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Abstract
Body pose is an important indicator of human actions. The existing pose-based action recognition approaches are typically
designed for individual human bodies and require a fixed-size (e.g., 13×2) input vector. This requirement is questionable and
may degrade the recognition accuracy, particularly for real-world videos, in which scenes with multiple people or partially
visible bodies are common. Inspired by the recent success of convolutional neural networks (CNNs) in various computer
vision tasks, we propose an approach based on a deep neural network architecture for 2D pose-based action recognition tasks
in this work. To this end, a human pose encoding scheme is designed to eliminate the above requirement and to provide
a general representation of 2D human body joints, which can be used as the input for CNNs. We also propose a weighted
fusion scheme to integrate RGB and optical flow with human pose features to perform action classification. We evaluate our
approach on two real-world datasets and achieve better performances compared to state-of-the-art approaches.

Keywords Pose-based action recognition · Convolutional neural networks · Human pose encoding scheme · 2D human pose ·
RGB videos

1 Introduction

Human action recognition has received significant attention
from the research community due to its various poten-
tial applications in video surveillance [1], human–computer
interaction [2] and video content analysis [3]. Despite being
extensively researched in recent years, human action recog-
nition in real-world monocular videos remains a challenging
problem due to large intra-class variation and inter-class sim-
ilarity.

The existing methods for action recognition typically use
either hand-crafted features [4–8] or deep-learned features
[9–12] that are derived from RGB and optical flow images.
These methods rely on global contextual information and
achieve promising results in recognizing coarse actions; how-
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ever, thesemethodsmay fail to distinguish actionswith subtle
body pose variations, e.g., golf swing and baseball swing.

Human body pose, as a type of high-level semantic
feature, has been shown to have an effect on recogniz-
ing human actions with discriminative geometric relations
between body joints [13–15]. However, the methods that
use human poses exhibit two types of defects when applied
to unconstrained videos. First, the action recognition accu-
racy is highly dependent on the precision of the input pose.
However, even with the recent developments based on con-
volutional neural networks (CNNs) [16–18], human pose
estimation in monocular videos is still far from perfect due
to large pose variations, part occlusions and complex back-
grounds. Second, the majority of recognition methods based
on human poses are designed for individual action recog-
nition. These methods take a fixed number of body joint
coordinates as input. However, in realistic videos taken at
public places, such as gymnasiums or bowling alleys, scenes
that contain several persons are common, and distinguish-
ing the key individual from others is a non-trivial task [19].
Moreover, human bodiesmay only be partially visible in real-
world videos. For example, some videos of playing guitar
only contain upper portions of human bodies. The restriction
of using full-body joints for action recognition is problem-
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atic since incorrectly estimated lower-body joints would do
more harm than good.

Given the recent success of CNNs in many vision tasks,
such as image classification [20–23], pose estimation [16–
18] and video-based action recognition [9–12], this paper
addresses the 2D pose-based action recognition task using
deep networks. The primary difficulty is how to fully utilize
human pose information as the input for CNNs. There-
fore, a human pose encoding scheme is proposed to remove
the fixed-size body joint constraint. The proposed encod-
ing scheme is inspired by Johansson’s moving light-spot
experiment [24], which showed that the human vision system
can distinguish different action patterns by only light spots
attached to the human body. Specifically, we decompose
humanpose information into static anddynamic components,
and we encode these components into light-spot images and
joint displacement volumes, respectively, which are then
taken as the input for networks.

Human pose features and global features derived from
RGB images and optical flows have different focuses. We
further investigate the effect of combining RGB and optical
flow with automatically estimated human poses for action
recognition in videos, and we determine that pose features
and global features are highly complementary. Combining
global features and pose features leads to a substantial per-
formance improvement.

The primary contributions of this paper are threefold:
(1) We propose an action recognition framework that inte-
grates human pose features with global RGB and optical flow
features. (2) We introduce a general human pose encoding
scheme to encode human pose into light-spot images and
displacement volumes, which can be directly used as input
for deep neural networks. (3) We propose a weighted fusion
scheme to adaptively combine pose features with global
RGB and optical flow features for robust action recognition.
Finally, using the proposed approach, we achieve promising
performance on two real-world datasets: the Penn Action
dataset and the sub-JHMDB dataset.

The remainder of this paper is organized as follows. We
introduce the related work in Sect. 2. The human pose encod-
ing scheme is presented in Sect. 3. The proposed action
recognition framework is presented in Sect. 4, followed by
experiments in Sect. 5. Finally, we conclude the paper in
Sect. 6.

2 RelatedWork

We briefly review action recognition methods for monocu-
lar RGB videos in the literature. These action recognition
methods can be roughly grouped into two categories: pose-
feature-based methods and video-feature-based methods.

2.1 Pose-Feature-BasedMethods

Human body pose is a strong indicator of human actions.
Some actions can even be distinguished from a single frame.
These methods typically take the estimated body pose as
the input for action recognition. Thus, the recognition per-
formance is limited by the pose estimation and human
detection techniques. Early work [25,26] performed action
classification on simple datasets without severe occlusions
or background interference (e.g., the KTH dataset [27] and
Weizmann dataset [28]). With the development of pose
estimation techniques based on the deformable part model
(DPM) [29], several recognition methods that are suitable
for more complex scenes have been proposed [14,30–32].
Yao et al. [30] proposed an exemplar-based action classifi-
cation approach to match estimated body poses with a set
of exemplar poses. Wang et al. [13] first applied the contrast
mining technique tomine distinctive co-occurring spatial and
temporal pose structure and built a feature dictionary, then
classified action labels using the bag-of-wordsmodel. Jhuang
et al. [14] introduced high-level pose features (HLPF) that are
manually designed to encode the spatial and temporal rela-
tions of human body joint locations. As reported in [13,14],
ground-truth pose information significantly improves theper-
formance of action recognition, whereas modestly estimated
poses would degrade the improvement. Wang et al. [33] pro-
posed a multi-view action representation in an AND-OR
graph structure manner by mining the geometry, appear-
ance and motion patterns in different views. However, 3D
skeleton data are required in the training stage. Xu et al.
[32] proposed using skeletal joint locations combined with
local motion features for action recognition because skele-
tal pose alone is insufficient for recognizing actions with
similar limb configurations. All these methods are designed
for individual action recognition and require fixed-size joint
coordinates (e.g., a 13×2 vector) as input. Researchers have
also recently explored the idea of extracting pose information
via deep learning architectures. Garbade and Gall [34] intro-
duced a neural network architecture for action recognition
based on 2D human poses. They applied a convolution layer
on input data, followed by a series of fully connected and
max-pooling layers, but their networks were relatively shal-
low. The pose-based CNN descriptor (P-CNN) [35] utilizes
joint locations to crop RGB and optical flow images into part
patches as the input for two-stream ConvNets, then used the
extracted features to classify the video. Joints-pooled deep
convolutional descriptors (JDD) [36] sample discriminative
points from featuremaps of 3DConvNets (C3D) according to
body joint coordinates, then concatenated the pooled activa-
tions for classification. Although both P-CNN and JDD crop
images or sample feature maps using body joint locations,
after simply concatenating the extracted feature vectors, the
spatial relations between different body joints (e.g., left hand
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above head) are collapsed. Moreover, these three approaches
also require individual pose input and are not applicable for
multi-body pose input. In this work, we introduce a novel
human posemodelling technique that can take unconstrained
pose input (e.g., multiple persons or partially visible bod-
ies) and automatically parse the internal structure relations
between each joint using CNNs. Recently, RPAN [37] used a
pose attention mechanism to learn pose-based features, and
they used recurrent networks to model spatial–temporal evo-
lutions. Our approach is simple yet still achieves promising
performance.

2.2 Video-Feature-BasedMethods

Methods that use video features have become more effective
over the past decade since these methods do not explicitly
handle humandetection or pose estimation.Among these fea-
tures, improved trajectories [6] have shown their advantages
on several challenging datasets. Recently, advances in CNNs
have further enhanced the action recognition performance.
One of the most popular CNN architectures is two-stream
ConvNets proposed in [9], which decomposes video infor-
mation into spatial and temporal components and takes a
single RGB frame and stacked flow frames into separate
networks. This architecture is shown to be effective, partic-
ularly on datasets with limited training data. An alternative
approach is C3D [10], which extends convolution and pool-
ing operations to the time domain. C3D is a natural concept
for video modelling; however, its network has considerably
more parameters than 2DConvNets and does not benefit from
ImageNet pre-training. Thus, it needs to be trained on a large
dataset. Recently, Carreira andZisserman [38] proposed two-
stream inflated 3D ConvNets (I3D), which inflates 2Dmodel
weights into 3D as an initialization, therebymaking the train-
ing of deeper C3D possible. As discussed in Sect. 1, these
methods focus less on the human body; thus, distinguishing
human actions with similar scene contextual characteristics
but subtle body pose variations is challenging. In this work,
we experimentally demonstrate the complementarity of pose
features and video features, and we show that a comprehen-
sive video descriptor for action recognition can be obtained
by combining pose features and video features, integrating
the advantages of each.

3 Human Pose Encoding Scheme

When using deep neural networks tomodel human pose char-
acteristics, the main difficulty is how to encode human pose
information as the input for networks, since scenes with mul-
tiple persons or partial visible bodies may be encountered in
real life. The gap between human pose information and fea-

ture representation can be bridged by the proposed human
pose encoding scheme.

We manually decompose human pose information into
static and dynamic pose components. The static pose com-
ponent captures the spatial structure of human body joints in
each frame, whereas the dynamic pose component charac-
terizes the temporal evolution of human pose configurations.
The static and dynamic pose components are encoded as
light-spot images and joint displacement volumes, respec-
tively, which are then used as input for the action recognition
framework. The encoding schemes for static and dynamic
pose components are presented in Sects. 3.1 and 3.2, respec-
tively.

3.1 Static Pose Component

Let p1, . . . , pN be N human bodies in an image, which
are acquired by either manual annotation or automatic pose
estimation. Each body possesses K joints, and the spatial
location of the j th joint of pi is denoted as li, j = (

xi, j , yi, j
)
,

where xi, j ∈ [1, X ] and yi, j ∈ [1,Y ] are the spatial coordi-
nates in the image and [X ,Y ] is the spatial size of the input
frame.

Body joints can semantically be divided into several body
parts according to different semantic levels. For example,
we can simply segment a human body as upper body and
lower body. A finer-level segmentation can obtain left/right
upper/lower limbs. Some actions are only concerned with
certain body parts. Therefore, grouping body joints accord-
ing to semantic categories may be helpful for parsing human
actions. Specifically, we discuss four joint grouping schemes
here: integral level, half level, limb level and joint level.
Let C be the number of joint groups, and let Oc be the cth
joint group. Different joint grouping schemes are detailed in
the following, and their performances will be evaluated in
Sect. 5.3.1.
Integral Level All body joints are grouped into C = 1 part.

O1 = {all body joints}.

Half Level Joints are classified intoC = 2 categories: upper-
body joints and lower-body joints.

O1 = {upper body joints};
O2 = {lower body joints}.

LimbLevelWe classify joints intoC = 5 categories accord-
ing to different limbs. The head joint alone is the first
category.

O1 = {head};
O2 = {le f t upper limb};
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O3 = {right upper limb};
O4 = {le f t lower limb};
O5 = {right lower limb}.

Joint level Each joint is one category. The number of joint
categories is equal to the number of joints. Oc = {cth joint},
where 1 � c � K .

Finally, the static pose input for the CNN is constructed as
a light-spot image S ∈ R

X×Y×C based on li, j and Oc. Each
joint is modelled by a Gaussian centred at the joint location,
and the values of the light-spot image are normalized to [0,
255]. Formally, a light-spot image is defined as

S (x, y, c) = max
1�i�N
j∈Oc

1i, j f

(√(
x − xi, j

)2 + (
x − xi, j

)2
)

,

(1)

where 1i, j indicates whether the j th joint of pi exists in

the image region, f (x) = 255e− x2

2σ2 is the density func-
tion with σ = 0.2L , and L is the median limb length of
each body in each frame. Here, the standard deviation σ is
proportional to the median limb length; thus, the sizes of
the spots are approximately proportional to the size of the
human body. Note that P-CNN [35] requires the body scale
input given by the annotation tool, which is unavailable in
practice. The median limb length that we use here is com-
puted from the input joint positions and plays a similar role
as the annotation scale; thus, additional input is avoided.
Figure 1 presents an illustration of different joint group-
ing schemes. Each grey image corresponds to one channel
in a light-spot image. Using skeletal joint positions (anno-
tated in Fig. 1a), an integral-level light-spot image (1 image
channel, Fig. 1b), half-level light-spot image (2 image chan-
nels, Fig. 1c), limb-level light-spot image (5 image channels,
Fig. 1d) and joint-level light-spot image (K image channels,
Fig. 1e) are generated. Note that a finer-level grouping may
contain richer semantics since the light spots have more cer-
tain joint meanings, but such a grouping would slow the
training and inference speed due to network computation
cost brought by the increased light-spot image channels.

In contrast to existing methods that typically require an
individual body pose with complete body joint positions
as input, our light-spot images can be derived from more
flexible pose inputs. Our consideration is that in real-world
videos, scenes with multiple persons or partially visible bod-
ies are common. Hence, methods designed for individual
pose input are not suitable for real scenes unless additional
pre-processing is performed. Rather than designing sophisti-
cated approaches to identify the key actor in an input image,
we use a simple yet effective multi-person input strategy by
representing all human bodies as light spots and skipping

(a) (b) (c)

(d)

(e)

Fig. 1 Light-spot images generated according to different joint group-
ing schemes. (a) RGB image (with annotated skeletal joints), (b)
integral-level light-spot image, (c) half-level light-spot image, (d) limb-
level light-spot image, and (e) joint-level light-spot image

the invisible body joints. As illustrated in Fig. 2, light-spot
images can be generated from multi-person poses or body
poses that are partially visible. We will show in Sect. 5.3.2
that this design choice improves the performance of our
method.

3.2 Dynamic Pose Component

Let t1, . . . , tm be M consecutive time points in a video
sequence. The M frames are used as input for dynamic pose
encoding. The joint location of the j th joint of pi at time tm
is denoted as lmi, j =

(
xmi, j , y

m
i, j

)
.

A straightforward approach is to use a 2M-2 dimensional
displacement vector di, j = [l2i, j − l1i, j , . . . , l

M
i, j − lM−1

i, j ] ∈
R
2M−2 to derive the temporal evolution of body poses in the

given M frames. The values in the displacement vector di, j
that are larger than 20 pixels are clipped and then normalized
to [0, 255]. Then, the dynamic pose input for the CNN is con-
structed as a joint displacement volume D ∈ R

X×Y×2(M−1)C

based on lmi, j , di, j and Oc. For each joint of each human body,
the 2(M −1)C channels of the joint displacement volume D

around locations
[(

x1i, j , y
1
i, j

)
, . . . ,

(
xm−1
i, j , ym−1

i, j

)]
within

a radius of σ are assigned with the joint displacement vector
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Fig. 2 Light-spot images derived from flexible pose input. Examples of images with multiple persons (left two images) and partially visible body
(right two images)

di, j with respect to each joint group Oc. Formally, a joint
displacement volume can be defined as

D (x, y, 2 (m − 1)C + 2c − 1) =1mi, j,c,x,y

(
xm+1
i, j − xmi, j

)
,

D (x, y, 2 (m − 1)C + 2c) = 1mi, j,c,x,y

(
ym+1
i, j − ymi, j

)
,

(2)

where 1mi, j,c,x,y indicates whether (a) the jth ( j ∈ Oc) joint
of pi is visible at both time points m and m + 1, (b) the
location lmi, j is around (x, y) within a radius of σ , and (c) the
distance between location lmi, j and location (x, y) is shorter
than any other joint satisfying (a) and (b). Here, we assign
the displacement value to a circular region with a radius of
σ rather than a single point to alleviate the sparseness of the
joint displacement volume and facilitate stabilization during
the model training process. Values in background regions are
assigned to 128, which is exactly the same for body joints
with no movements; therefore, the obtained displacement
volume focuses on the motion of skeletal joints. Figure 3
presents examples of generated displacement images.We can
observe that the motion of the guitar player centres on his
right wrist, whereas that of the person doing sit-ups centres
on his upper body.

Although the above formulation is logical, applying this
formulation to real-world video scenarios is challenging for
two reasons. First, pose estimation may be inaccurate, and
incorrectly estimated joint positions would conflict with the
consistency of pose sequences. Second, most pose estimators
(including the one used in this paper) are per-frame esti-
mators, and linking the estimated multiple bodies between
successive frames is a non-trivial task. Therefore, we pro-
pose an alternative encoding formulation that constructs joint
displacement volumes aided by optical flow images since
optical flow is more stable than automatically estimated pose
in terms of the displacement measure. Hence, we will apply
this formulation in our experiments.

We pre-compute the optical flow [39] and save the flow
fields vx and vy as JPEG images. Motion vectors larger than
20 pixels are clipped and then transformed to [0, 255]. Let
Um ∈ R

X×Y and Vm ∈ R
X×Y be flow fields of vx and vy at

time point tm . Pixel values around each joint positionwithin a
radius of σ are sampled from optical flow images to generate

Fig. 3 Illustration of the generated displacement images. Each row
corresponds to RGB images, light-spot images as well as horizontal
and vertical displacement images

the displacement volume. Accordingly, a joint displacement
volume can be defined as

D (x, y, 2 (m − 1)C + 2c − 1) = 1mi, j,c,x,yU
m (x, y) ,

D (x, y, 2 (m − 1)C + 2c) = 1mi, j,c,x,yV
m (x, y) ,

(3)

where 1mi, j,c,x,y indicates whether the j th ( j ∈ Oc) joint of
pi is visible at time point m and the distance to (x, y) is less
than σ . Values in background regions are also assigned to
128.

In practice, we also frame-by-frame pre-compute the
light-spot images and the displacement volumes with trajec-
tory length M = 2 and store them as JPEG images since this
would introduce a bottleneck if performed on-the-fly during
the training process. Displacement volumes with a trajectory
length larger than 2 frames can be obtained by stackingM−1
frames of the saved displacement JPEG images.
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Fig. 4 Pipeline of the proposed approach. Our system (1) takes an
input video with (annotated or estimated) body poses, (2) splits the
video into clips, (3) encodes body poses as light-spot images and joint
displacement volumes, (4) computes features for each clip using con-

volutional neural networks (CNNs), (5) aggregates clip descriptors into
a video descriptor, (6) classifies each video using a softmax classifier,
and finally (7) combines pose and global scores via a weighting layer

4 Action Recognition Framework

4.1 Overview

Figure 4 illustrates the overall pipeline of the proposed
approach. Given a video sequence, we split it into clips. For
each clip, we use separate CNNs to extracted pose features
from the light-spot images and displacement volumes, and
extract global features from RGB images and optical flow
images. After aggregating clip descriptors into video descrip-
tors, video pose descriptors and global pose descriptors are
applied separately to predict classification confidence scores,
which are trained byminimizing the softmax loss.We further
introduce a weighting layer to fuse the pose and global cues
effectively for accurate action recognition.

4.2 Clip Feature Extraction

Given a video input, we obtain the body poses in each frame
byeithermanual annotationor automatic pose estimation.We
then split the video sequence into clips of 10 frames. For the
pose sequences in each split, we encode them into light-spot
images and joint displacement volumes using the proposed

pose encoding scheme described in Sect. 3. Two separate net-
works, namely, static pose stream and dynamic pose stream,
are applied to extract static and dynamic pose features from
the light-spot images and displacement volumes, respec-
tively. Specifically, the sixth frame of the light-spot images
in each clip is fed into the static pose stream, and the dis-
placement images of the 10 frames are stacked to form a
displacement volume of 20 stacked channels to be fed into
the dynamic pose stream. For dynamic stream, we simply
use 2D convolutional kernels. For both the static and dynamic
streams,we useVGG-M[21]with 5 convolutional and 3 fully
connected layers as the base model because it is a smaller
network, thus making the extraction of the features more
efficient.

To obtain global features, we directly apply a VGG-M
model pre-trained on the ImageNet dataset [40] and a VGG-
M model pre-trained on the UCF-101 dataset [41] to extract
clip features from RGB images and optical flows respec-
tively, in a two-stream fashion [9]. Similarly, the sixth frame
of the RGB images in each clip is fed into the RGB stream,
and the optical flows of the 10 frames are stacked to form a
optical flow volume of 20 stacked channels to be fed into the
flow stream.
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4.3 Video-Level Classification

To obtain the video descriptor, we first split each video
sequence in the training or testing set into clips of 10 frames,
with 5 frames overlapping between two consecutive clips.

For each network, the outputs of the FC6 layer with
k = 4K values are extracted as clip descriptors, which
are then aggregated by max aggregation and normalized to
[− 1, 1] to obtain a video descriptor. Next, the video descrip-
tors from the static pose stream and dynamic pose stream
are concatenated as a comprehensive video pose descriptor,
while those from the RGB stream and optical flow stream
are concatenated as a comprehensive video global descrip-
tor. Finally, each of video pose descriptor and video global
descriptor with k = 8K values is fed into a fully connected
layer to predict classification confidence scores, with output
s p = (s p1 , . . . , s pC ) and sg = (sg1 , . . . , sgC ) over C categories,
respectively.

To effectively combine the results of s p and sg , we further
introduce a weighting layer. Specifically, the fusion weights
are learnable parameters defined as w = (w1, . . . , wC ),
where each value corresponds to a different category. We
term w p = w = (w1, . . . , wC ) and wg = 1 − w =
(1−w1, . . . , 1−wC ) as theweights for fusing the two scores,
where w p and wg indicate how confidently we can rely on
the pose features and global features, respectively, to predict
the final confidence score s f = s p · w p + sg · wg .

The total loss for the network is thus computed by: L =
λ1Lcls(s p, ĝ) + λ2Lcls(sg, ĝ) + λ3Lcls(s f , ĝ) where ĝ is
the ground-truth action label and each component is a cross-
entropy loss. In our experiments, we simply set all λi = 1.
For Lcls(s f , ĝ), we only propagate back to the fusion layer,
since full back-propagation did not bring an improvement.

5 Experiments

5.1 Datasets

To evaluate the proposed method, we use two challenging
datasets for experiments, namely the sub-J-HMDB [14] and
Penn-Action dataset [42].

The Penn Action dataset contains 2326 videos of 15
action categories: baseball pitch, clean and jerk, pull ups,
strumming guitar, baseball swing, golf swing, push ups,
tennis forehand, bench press, jumping jacks, sit-ups, tennis
serve, bowling, jump rope, and squats. Each category con-
tains 82–231 videos. This dataset provides 13 human joint
annotations for each frame. The 50/50 train/test split pro-
vided by the dataset is used for the experiments. The lengths
of frames in the videos vary from 18 to 663. Approximately,
662 out of the 2326 videos contain multiple persons.

The sub-JHMDB dataset is a subset of the JHMDB
dataset [14] that contains 316 videos distributed over 12
action categories brush hair, catch, clap, climb stairs, golf,
jump, kick ball, pick, pour, pull-up, push, run, shoot ball,
shoot bow, shoot gun, sit, stand, swing baseball, throw, walk,
and wave. Each category contains 19–42 videos. We use the
threefold cross validation setting provided by the dataset for
the experiments. The lengths of frames in the videos vary
from 16 to 40. Approximately, 30 out of the 316 videos con-
tain multiple persons.

5.2 Implementation Details

The clip feature extractors of the static and dynamic pose
streams are trained separately. For the Penn Action dataset,
the static pose stream and dynamic pose stream are trained
using the same settings, which are determined on an 80/20%
train/val split. Throughout training, we use stochastic gradi-
ent descent (SGD) with a batch size of 128, a momentum of
0.9 and a weight decay of 0.0005. The networks are initial-
izedwith themodel pre-trained on ImageNet [40] to facilitate
training speed. To avoid overfitting, we adopt dropout and
data augmentation. Aggressive dropout ratios of 0.9 are used
for the first two fully connected layers. We also employ data
augmentation in the form of random cropping and horizontal
flipping. The learning rate is decreased according to a fixed
schedule. We start with a learning rate of 0.003, divide it
by 10 at 5 and 7K iterations, and terminate training at 8K
iterations. For the sub-JHMDB dataset, we do not train the
pose feature extractor since this dataset has only 316 videos.
Rather, we directly apply the posemodels trained on the Penn
Action dataset to extract pose features from the sub-JHMDB
dataset.

For training the video-level classifier, we use batch GD
and apply the Adam solver, with momentum parameters
β1 = 0.9, β2 = 0.999. The initial weights wc in the weight-
ing layer are all set to 0.5. For both the Penn Action dataset
and sub-JHMDB dataset, we train 5K iterations with learn-
ing rate 0.01. For ablation studies, we evaluate the separate
pose descriptor or global descriptor by minimizing a single
cross-entropy loss Lcls(s p, ĝ) or Lcls(sg, ĝ). If pose descrip-
tor or global descriptor only contains appearance or motion
component, we duplicate the descriptor vector with k = 4K
values by a factor of 2, forming a descriptor vector with
k = 8K values. Thus, fair comparison is ensured.

5.3 Ablation Studies

This subsection is devoted to investigating the effectiveness
of different design choices of the proposed approach.
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Table 1 Comparison of different joint grouping schemes: integral level,
half level, limb level and joint level

Grouping scheme Static Dynamic

Integral level 86.5 93.5

Half level 90.4 94.0

Limb level 91.4 93.5

Joint level 94.3 94.5

The results are obtained using the ground-truth pose on the Penn Action
dataset (% accuracy)

5.3.1 Joint Grouping Scheme

The performances using different joint grouping schemes are
compared in Table 1 for both the static and dynamic pose
streams on the Penn Action dataset with ground-truth pose
input.

For the static pose stream, we observe a stable improve-
ment when the input scheme switches from coarse level to
fine level (integral level → half level → limb level → joint
level). We obtain the best result of 94.3% with the joint-level
input, which corresponds to our expectation that a finer-level
input can be more semantically informative.

For the dynamic pose stream, we do not observe remark-
able improvementwhenwe switch the joint grouping scheme
from coarse level to fine level. The difference between the
worst and best performance is only 1%, indicating a bottle-
neck might be reached.

The performances of both the static and dynamic pose
streams demonstrate that the proposed pose features are
effective for distinguishing actionswith discriminative skele-
tal structures. In the remainder of our experiments, we use
joint-level input for the static pose stream and integral-level
input for the dynamic pose stream since this choice is a good
trade-off between accuracy and efficiency.

5.3.2 Impact of Ground-Truth and Estimated Pose Input

To evaluate the impact of the pose input quality, we com-
pare the recognition performance using the estimated pose
and ground-truth pose. In this part, we focus on pose fea-
tures and do not consider global features. The pose estimation
algorithm in [18] is employed as an off-the-shelf method to
estimate body poses for each frame. Although obvious error
in the estimated poses may exist, we do not fine-tune the
estimated poses. Examples of pose estimation results from
both datasets for the successful and failed cases are shown
in Fig. 5.

For automatically estimated poses, we also compare two
input strategies. One strategy is to use all detected human
bodies, which we refer to as the multi-person input strategy
(Multi). The other strategy is to retain one individual with

Fig. 5 Illustration of the human pose estimator [18] used in our experi-
ments. Successful examples and failure cases on the PennAction dataset
(top row) and on the sub-JHMDB dataset (bottom row)

Table 2 Impact of the ground-truth pose versus estimated pose on the
Penn Action dataset (% accuracy)

Pose input Static Dynamic Static + dynamic

Ground-truth 94.3 93.5 95.4

Estimated (Multi) 90.6 92.4 93.6

Estimated (Key) 86.2 88.1 88.7

the highest confidence, which we refer to as the key-person
input strategy (Key). In our experiment, the confidence of
each human body is obtained by simply summing up the
confidence scores of all its joints.

The recognition accuracies are compared in Table 2. We
observe that the performance with the multi-person input
strategy decreases only 1.8%comparedwith the ground-truth
pose input, indicating that our pose representation is robust
to errors in pose estimation. The reasons are twofold. First,
our pose encoding scheme can accept multi-body input. As
shown in Table 2, the multi-person input strategy gains sig-
nificant improvement compared with the key-person input
strategy for both static pose features and dynamic pose
features. As described in Sect. 5.1, Penn Action dataset
has one fourth of its total videos containing multiple per-
sons. Although the performance of the key-person input
strategy can be improved if we use a more sophisticated
approach to identify the key actor, we manage to achieve
an improvement in classification performance without addi-
tional pre-processing. Second, compared with hand-crafted
approaches, CNNs parse body poses in a structured per-
spective. Thus, our approach is less vulnerable to modestly
estimated body poses.
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5.3.3 Analysis of the Impact of Pose Errors

Here, we investigate the impact of pose input with errors.
Usually, accurate body poses are unavailable in practice and
the results obtained by automatic pose estimation are imper-
fect. Evenbodyposes obtainedusing amotion capture system
or through manual annotation may be inaccurate. Hence, a
recognition approach needs to be robust to pose errors to be
applied in realistic videos.

In general, there are two types of errors. The first type is
that some portion of joints are missing, which could occur if
a human body is truncated by image boundaries. The other
type is that the joint locations are disturbed by noise. Here,
we focus on the former type because it is more intuitive. We
also consider a special case that only upper-body or lower-
body joints are provided and examinewhich actions aremore
recognizable under these conditions.

First, we investigate the impact of missing joints. The
question is howmany skeletal joints are adequate for effective
video classification? To this end, we evaluate the recogni-
tion performance with K = 0, 2, 4, 6, 8, 10 missing joints.
To avoid complementation between consecutive frames, we
randomly select K joints from a total of 13 joints, and we
skip the same K joints in the encoding process for all the
frames in the same video. The recognition accuracies with
different numbers of missing joints are presented in Fig. 6.
We observe a stable performance decrease when the number
of missing joints increases. In general, the performance of
the dynamic pose stream has a smaller decrease than that of
the static pose stream, providing a recognition accuracy of
over 85% using only 9 out of 13 joints and an accuracy of
over 50% using only 5 out of 13 joints. This indicates that
the dynamic pose stream is less vulnerable to missing joints
than the dynamic pose stream. Combining the static pose
features with dynamic pose features do not witness further
improvement when the performance of static pose is rela-

Fig. 6 Action recognition accuracy with different numbers of missing
joints

Fig. 7 Per class accuracy on the Penn Action dataset for full-body pose
(blue), upper-body pose (green) and lower-body pose (red)

tively too low. Thanks to the architecture of CNNs, we are
able to parse human actionswith an arbitrary number of joints
as input and maintain satisfactory results with a few missing
joints. Conversely, previous pose-based approaches, includ-
ing the recent P-CNN [35] and JDD [36], require a fixed
number of joints as input, which hinders their application in
real-world scenes.

Next, we examine the special condition when only upper-
body or lower-body available. The recognition performance
is compared in Fig. 7. We can observe that actions like base-
ball pitch and baseball swing are more recognizable using
upper-body pose than lower-body pose, because these actions
mainly contain upper-body motion. Conversely, actions like
bowling and jumping rope are more discriminative using
lower-bodypose. This probably because these actions require
many feet movements.

5.3.4 Complementarity of Pose and Global Features

Finally, we quantitatively analyse the complementarity
between pose features and global features. Our pose features
are derived from automatically estimated poses.

Table 3 Performance of pose features, global features and combined
features. The results are obtained using the ground-truth pose on the
Penn Action dataset (% accuracy)

Model Accuracy

RGB 81.4

Optical flow 94.4

Static pose 90.6

Dynamic pose 92.4

Global features 95.1

Pose features 93.6

Combined features 98.2
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Fig. 8 Per class accuracy on the Penn Action dataset for global features
(blue), pose features (green) and combined features (red)

As shown in Table 3, combining both pose and global fea-
tures obtains an accuracy of 98.2% on Penn Action dataset,
which is higher than that obtained using only pose or global
features. A detailed comparison on the PennAction dataset is
presented in Fig. 8. Although action recognition using either
pose features or global features alone achieves high accuracy,
combining both gains an additional performance improve-
ment.

The accuracies on the sub-JHMDBdataset using pose fea-
tures, global features and combined features are shown in
Fig. 9. Global features perform well on recognizing actions
with strong scene characteristics, such as basketball shoot-
ing (on a basketball court) and pull-up (on a horizontal bar);
however, these features may fail to recognize actions such
as baseball swinging. Close examination of the confusion
matrix (see Figs. 10, 11) reveals that the incorrectly predicted
actions share overall similarity with the ground-truth actions.
For example, baseball swinging is mainly confused with golf
swinging, which also shares a similar hand swinging move-
ment. Our pose features, however, focus on human body
structures; thus, they have a high accuracy in distinguishing
baseball swinging from golf swinging. Combing pose fea-
tures and global features obtains a significant improvement
in accuracy.

5.4 Comparison with the State-of-the-Art

In this subsection, we compare our approach to state-of-
the-art approaches on the Penn Action dataset and the
sub-JHMDB dataset. Among these approaches, Dense Tra-
jectories [5], Action Bank [4] and C3D [10] are video-
feature-based approaches. HLPF [14] and Pose [43] are
pose-based approach that only uses 2D pose as input. Acteme
[42],MST [33], GraphModel [44], RPAN [37], Pose + idt-fv
[43], P-CNN [35] and JDD [36] are pose-based approaches
aided by features extracted fromRGB or optical flow frames.

Fig. 9 Per class accuracy on the sub-JHMDBdataset for global features
(blue), pose features (green) and combined features (red)
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Fig. 10 The confusion matrix on the sub-JHMDB dataset using pose
features
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Fig. 11 The confusion matrix on the sub-JHMDB dataset using global
features

Since some approaches do not use pose input, we use auto-
matically estimated poses in the experiments for a fair
comparison.

The recognition performances of our method and other
methods on the Penn Action dataset and the sub-JHMDB
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Table 4 Recognition accuracy on the sub-JHMDBand the Penn-Action
datasets (% accuracy)

Method Penn Action sub-JHMDB

Global features only

Dense [5] 73.4 46.0

Action bank [42] 83.9 –

C3D [36] 86.0 –

Pose features only

HLPF [14] – 54.1

Pose [43] 79.0 61.5

Ours 93.6 65.7

Pose + Global features

Actemes [42] 79.4 –

MST [33] 74.0 45.3

Graph model [44] 85.5 61.2

JDD [36] 87.4 77.7

Pose + idt-fv [43] 92.9 74.6

RPAN [37] 97.4 78.6

P-CNN [35] – 66.8

Ours 98.2 79.0

dataset are shown in Table 4. RPAN is the best among the
existing approaches. On the Penn Action dataset, our method
using pose features alone obtains an accuracy of 93.6%, out-
performing the other approaches using only pose features.
Ourmethod explicitly considers the spatial relations between
body joints. We believe that this is the primary reason for
our superior performance. This result indicates that human
pose can be an effective feature for distinguishing actions
defined by specific spatial configurations and motion pat-
terns. If we combine pose features with global features, the
accuracy would further increase to 98.2%, outperforming the
accuracy of RPAN.

On the sub-JHMDB dataset, our method obtains an accu-
racy of 79.0%, and it is better than the recent CNN-based
methods P-CNN, RPAN and JDD. As a final note, both the
Penn Action dataset and the sub-JHMDB dataset are small.
We believe that given a larger dataset, we can train a more
general model and achieve higher accuracy.

6 Conclusion and FutureWork

In this paper, we propose a novel pose-based action represen-
tation that can effectively model human actions with flexible
2D body pose input that contains multiple bodies or partial
visible bodies. A human pose encoding scheme is designed
to encode static and dynamic pose components into sparse
light-spot images and joint displacement volumes, respec-
tively, which can be directly used as network input.

We experimentally demonstrate that pose features and
global features are highly complementary. Thus, we propose
an action recognition framework to perform multi-modal
action recognition in monocular videos. Compared with the
recent pose-based approaches P-CNN [35] and JDD [36], our
approach not only handles more flexible pose input but also
relies on overall pose structures; thus, it is more robust to
pose errors. Our recognition framework achieves promising
classification performance on the Penn Action dataset and
the sub-JHMDB dataset.

In the future, we plan to combine pose estimation and
action recognition in a unified framework since the two tasks
are naturally highly coupled. Although there have been sev-
eral attempts exploring such a framework [31,44,45], it is
still a less explored area in the scope of deep learning archi-
tectures. Since our current model is not trained end-to-end,
we also plan to address this issue in our future work.
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