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Abstract
In this paper, a novel approach to design the digital linear-phase finite impulse response (FIR) differentiator is introduced.
First, the differentiator design problem is formulated using the L1-method. Then, the L1 optimality criterion is applied
using the Bat algorithm (BA) and Particle swarm optimization (PSO) to further optimize the differentiator design. A novel
fitness function is developed based on the L1-error norm which is unique and is liable to produce a flat response. These
techniques are developed in order to minimize the non-differentiable fitness function. Finally, the simulation results have been
presented for 5th-, 7th- and 11th-order FIR differentiator using the L1-method, PSO-L1 and BA-L1. The magnitude response
of the designed differentiators is analyzed for different frequency bands on the basis of relative magnitude error computed
with respect to the ideal response. All the reported techniques contribute toward superior results, when compared with the
traditional gradient-based optimizations, such as the window method, minimax and least-squares approach. In addition, the
L1-method yields better results for higher-order designs. Furthermore, the proposed designs are tested on two input signals
for their efficient response.

Keywords Finite impulse response · L1-error criterion · Digital differentiator · Bat algorithm · Particle swarm optimization

1 Introduction

The design of digital differentiators (DD) is an emerging
area of research in the field of signal processing. DD is
practiced for extracting the information about rapid tran-
sients by calculating the time derivative of the input signal.
DDs are applied in a variety of applications such as in the
field of radar and sonar signal processing, speech and image
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processing, communication systems, control engineering,
biomedical engineering and seismic signal processing [1–
10]. The frequency response of an ideal DD is jω, where
j = √−1 and ω is the digital angular frequency in radians
for the range, [0, π ].

Traditionally, the DD have been designed by making suit-
able modifications after inverting the response of the various
existing integrators. In the beginning, simple interpolation-
based approaches were adopted in order to obtain the
recursive differentiators [11–15]. In [11,12], Al-Alaoui and
Bihan proposed a novel integrator and differentiator by inter-
polating both, the rectangular and trapezoidal integration
rules, which resulted in a better approximate to the ideal ones.
Al-Alaoui in 1994 employed the Simpson integration rule to
obtain a stable second-order infinite impulse response (IIR)
differentiator with high accuracy and almost linear phase
at lower frequencies [13]. In 2011, Al-Alaoui proposed the
digital integrator and differentiator derived by interpolating
differentweighted combinations of Simpson, trapezoidal and
Boole rules which leads to various segments and further opti-
mized them using simulated annealing (SA) [14]. Gupta et
al. [15] interpolated three digital integration techniques to
design third-order integrator and differentiator of high accu-
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racy. Besides, a linear programming to approximate the ideal
integrator in minimax sense was proposed in [16]. Ngo [17]
applied the Newton-Cotes integration rule for the deign of
wideband digital operators.

In recent years, the design procedure of DD and inte-
grator has been evolved as an optimization problem. It
is due to the fact that the evolutionary and swarm intel-
ligence (SI)-based optimization algorithms are capable of
solving multimodal, non-linear and non-differentiable com-
plex problems [18,19]. A novel recursive differentiator and
integratorwas obtained by the pole zero optimizationmethod
suitable for the real-time applications [20,21]. A linear-phase
second-order IIR integrator and differentiatorwas introduced
by Jain et al. [22] using genetic algorithm (GA) to minimize
the absolute relative error. To date, the PSO algorithm was
successfully applied for the design of digital IIR integrator
and higher-order FIRdifferentiator [23,24]. IIR differentiator
was designed using SA, GA and Fletcher and Powell opti-
mization byAl-Alaoui andBaydoun [25] to obtain the results
with high accuracy.

In digital signal processing, the digital systems are mainly
of two types, finite impulse response (FIR) and infinite
impulse response (IIR) [26]. In FIR systems, the system out-
put depends only on the past and present inputs, and hence
these systems are realized non-recursively, whereas IIR sys-
tems are realized recursively and their output is influenced by
the past and present inputs along with the past outputs. Some
of the advantages of FIR systems over IIR are summarized
below.

1. The FIR systems have the linear phase characteris-
tics due to the symmetric and anti-symmetric impulse
response. This reduces the complexity in solving the
optimization problem. The characteristics of linear
phase provide a constant delay to the input signal which
makes it suitable for real-time applications.

2. The FIR structures are implemented by direct convolu-
tion and can be realized non-recursively.

3. Since all poles lie on the origin hence, FIR systems are
inherently stable.

With these advantages of FIR systems, the design of FIR
differentiator with anti-symmetric impulse response is con-
sidered in this work, using the L1-optimality criterion. The
applicability of the L1-norm is common in engineering
applications [27,28]. But, it was unexplored in the field of
signal processing and system design due to the limitation
of non-differentiability. The L1-method was developed for
the design of linear phase FIR filters by Grossmann and
Eldar [29] which exploited the problems of differentiability
and unique results while using the L1-norm. The motivation
behind using the L1-criterion for the optimization purposes
is summarized below.

1. In comparison to the least-squares (LS) and minimax
design methods, it is observed that using the L1-norm
yields the smallest overshoot at the edges in ideal
response [29].

2. The L1-based filter possesses a flat passband and stop-
band along with sharp transitions.

3. An efficient L1-method is being developed for its
successful application in the computation of system
parameters.

Till date, the L1-method with the above advantages, is
not being applied for the design of FIR differentiators. In
this paper, the design of digital 5th-, 7th- and 11th-order
FIR differentiator is considered using different optimiza-
tion approaches such as the L1-method, PSO and BA based
on the L1-optimality criterion. A wideband differentiator is
designed and analyzed over different frequency bands for
each technique.Moreover, the design results are further com-
pared with the traditional differentiator design techniques,
the window methods, minimax and LS approach. On the
basis of the observations made on absolute magnitude error
obtained in different frequency bands, the L1-method pro-
vides substantially better results in the range [0, 0.8π ] for
the higher-order differentiator, whereas for the complete fre-
quency range, differentiator designed using BA-L1 exhibits
better performance.

The formulation of the paper is as follows: Sect. 2 defines
the FIR differentiator design problem. A brief overview of
the design methods implemented in this work is presented in
Sect. 3. In Sect. 4, the simulation results are demonstrated
for the design of FIR differentiator using the L1-method,
PSO-L1 and BA-L1. A detailed analysis and comparison is
carried outwith the existingmethods. Section 5 concludes the
work.

2 Wideband FIR Differentiator Design
Problem

This section formulates the design problem of digital N th-
order FIR differentiator by approximating it to the response
of an ideal differentiator. An ideal differentiator prototype is
characterized by the frequency response given by

D(ω) = jω, −π ≤ ω ≤ π (1)

where ω represents the digital angular frequency. The fre-
quency response of ideal differentiator in Eq. (1) is approxi-
mated to the N th-order FIR digital filter which is inherently
stable. The approximating filter frequency response H(ω) is
obtained by the discrete time Fourier transform of the filter
impulse response, h[n], 0 ≤ n ≤ N given by
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H(ω) =
N∑

n=0

h[n]e− jωn (2)

To design a full-band differentiator, the type-IV linear-
phase FIR filter with even length and anti-symmetric coef-
ficients is considered. The condition for anti-symmetrical
coefficients implies h[n] = −h[N − n], 0 ≤ n ≤ N . The
frequency response of type-IV FIR filter is given by [26]

H(ω) = e j(
π
2 −ωM)

M∑

n=1

d[n]sin (ω (n − 0.5)) (3)

where M = (N − 1)/2 and d[n] = 2h[M − n], 1 ≤ n ≤ M ,
are the filter coefficients. The amplitude response of the type-
IV FIR filters is given by

Hr (ω) =
M∑

n=1

d[n]sin (ω (n − 0.5)) (4)

The error function, E(ω), is articulated to approximate the
amplitude response, Hr (ω), to the ideal frequency response.
The error objective function based on the L1-norm is
expressed as

||E(ω)||1 =
∑

ω

|Hr (ω) − D(ω) | (5)

The implementation of objective function in the L1-sense
delivers the flattest response among others, such as the L2

and L∞-norms. Thus, using the L1-error criterionwith the SI
based optimization algorithms, BA and PSO for the design
of digital FIR differentiator have advantage of obtaining the
flat frequency response.

In this work, the error function given in Eq. (5) is
employed as the objective function for the optimization prob-
lem. Constructing it as a minimization problem, this function
is minimized using the L1-method, PSO-L1 and BA-L1

optimization techniques and the corresponding optimized
anti-symmetric filter coefficients are used for the design of
5th-, 7th- and 11th-order digital FIR differentiator.

3 The Digital FIR Differentiator Design
Methodologies

In this section, the methods implemented for the design of
digital FIR differentiator are described in detail. The optimal
design of differentiator involves the computation of FIR filter
coefficients approximated to the ideal differentiator response
byminimizing the error function based on L1-norm. The L1-
method is applied to design the FIR differentiator with linear
phase characteristics, stable system and a flat response over

the complete frequency range. Further, the PSO and BA are
executed to obtain more optimized filter coefficients with the
constraints of differentiator response. The steps exercised by
the L1-method, PSO and BA for the design problem are as
follows.

3.1 The L1-Method for the Design of Digital FIR
Differentiator

The L1-method, based on the L1-optimality criteria, was
explored to be utilized in the FIR system design processes.
In 2007, Grossmann and Eldar successfully exploited the
problem of differentiability and uniqueness in the design of
FIR filters using the L1-algorithm based on modified New-
ton’s method [29]. The L1-fitness function results in a small
overshoot and a flat passband profile as compared with the
optimality criteria,minimax andLS. The design of FIRfilters
using the L1-method and its characteristic comparison with
the minimax technique is presented in [30–35]. This method
is described here, for the design of FIR differentiator.

The algorithm applied to formulate the L1 problem as a
linear approximation problem demands for the evaluation of
first- and second-order derivative of the error function defined
in Eq. (5). The first-order derivative of the error function (the
nth component) with respect to the system coefficients is
given by [29]

gn(d) = 〈cos(nω), sgn(E(ω, d))〉 (6)

where sgn(E(ω, d)) gives the Signum result of the function
E(ω, d) and d is the coefficient vector d[n], 1 ≤ n ≤ M .

The steps for the implementation of the digital FIR differ-
entiator using the L1-method are articulated below.

Step 1: Initialization Design the ideal frequency response
defined in (1). Set stopping condition factor, ε, step-size
selection parameters, σ, β and the control parameters of Hes-
sian matrix (second-order derivative of error function), δ1, δ2
and μ.

Step 2: Compute Determine the Hessian matrix over the
entire digital frequency, given by

H(d) = RTA−1R (7)

where R is a t × M matrix with Ri j = cos(( j − 0.5)zi ), t =
number of zeros of (E(ω, d)) and zi denotes the location
of zeros of E(ω, d) at i th position, equal to (2i−1)π

2M , i =
1, 2, . . . , t . A = diag{a1, . . . , at } with ai = 2(zi )

E ′(ω,d)
.

Step 3: Compare The Hessian matrix, Hl of size M × M in
Eq. (7) takes one of three forms according to the number of
zeros of E(ω, d) to reduce the computations.
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Fig. 1 Flowchart for the L1 based FIR wideband differentiator design method

(i) If t = 0 or A is singular, then set Hessian matrix as
identity matrix.

(ii) If t ≥ M , A is non-singular and rank Rl = M , then set
Hl = (Rl)T(Al)−1Rl .

(iii) If 0 < t < M , A is non-singular and rank Rl < M ,
then set Hl = (Rl)T(Al)−1Rl + αlI, where αl > 0 is
the step size, determined according to the Armijo rule
[36].

Step 4: Direction Determine the descent direction kl to
obtain the unique solution, given by

kl = −[Hl ]−1gl (8)

where gl is the gradient [matrix form of Eq. (6)] of function
at dl . Solving kl also called the gradient method, involves
the solution of the linear equations with M unknowns (the
length of kl ).

Step 5: Update Stop if |(kl)Tgl| is less than the given thresh-
old, ε. Set dl+1 = dl + αlkl and l = l + 1. Goto Step 2.
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Step 6: Record The M coefficients, d[n], are stored, and the
frequency response of designed N th-order FIR differentiator
is calculated.
The process flowchart for the L1-method is pictured in Fig. 1.

3.2 PSO Algorithm to Optimize the Digital FIR
Differentiator

PSO algorithm is the mathematical modeling of the behavior
of certain animals working in a team such as fish school-

ing, insect swarming and bird flocking. This scenario is
transformed into an artificial swarm, and a population-based
stochastic search technique is developed [37]. This optimiza-
tion algorithm is successfully being applied worldwide and
is found to be robust and also suitable for non-differentiable
andmultiple objective functions. The algorithm enables each
particle to act as a potential solution and is assigned with its
position vector in the solution space, along with a velocity
quotient with which it moves toward the optimal solution.
At every iteration, the fitness value of each particle is eval-

Fig. 2 Flowchart of the BA for
the FIR differentiator design
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Table 1 Control parameters of
optimization algorithms for FIR
DD design

Parameters Symbol L1-method PSO BA

Tolerance ε 10−6 10−6 10−6

Step-size selection σ , β 10−3, 0.5 − −
Hessian matrix control δ1, δ2, μ 10−15, 1015, 10−10 − −
Initial population ni − 55 25

Lower bound Lmin − −1 −1

Upper bound Lmax − 1 1

Maximum iterations − − 100 100

Cognitive constant C1 − 2.0 −
Social constant C2 − 2.0 −
Initial velocity νmin

i − 0.01 −
Final velocity νmax

i − 1.0 −
Loudness Ai − − 0.5

Pulse rate ri − − 0.5

Lower frequency (for BA) fmin − − 0

Higher frequency (for BA) fmax − − 2

Stopping criteria − Tolerance Maximum Maximum

iteration iteration

Table 2 Optimized coefficients
of 5th-order FIR differentiator
using different optimization
techniques

Technique h(0) = −h(5) h(1) = −h(4) h(2) = −h(3)

Bartlett 0.00000000000001 0.06002108774380 − 0.36012652646284

Hamming 0.00720253052925 0.05969880190037 − 0.41061078138177

Minimax − 0.05241903529644 0.02499564645007 0.41391158430352

Least-squares 0.00676208592350 − 0.03798136206270 0.41722262201710

L1-method 0.02420857648777 − 0.12341448837397 1.25834227136554

PSO-L1 − 0.01138089089321 0.04100798597085 − 0.40220639775600

BA-L1 − 0.01106293662801 0.04121028263836 − 0.40200282632863

uated and it is attracted toward the position of the current
global best location. The steps implemented for the design
of PSO-based FIR differentiator are summarized.

Step 1: Initialization Set the following parameters of the
algorithm. Swarm size of the particle, ni , maximum num-
ber of iterations, learning parameters, C1,C2 and limit of
solution space.

Step 2: Initial Generation Randomly generate particle
population with the initial position and velocity vectors,
xi , vi , i = 1, 2, . . . , n, respectively. Measure the fitness for
each particle.

Step 3: Define Assign the variables, pbest , particle’s per-
sonal best value and gbest , the global best position vector at
the current iteration, l, with all the fitness values computed
in Step 2.

Step 4: Movement The velocity and position vectors of each
particle are updated for the next iteration according to the

following equations considering the initial velocity of the i th
particle, vl=0

i = 0.

vl+1
i = W ∗ vli + α ∗ C1 ∗ [gbestl − xli ]

+ β ∗ C2 ∗ [pbestli − xli ] (9)

xl+1
i = xli + vl+1

i (10)

where W is the inertia weight parameter that controls the
tradeoff between gbest and pbest of the swarm.Also,C1,C2

are the cognitive and social parameters, respectively, that
indicate the relative attraction toward gbest and pbest and
α, β ranges between [0, 1]. The velocity quotient is bounded
with vmin, vmax.With the iterations, the particle continuously
shifts and ultimately reaches the global best solution which
becomes the optimal solution obtained by PSO.

Step 5: Compare Calculate fitness of all the new solutions
and modify pbest and gbest on basis the of updated fitness
values.

123



Arabian Journal for Science and Engineering (2019) 44:1917–1931 1923

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Frequency ( / )

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
M

ag
ni

tu
de

 R
es

po
ns

e

Ideal
Bartlett Window
Hamming Window
Minimax
Least-Squares
L

1
-Method

PSO-L1

BA-L1

Fig. 3 Magnitude response of 5th-order FIR differentiator using differ-
ent techniques over complete digital frequency range

Step 6: Solution Repeat steps 4–6 until the maximum num-
ber of iterations has reached. The final value of gbest
obtained is the optimized solution. The process flow of the
PSO algorithm is explained in Fig. 2.

3.3 Bat Algorithm to Optimize the Digital FIR
Differentiator

A new metaheuristic algorithm, inspired from the natural
echolocation behavior of the microbats, was developed by
Yang in 2010 [38]. The bat algorithm is population-based
stochastic search approach for solving constrained opti-
mization problem with the multimodal fitness function. The
echolocation process performed by bats investigates the pres-
ence of prey for their survival. It allows them to sense nearby
movements and vibrations, even in the dark. It is similar to the

principles of sonar signaling where the bat emits very high
frequency sound waves and learns back from the reflected
echoes. They account for three parameters, (1) time delay
between the transmitted and detected waves, (2) time dif-
ference between their ears and (3) the variation in loudness,
to create a three-dimensional perception of the environment.
With these parameters, they inherently determine the obsta-
cle/target size, distance and direction from the target, its
speed and texture. With the efficient performance of BA, it
has been applied in various applications, such as image pro-
cessing, feature selection, data mining, parameter estimation
and many other engineering optimization problems [39–47].

The algorithm follows some idealistic rules for its suc-
cessful operation.

1. The bats use their inherent magical potential to classify
between an obstacle and prey, in their path.

2. In the process of searching, bat flies randomly with
velocity, vi to achieve the position xi , with a fixed fre-
quency fmin, variable wavelength, λ and a loudness
parameter, A0. Based on the propinquity of the target,
bats reflex toward adjusting the wavelength of emitting
waves and the pulse rate, r ∈ [0, 1].

3. The loudness values can be constant or decreasing from
a maximum limit.

4. There is limit to the maximum and minimum fre-
quency/wavelength of emitting waves.

In order to formulate BA according to the FIR DD problem,
the implementation steps are as follows. The algorithm flow
is projected in Fig. 2 in the form of a flowchart.

Step 1: Initialization Set population size of bats, ni , max-
imum number of iterations, number of parameters to be

Table 3 Absolutemagnitude error over complete frequency range for 5th-, 7th- and 11th-order differentiator using different optimization techniques

Order Bartlett window Hamming window Minimax technique Least-squares L1-method PSO-L1 BA-L1

5 21.0862 12.0760 34.6911 7.4261 3.5148 3.2451 3.2373

7 22.8349 28.2085 37.2930 14.3325 3.8943 1.9670 1.9654

11 37.2230 46.4001 31.6987 21.9087 0.9945 2.0626 1.0189

Bold indicates the best values among all others in the same row (among all the methods)

Table 4 Absolute magnitude error over different frequency bands for 5th-order differentiator

Frequency range Bartlett window Hamming window Minimax technique Least-squares L1-method PSO-L1 BA-L1

[0, 0.2π ] 2.5069 2.0828 0.9966 0.3351 0.0215 0.2459 0.2012

(0.2π, 0.4π ] 5.5755 3.2489 3.4999 0.8550 0.1728 0.1767 0.1696

(0.4π, 0.6π ] 4.7006 1.2223 11.5684 1.7160 0.2007 0.2665 0.2757

(0.6π, 0.8π ] 2.6962 3.5193 6.2456 2.7259 0.8100 0.7351 0.7462

(0.8π, π ] 5.6070 2.0026 12.3805 1.7941 2.3098 1.8208 1.8447

Bold indicates the best values among all others in the same row (among all the methods)
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Fig. 4 Magnitude response of 5th-order FIR differentiator using differ-
ent techniques for frequency range [0, 0.2π ]
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Fig. 5 Magnitude response of 5th-order FIR differentiator using differ-
ent techniques for frequency range [0.4π, 0.6π ]
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Fig. 6 Magnitude response of 5th-order FIR differentiator using differ-
ent techniques for frequency range [0.8π, 0.9π ]
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Fig. 7 Absolute magnitude error of 5th-order FIR differentiator using
different techniques for complete digital frequency range

optimized (anti-symmetric filter coefficients, 3, 4 and 6, in
this work). Specify the control parameters, Ai , ri , fmin, fmax

and search space (upper and lower bound of filter coeffi-
cients).

Step 2: Initial Generation Generate initial bat population
specifying their positions xi , i = 1, 2, . . . , n and velocities
vi . Compute the fitness function, F(xi ) to evaluate the effec-
tiveness of every bat’s position in search of the best solution.

Step 3: Movement After evaluating the fitness for every
bat’s position, the best location, known as the current global
solution, x j is selected. In the next iteration, update the new
solutions, xl+1

i and velocities, vl+1
i using the following equa-

tions.

fi = fmin + ( fmax − fmin)β (11)

vl+1
i = vli + (xl+1

i − x j ) fi (12)

xl+1
i = xli + vl+1

i (13)

where β is a uniformly distributed random value in the range
[0,1].

Step 4: Local Search If a random number rand > ri , then
select a solution among the best solutions. Else if rand < ri ,
generate new solution for each bat using the random walk,
given by

xnew = xold + εAl (14)

where ε ∈ [−1, 1] and Al = 〈Al
i 〉 is the average loudness for

all the bats at the current iteration.

Step 5: Compare Compute fitness of the new solutions,
F(x j ). If F(x j ) < F(xi ) and a random number rand < Ai ,
then retain the new solutions x j as best solutions, otherwise
goto step 3 until the maximum iterations are elapsed.
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Table 5 Optimized coefficients of 7th-order FIR differentiator using different optimization techniques

Technique h(0) = −h(7) h(1) = −h(6) h(2) = −h(5) h(3) = −h(4)

Bartlett 0.00000000000001 0.02572332331877 0.08574441106258 − 0.38584984978161

Hamming − 0.00514466466375 0.02279553116021 0.09638780923123 − 0.42965150895051

Minimax 0.05973220147459 − 0.06718840334105 − 0.01536497034256 0.42126651230326

Least-squares 0.00505881087707 − 0.00570234220811 − 0.02369872851383 0.42294670179145

L1-method − 0.00334537185986 0.02165812882307 − 0.10711915964935 1.23615231648740

PSO-L1 − 0.00488445398081 0.01346792491689 − 0.04275095077928 0.40292314166423

BA-L1 0.00508268272986 − 0.01362753783752 0.04291029638458 − 0.40348372383283

Step 6: Update The loudness, Ai , and pulse rate, ri , are
updated according to the following equations.

Al+1
i = αAl

i (15)

rl+1
i = r0i [1 − e−γ l ] (16)

where α = γ = 0.8 for the problem under consideration.
Approaching the prey, loudness of bat decreases, whereas
the pulse rate increases.

Step 7: Solution Record the best solution if the maximum
number of iteration is exercised. Otherwise, go to step 3. The
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Fig. 8 Magnitude response of 7th-order FIR differentiator using differ-
ent techniques over complete digital frequency range

best solution corresponds to the minimum fitness function
which is used to design the digital FIR differentiator.

4 Simulation and Analysis

This section presents simulation results and detailed analysis
for the design of 5th-, 7th- and 11th-order FIR differentiator
using the L1-method, PSO-L1 and BA-L1. The simulation is
performed onMATLAB using Intel Core i5, 2.53GHZ, 4GB
RAM PC. To affectively demonstrate the excellence of the
proposed designs, comparative analysis is performedwith the
traditional window techniques, minimax method and the LS
method. The digital differentiators are analyzed for different
frequency bands in the complete frequency range. The values
of controlling parameters of the L1-algorithm, PSO-L1 and
BA-L1 used for the design process are mentioned in Table 1.

4.1 Design Example 1: 5th-Order FIR Differentiator

In this example, we design a 5th-order FIR differentia-
tor using the L1-method, PSO-L1 and BA-L1. The opti-
mized anti-symmetric filter coefficients obtained for the
L1-method, PSO-L1, BA-L1 along with the Bartlett and
Hamming window technique, minimax method and LS
design are given in Table 2. Themagnitude response obtained
using the window techniques, minimax, LS approach, the
L1-method, PSO-L1 and BA-L1 is shown in Fig. 3 for the
complete frequency range. The observations for all the design
algorithms on the measures of the absolute magnitude error

Table 6 Absolute magnitude error over different frequency bands for 7th-order differentiator

Frequency range Bartlett window Hamming window Minimax technique Least-squares L1-method PSO-L1 BA-L1

[0, 0.2π ] 5.4492 4.4837 1.1660 0.6907 0.0014 0.1100 0.1088

(0.2π, 0.4π ] 9.2703 7.8976 3.0718 1.8096 0.0063 0.0986 0.1169

(0.4π, 0.6π ] 2.8800 2.8336 6.3680 4.0823 0.0242 0.1692 0.1570

(0.6π, 0.8π ] 2.7305 8.1168 14.6804 4.5994 0.1874 0.3102 0.3280

(0.8π, π ] 2.5049 4.8768 12.0068 3.1504 3.6750 1.2789 1.2547

Bold indicates the best values among all others in the same row (among all the methods)
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Fig. 9 Magnitude response of 7th-order FIR differentiator using differ-
ent techniques for frequency range [0, 0.2π ]

for the frequency range [0, π ] are shown in Table 3. The
absolute magnitude errors observed are 3.2373, 3.2451 and
3.5148 for the BA-L1, PSO-L1 and the L1-method-based
differentiator design, respectively. The performance of the
algorithms is in the following order.

BA − L1 > PSO − L1 > L1 − method > LS

> Hamming > Bartlett > Minimax

In Table 4, detailed analysis on the basis of absolute
magnitude error computed in different frequency bands is
performed. For the frequency range [0, 0.2π ], performance
of the L1-method is best; forω ∈ (0.2π, 0.4π ], BA-L1 yields
least magnitude error; for ω ∈ (0.4π, 0.6π ], the L1-method
performs better; for ω ∈ (0.6π, 0.8π ], magnitude error for
PSO-L1 is minimum; and for ω ∈ (0.8π, π ], the LS method
gives comparable results to the proposed designs. The mag-
nitude response for the 5th-order differentiator for the lower
frequencies, mid-frequencies and higher frequencies is plot-
ted in Figs. 4, 5 and 6, respectively. Furthermore, the absolute
magnitude error for all the techniques with respect to the dig-
ital frequency is shown in Fig. 7. The observationsmade from
tables andfigures, and it can be inferred that theBA-L1-based
differentiator outperforms all other designs.

4.2 Design Example 2: 7th-Order FIR Differentiator

In the current example, the design of 7th-order FIR dif-
ferentiator using the L1-method, PSO-L1 and BA-L1 is
demonstrated. Table 5 provides the optimized FIR filter coef-
ficients incurred for the L1-method, PSO-L1, BA-L1 and
the Bartlett, Hamming window technique, minimax and LS
designs. The comparison of magnitude response for the com-
plete frequency range using all above mentioned approaches
is presented in Fig. 8. It is observed from Table 3 that the
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Fig. 10 Magnitude response of 7th-order FIR differentiator using dif-
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Fig. 11 Magnitude response of 7th-order FIR differentiator using dif-
ferent techniques for frequency range [0.8π, 0.9π ]
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Fig. 12 Absolute magnitude error of 7th-order FIR differentiator using
different techniques for complete digital frequency range
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Table 7 Optimized coefficients
of 11th-order FIR differentiator
using different optimization
techniques

Technique h(0) = −h(11) h(1) = −h(10) h(2) = −h(9)
h(3) = −h(8) h(4) = −h(7) h(5) = −h(6)

Bartlett 0.00000000000001 − 0.00909410420360 − 0.02338483938070

Window 0.04910816269947 0.10912925044328 − 0.40923468916232

Hamming 0.00327387711329 − 0.00765385764298 − 0.02243775352578

Window 0.05451098603520 0.12622974006205 − 0.44177025622056

Minimax 0.05314225018098 − 0.06272950517185 0.01171440548398

0.00277829612732 − 0.03188163305477 0.37375415617876

Least-squares 0.01078373236839 − 0.02398825025747 0.02598513367092

−0.02074782575731 − 0.00897801193082 0.40810178597543

L1-method − 0.00289713205513 0.00978148970242 − 0.02110102887026

0.04670470611281 − 0.13763330449670 1.26958159142235

PSO-L1 0.00115836341259 − 0.00481968626529 0.00755658595232

− 0.01270317896699 0.04013579745765 − 0.40437613250491

BA-L1 0.00237548670700 − 0.00421312496658 0.00786459110191

− 0.01560690807491 0.04449608535985 − 0.40456842610170
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Fig. 13 Magnitude response of 11th-order FIR differentiator using dif-
ferent techniques over complete digital frequency range

absolute magnitude error for the BA-L1, PSO-L1 and the
L1-method-based differentiator design is 1.9654, 1.9670 and
3.8943, respectively. The performance of the algorithms is in
the following order.

BA − L1 > PSO − L1 > L1 − method > LS

> Bartlett > Hamming > Minimax

The absolute magnitude error is analyzed for different
frequency bands and is presented in Table 6. In the fre-
quency range ω ∈ [0, 0.2π ], (0.2π, 0.4π ], (0.4π, 0.6π ] and
(0.6π, 0.8π ], performance of the L1-method is excellent and
it yields the least magnitude error; and forω ∈ (0.8π, π ], the
BA-L1 design approach gives better results. The magnitude
response for the 7th-order differentiator for the lower fre-
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Fig. 14 Magnitude response of 11th-order FIR differentiator using dif-
ferent techniques for frequency range [0, 0.2π ]

quencies,mid-frequencies andhigher frequencies is shown in
Figs. 9, 10 and 11, respectively. Fig. 12 portrays the absolute
magnitude error values for the complete frequency range. All
the above observations conclude that the L1-method-based
differentiator design performs better among all other designs.

4.3 Design Example 3: 11th-Order FIR Differentiator

The design of 11th-order FIR differentiator using the L1-
method, PSO-L1 and BA-L1 is presented in this exam-
ple. The anti-symmetric approximated filter coefficients are
sequenced in Table 7. The magnitude response is plotted
for the L1-method, PSO-L1, BA-L1, LS approach, minimax,
Bartlett, Hamming window technique in Fig. 13. The abso-
lutemagnitude error values given inTable 3 for the 11th-order
differentiator is 1.0189, 2.0626 and 0.9945 for the BA-L1,
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Table 8 Absolute magnitude error over different frequency bands for 11th-order differentiator

Frequency range Bartlett window Hamming window Minimax technique Least-squares L1-method PSO-L1 BA-L1

[0, 0.2π ] 5.2284 6.0229 1.3444 0.5601 0.0063 0.0933 0.0801

(0.2π, 0.4π ] 13.6896 13.9879 3.3605 2.3728 0.0203 0.1595 0.0652

(0.4π, 0.6π ] 5.2491 5.9569 6.3077 2.7859 0.0402 0.7019 0.0969

(0.6π, 0.8π ] 9.6551 14.1212 7.8577 6.5862 0.1196 0.2712 0.1752

(0.8π, π ] 3.4009 6.3113 12.8284 9.5737 0.8081 0.8362 0.6016

Bold indicates the best values among all others in the same row (among all the methods)
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Fig. 15 Magnitude response of 11th-order FIR differentiator using dif-
ferent techniques for frequency range [0.4π, 0.6π ]
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Fig. 16 Magnitude response of 11th-order FIR differentiator using dif-
ferent techniques for frequency range [0.8π, 0.9π ]

PSO-L1 and the L1-method, respectively. The performance
of the algorithms is in the following order.

L1 − method > BA − L1 > PSO − L1 > LS

> Minimax > Bartlett > Hamming

For the frequency range ω ∈ [0, 0.2π ], (0.2π, 0.4π ],
(0.4π, 0.6π ] and (0.6π, 0.8π ], the L1-method outperforms
all other design and with high accuracy yields the least mag-
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Fig. 17 Absolute magnitude error of 11th-order FIR differentiator
using different techniques for complete digital frequency range
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Fig. 18 Absolute magnitude error of 11th-order FIR differentiator
using different techniques for complete digital frequency range

nitude error; for ω ∈ (0.8π, π ], the BA-L1 design method
provides better results, as shown in Table 8. The magnitude
response for the 11th-order differentiator for lower frequen-
cies, mid-frequencies and higher frequencies is shown in
Figs. 14, 15 and 16, respectively. In Fig. 17, the absolute
magnitude error for the complete frequency range is depicted.
Fromabove results, it canbe concluded that the absolutemag-
nitude error is least for the L1-method-based differentiator
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Fig. 19 Output response of the
proposed differentiators using a
the L1-method, b PSO-L1, c
BA-L1 for a triangular input
pulse
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Fig. 20 Output response of the
proposed differentiators using a
the L1-method, b PSO-L1, c
BA-L1 for square input wave
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design and the L1-method outperforms other techniques at
higher orders.
Fitness Profile The comparison of fitness curve for the opti-
mization algorithms, PSO and BA is shown in Fig. 18. The
bat algorithm converges to a lower value of magnitude error

as compared to PSO. Moreover, the speed of convergence is
observed to be faster for BA. This curve is plotted for the val-
ues obtained while simulating the 11th-order differentiator.
Similar plots can be obtained for other designs.
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Lastly, two digital input signals are considered to further
verify the performance of the proposed differentiator designs
and to prove themfit for real applications. Firstly, a triangular
pulse of 1 s is provided as inputwave; secondly, a squarewave
with 50% duty cycle is considered. Here, the input signals
are filtered using the 5th-, 7th- and 11th-order differentiators
designed using the L1-method, PSO-L1 and BA-L1. Fig-
ure 19 depicts the output obtained with respect to the input
triangular pulse when it is passed through the differentiators.
The resulting square wave is featured with the group delay
of 3, 4 and 6 samples with 5th-, 7th- and 11th-order dif-
ferentiator, respectively. The differentiation of square wave,
resulting into spikes at the pulse transition, is demonstrated in
Fig. 20. Similar group delay is observed in the corresponding
outputs. Hence, the feasibility of the proposed differentiator
designs using the L1-method, PSO-L1 and BA-L1 in real
applications is confirmed.

5 Conclusion

The aim of this paper is to design a wideband digital FIR dif-
ferentiator by utilizing the novel features of the L1-method.A
flat response is obtained over a wide frequency range for the
design of 5th-, 7th- and 11th-order differentiator. The authors
have made an attempt to further obtain optimized results
by applying two swarm intelligence-based algorithms, PSO
and BA. The results have been examined with the compu-
tation of relative magnitude error of the proposed designs
with respect to the ideal response. To evaluate the efficient
performance of the proposed method, detailed analysis has
been carried out in different frequency bands. It can be con-
cluded from these observation that the L1-method, PSO-L1

and BA-L1 outperform other existing techniques considered
for comparisonwindow,minimax andLSmethod.Moreover,
it is observed that the L1-method is an improvement over all
other designs for higher-order system. Finally, the proposed
designs are tested on two input signals to verify the efficiency
of response.

Here, the design of FIR differentiator with real coeffi-
cients is considered. However, complex coefficients value
differentiator and Hilbert transformer can also be considered
for further research.
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