
	2 Related Work
	3 Modeling Cloud Data Centers
	4 Analytical Queuing Model
	4.1 Load Balancing Queuing Model
	4.2 Cloud Data Center Queuing Model

	5 Modeling Energy Consumption
	5.1 Energy Consumption in Cloud Data Center
	5.2 Energy Consumption Model

	6 Simulation and Numerical Results
	7 Conclusion
	Acknowledgements
	References




