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Abstract

With the aim of reducing duplicate records in databases, duplicate record detection (DRD) ensures the integrity of data. Its role
is to identify records signifying same entities either in the same or in different compared to database. A diversity of indexing
techniques has been proposed to support DRD. Q-gram is one of the common techniques used to index databases. This paper
introduces modification to the Q-gram indexing technique. Such modification participates in improving the performance of
the duplicate detection process and in reducing the time and number of comparisons. In the proposed work, in order to make
the back-end computations easier, Q-gram strings are alternatively converted into numeric values using their corresponding
ASCII code. Based on these numeric values, the indexing will decrease the complexity of Q-gram comparisons and speed up
the DRD process as a whole. Unlike the existing approaches, the proposed technique is easier in implementation and requires
less memory space. Two other variations of the proposed technique are introduced in this paper to decrease the matching
process time; the first uses a range for matching, while the second sorts words alphabetically inside blocks. According to
experimental results, the three proposed techniques perform much faster and are almost as accurate as the current Q-gram
technique, meaning that they can be used in large-sized databases DRD.

Keywords Duplicate record detection - Q-gram - Indexing technique - BKV - ASCII code

1 Introduction

Most agencies and companies produce and handle huge
amounts of data. Hence, new techniques are needed to make
the processing of large-sized databases much easier and more
efficient. To ensure the reliability of such techniques, firstly,
data must be free from any errors, such as duplication. To
achieve this goal, records pointing to same objects need to
be matched from databases. Enforcing data integrity guaran-
tees the accuracy and coherence of data. According to this,
DRD plays a significant role in enhancing data integrity [1].
As multiple source information may be integrated to make
detailed data analysis easier, duplication problem may occur.
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Currently, a plethora of entities, such as tax agencies, banks,
mobile network operators, universities and medical research
centers, use DRD to detect and, thus, reduce duplicate records
in real-world databases. Furthermore, DRD is highly helpful
in other fields such as fraud detection and money laundering
[2].

The major problem in the detection of duplicate records
is the number of comparisons to be made between records.
To solve such problem, indexing was introduced to sort
or gather database rows according to one or more fields.
Database indexes are methods used to rapidly reach data
items in databases, without having to search every row in
a database table every time it is accessed [1,2]. By using
indexing, rows can be combined in groups (called blocks),
according to a blocking key value (BKV). BKV can be either
a single attribute or a combination of two or more attributes.
As such, the number of comparisons can be reduced, because
they are now limited to the rows found in a block.

Moreover, indexing is used in identity matching, where it
is important to enforce personality identification efficiency
of matching and expandability for large datasets [3]. The
step of indexing decreases the number of candidate identity
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pairs by explicitly removing non-matching pairs, before the
decision-making model step, which makes explicit compar-
isons. Such perspective is basically used in record linkage and
de-duplication research. However, de-duplication research is
similar to identity matching research, since they both include
searching duplicate records in a database.

Many indexing techniques have been presented in the
literature to improve DRD. Some of such techniques are:
traditional blocking [4], sorted neighborhood indexing [5],
suffix array-based indexing [6], canopy clustering [7] and
Q-gram-based indexing [8].

Q-gram indexing is considered the most popular and
accurate indexing technique. Q-gram indexing is based on
Q-grams [8,9] which are short sub-strings of length q of
a given string. A sliding window of length q is performed
on the characters of the given string to obtain Q-gram sub-
strings. This technique is used to index databases such that
records with similar, not just the same, BKV are inserted in
the same block. Within this block, each string will be further
compared using a matching function to find only those with
the closest match.

In addition to DRD, Q-gram has been used in many other
fields. In [9], Q-gram fingerprinting blocking technique was
used for maintaining high-quality linkage in reasonable time.
In [10], a birthmarking approach using Q-grams is presented.
Using this technique, designing patterns regarding existing
circuits can be captured and used to suggest not only similar
and reusable designs, but functional blocks throughout the
design phase, with little effort from the user. In [11], because
of the huge number and the dimensions’ sparseness of the
scientific research text set, a new similarity search algorithm
for the scientific research text set is proposed, which is based
on the weights of the Q-gram. The algorithm can greatly
reduce the number of dimensions, and then quickly find the
similar text.

On the other hand, the increase in the database size
imposes a challenge to the detection process since more time
is required for large database size. To deal with this problem,
in this paper, we concentrate on providing more accurate,
faster and efficient indexing technique to be used in the DRD
matching or in any other database matching processes, given
that we can improve the performance of the lookup step
by using better indexing approach, particularly in large size
datasets [12,13]. With the view of achieving such goal, we
introduce a modification to Q-gram indexing, by converting
the Q-gram strings into numeric values via substituting each
string with its corresponding ASCII code and performing
indexing on such numbers. The aim of such modification is
reducing the back-end computations, by reducing the com-
plexity of the comparison step and, thus, speeding up the
DRD process.

The remaining of this paper is organized as follows: Sect. 2
gives an overview of the DRD process and Q-gram; Sect. 3
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presents the proposed indexing technique; Sect. 4 includes
experiments and results; Sect. 5 discusses and explains the
obtained results; finally, Sect. 6 concludes the paper and sug-
gests future work.

2 Background and Related Work

The majority of real-world data is uncertain and contains
noisy, imperfect and misformatted information. To clean
such data before being processed, DRD can be used. DRD
is a technique used to detect pairs of records in one or
more datasets that point to same entity. Duplicate detection
methods usually depend on string similarity to differentiate
between matching (i.e., duplicate) and non-matching (i.e.,
non-duplicate) record fields. In addition, duplicate record
methods depend on record similarity for combining simi-
larity estimates from individual string fields [14].

2.1 Main Steps of DRD

There are six main steps of DRD as depicted in Fig. 1. The
role of each step is summarized as follows [3].

2.1.1 Data Cleaning and Standardization Step

The main and first step in any record DRD approach is data
cleaning and standardization [15]. It was proven that the
existence of poor quality data may limit the effectiveness
of record linkage. The transformation of input data into a
well-defined form is the main function of data cleaning and
standardization process. It also helps solving any inconsis-
tencies in the way information is represented and encoded
by different data sources [16].

Data cleaning and standardization is the process of detect-
ing and correcting (or deleting) messy and inaccurate records
from a record set, table or database. This term refers to
identifying incomplete (or incorrect, inaccurate, irrelevant,
etc.) parts of these data and replacing, modifying or omitting
this unclear or poor data. Data selection may be carried out
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interactively with data wrangling tools, or as data processing
through programming [17].

In the DRD framework, cleaning and standardization can
be performed either on character level or on string level. As
for the character level, spaces are trailed and removed, or
specific characters are replaced with a set of equivalent val-
ues. Composite names and words often face the problem of
typographical differences, which will lead to a negative false
comparison. They have to be converted to specific format to
guarantee correct detection between records. As for the string
level, rules can be added to remove titles, abbreviations or
prefixes, such as Eng., Mr., prof., Dr., ... etc. [18]. This step is
flexible and language-based in the sense that any additional
rules can be set and applied to normalize the data.

2.1.2 Indexing/Blocking Step

The goal of the indexing step is to decrease the great num-
ber of possible comparisons by detecting all non-matching
record pairs. In the comparing step, these candidate records
pairs are compared using a suitable comparison function
according to the content of the field attributes. Many indexing
techniques were introduced in the literature. Some of them
will be listed below.

Traditional blocking has long been used in record linkage
[5] where all records having the same blocking key value
(BKV) are put in the same block such that each record is put
only in one block. Afterward, these records within the same
block are compared with each other to detect their similarity.
The main weakness of traditional blocking is the mistakes
and variances in data in record fields which generate BKVs
that cause records to be assigned to improper blocks. This
disadvantage can be controlled by using several blocking
key definitions that are based on various record fields; or the
various encodings which have already been applied on the
same record fields [19].

Sorted neighborhood indexing came out to use in the mid-
1990s [20]. Its main idea is to sort the database(s) in
accordance with the BKVs, and to consecutively move a win-
dow of a fixed number of records w (w > 1) over the sorted
values. To produce the candidate record pairs, the records
available in a current window are used. Yet, the main disad-
vantage of this method is the sensitivity of sorting the BKVs
to mistakes and variances in the first few positions of values.
For instance, given two names: ‘Careem’ and ‘Kareem,’ if
they were used as BKVs, they seemed far away in the sorted
array; however, they must be inserted into the same window.
This shortcoming can be conquered by using multiple block-
ing key definitions based on various record fields, or reversed
field values [21].

Suffix array-based indexing has lately been proposed as
an effective autonomous domain approach to multi-source
information incorporation [4]. Its fundamental notion is to

insert the BKVs and their suffixes into a suffix array based
on inverted index. A suffix array includes alphabetically
arranged strings [6]. In this indexing technique, only suffixes
that down to a minimum length are inserted into the suffix
array. The main disadvantage of suffix-based indexing, that
will put records into different blocks, is mistakes and vari-
ances at the end of BKVs, and thus missing true matches. To
avoid this disadvantage, a modification of the suffix genera-
tion process, that does not only produce the true suffixes of
BKVs but also all the sub-string down to minimum lengths
in a sliding window shape, is proposed in [21].

Canopy clustering is an indexing technique that uses a
computationally inexpensive clustering approach to produce
high-dimensional overlapping clusters. Using these over-
lapped clusters, blocks of candidate record pairs can be
generated [4,22]. The calculation of the similarities between
BKVs is computed using standard similarity functions such
as Jaccard or TF-IDF/Cosine [7]. These similarity functions
work on tokens, which can be characters, Q-grams or words
[7,23]. However, the drawback of this approach, which is
the same as of the sorted neighborhood technique, is that
the generated clusters of BKVs that are so common (like
the surnames ‘Al-Khouly’ or ‘Al-Bana’), might not include
all records with these BKVs, and therefore, the matching
between these records cannot be correctly predicted. Another
work in [23] has proposed to use BKVs that have a sequence
of several record fields and a large number of different values.
Finally, Q-gram indexing [24], which is the main topic of
this paper, is going to be discussed in detail in Sect. 2.2.

2.1.3 Record Pair Comparison, Similarity Vector
Classification and Expert Evaluation Steps

In the comparison step, string comparisons are performed in
fields with string content such as name, faculty or country.
Typographical variations should be taken into consideration
to overcome such problem [25]. Other comparison functions
are used for fields containing other types of data such as date
or numeric data types [12]. Similarity values are obtained via
comparing the corresponding fields with other record pairs.
These values are then stored in a vector that represents the
similarity between pairs.

As previously discussed in this paper, the insufficiency
of distinct identifiers throughout integrated data sources has
proven the necessity for carrying out record comparisons
using string fields. A lot of methods have already been
evolved to do string matching. Considering the wide range of
typographical differences, each method performs well with
a particular sort of typographical difference/error [13].

The most commonly used techniques for matching string
fields rely on either character-based similarity metrics, token-
based similarity metrics or phonetics similarity metrics [26].
The character-based similarity metrics, used to tackle typo-
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graphical variations/errors, include Jaro—Winkler distance,
Levenshtein edit distance, longest common subsequence and
Hamming distance [26,27].

Making use of similarity values, the next step in the DRD
process is to separate the compared selected record pairs into
duplicates, non-duplicates and possible duplicates, relying on
the decision model used [26]. Record pairs excluded in the
indexing step are classified as non-matches and will not be
compared. In the framework, a range is specified for a match
between {60%:100% }, non-match between {0%:40%} and
possible match between {40%:60%}. The final step in the
process is assessing the quality of the DRD results [26]. This
can be performed through the help of an expert.

2.2 Q-gram Indexing Technique

Q-gram indexing technique is associated with the problem
of the long time required to perform indexing, due to the
large number of BKVs generated in the inverted index to
represent records [9—11]. However, Q-gram indexing tech-
nique is the most reliable one, as the records in this technique
are allocated to multiple index keys to escalate efficiency. It
converts a BKV into Q-gram sub-lists which are merged to
create index key values.

The Q-grams are simply sub-strings of length ¢; the
concept was presented by Shannon [28]. They have been
utilized in many variances, e.g., in different spelling correc-
tion methods. The text is first preprocessed maintaining a
static dictionary to make subsequent searches for ‘correct’
words faster. It is identified by Ukkonen [29] as brief charac-
ter sub-strings of length g of the database strings. Moreover,
Q-grams, including unigrams, bigrams and trigrams, used
different ways for spelling correction and text recognition
that explicated by Kukich [30].

Gravno et al. [31] continued his work to extend the capa-
bilities of handling spelling errors by using Q-grams instead
of words as tokens. By doing so, a spelling error has a slight
effect on the set of ordinary familiar Q-grams of two strings.
Therefore, the two strings ‘Treaties’ Weapons’ and “Weapon
Treaties’ have high similarity under this metric, in spite of
the block shift and the spelling errors in both phrases. This
measure handles the addition and omission of words del-
icately. The string “Treaties’ Weapons’ matches with high
similarity the string ‘International Weapon Treaties’ because
the Q-grams of the word ‘International’ appear so much in
the relation and has low weight.

Elmagarmid defined Q-gram as a subsequence of ¢ points
[13]. These points may be whole words, syllables or letters of
phonemes. A ‘unigram’ refers to a Q-gram of size 1, ‘bigram’
to size 2, ‘trigram’ to size 3, and size 4 or more simply called
‘Q-gram’.

On a Q-gram metric of similarities, tokens are not identi-
fied in relation to characters (white spaces and punctuations),
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but they are turned into smaller tokens based on the size ¢
which are called Q-grams [32]. Furthermore, these tokens
usually overlap (one character appears in many tokens) g
tokens in particular. In order to reproduce a size ¢, a window
must be sled over the string in order to be tokenized (made
into tokens). In order to gather g tokens, they present a special
non-alphabetical character (such as # or _) and pad the string
with the alphabets. The main advantage of this approach is its
ability to conceal errors and variations in blocking key values
(BKVs). Truly matching objects are most likely grouped into
the same block which will lead to a correct matching.

Let r be a string. Any sub-string of length ¢ (> 0) in r is
called a Q-gram. A positional Q-gram comprises a Q-gram
and its position in r. For example, the 3-grams of the string
‘amany’ are { ‘ama,’” ‘man,” ‘any’ } and the positional 3-grams
of ‘amany’ are {(ama, 1), (man, 2), (any, 3)}.

Given BKVs are strings; the basic idea is to produce many
versions for each BKV using Q-grams, and to interject the
record in more than one block. One of the basic demerits
of this step is its liability to many mistakes and variances.
Moreover, this step might take so much time. A list of Q-
grams is generated from each BKV where these sub-lists
are combined to a particular minimum length, specified by
a threshold ¢, selected by users in a previous step. If a BKV
contains k Q-grams, then sub-list combinations, starting from
k to a minimum length of [, are created [21].

Table 1 illustrates examples of applying the Q-gram index-
ing for three records, where ¢ =2 (bigrams), given a threshold
value ¢ = 0.8. In the first record (R1), the BKV ‘Ahmed’ pro-
duced four (k =4) bigrams: ‘ah,” ‘hm,” ‘me,” ‘ed’ (presuming

Table 1 Q-gram based indexing used as BKVs (first name), (g = 2)

Identifiers BKVs (first name) Bigram sub-lists  Index key values

R1 Ahmed [ah, hm, me, ed], ahhmmeed,
[hm, me, ed], hmmeed,
[ah, me, ed], ahmeed,
[ah, hm, ed], ahhmed,
[ah, hm, me] ahhmme

R2 Ahmedy [ah, hm, me, ed, ahhmmeeddy,
dy], [hm, me, hmmeeddy,
ed, dy], [ah, ahmeeddy,
me, ed, dy], ahhmeddy,
[ah, hm, ed, ahhmmed,
dy], [ah, hm, ahhmmeed
me, dy], [ah,
hm, me, ed]

R3 Ahmede [ah, hm, me, ed, ahhmmeedde,
de], [hm, me, hmmeedde,
ed, de], [ah, ahmeedde,
me, ed, de], ahhmedde,
[ah, hm, ed, ahhmmede,
de], [ah, hm, ahhmmeed
me, de], [ah,
hm, me, ed]
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Fig.2 The resulting inverted
index lists (blocks) ahhmmeedd ahhmeddy 000

that all letters have already been turned into lowercase). From
the table, we can compute the shortest sub-lists length I for
this value to be I = 3. Therefore, four sub-lists are produced
each containing three bigrams for BKV ‘Ahmed’ as: [hm,
me, ed], [ah, me, ed], [ah, hm, ed], and [ah, hm, me]. These
sub-lists were produced by removing one of the four bigrams
in the original list. The key values used in the inverted index
are produced from these sub-lists after being converted to
strings, as shown in Fig. 2 [21].

Definition 1 (Sub-lists) Let M be a given BKV. We can gener-
ate a list of Q-grams from M. A sub-list of M is a combination
of the generated Q-gram elements. The sub-list combinations
continue to a certain minimum length # (¢# < 1), which is a
user selection parameter. If k is the number of bigrams in
BKVs, all sub-list combinations down to minimum length
of I = max(1, [k x t]) will be created ([...] corresponds to
approximating the float number to the lower integer). Let S
be a sub-list of Q-grams for a given string. The number of
sub-lists can be computed as [21]:

S =Xk:<j‘> (1)

i=l
2.3 Jaro Similarity Distance

Jaro similarity distance is a type of edit distance approaches
used for measuring similarity between two strings. It was
used in many applications such as matching and search.
Higher Jaro distances between investigated strings indicate
higher possibility of being two similar strings. However, it
is only suitable for comparing short strings (e.g., names).
(0) distance means no similarity, while (1) distance means
an exact match. In the proposed framework, the Jaro string
matching function is chosen because it takes into consider-
ation the number of matched characters and the number of
transportations required, regardless of the length of the com-
pared strings. Some of the other string matching functions
cannot be used due to the nature of the DRD application
[29,32].

Definition 2 (Jaro distance) Let s; and s, be two given
strings. Jaro distance (d ;) between these two strings is com-

E

..

puted as follows: if there are no matched characters, then
d(s1,s2) = 0, otherwise, when m is the number of matched
characters and ¢ is the number of transportations, it is com-
puted as [29,32]:

ifm=0

) otherwise

@

0
di(s1o0s2) =11 ( m
§<|s_1

This requires O (|s1] - |s2]) time for comparing two strings of
length |s1| and |s3].

m—t/2
m

3 The Proposed ASCIlI Code Q-gram Indexing
Technique (ACQIT)

The proposed indexing technique in this paper has the objec-
tive of enhancing the performance of DRD process by
reducing the number of compared record pairs preserving
the accuracy. With the aim of boosting its capability to index
strings, we propose an improvement of the Q-gram indexing
technique. The goal behind the use of Q-grams is that when
two strings s; and s> have a small edit distance, they have
many Q-grams in common, while the use of positional Q-
grams involves the comparison of the positions of matching
Q-grams within a certain distance. This incurs high com-
plexity and requires long time. However, we found that if it
is possible to represent the Q-gram string as a number, this
will reveal the possibility of two strings having the same con-
tent if they have the same number without requiring to match
each of the Q-grams sub-strings at different positions.

The basic idea of the proposed work is to quantify a Q-
gram string into an integer number, which is later used to
index strings. Using the quantified numeric value enables
the indexing phase to quickly detect candidate records that
have numeric similarity, thus reducing the overall execution
time of the whole process. This technique can reduce the
number of comparisons and the amount of time required to
perform comparisons by excluding non-matches in an effi-
cient manner. In this way, the complexity of the indexing
process is reduced while preserving its accuracy, as will be
shown later.
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Fig.3 Steps of the proposed
indexing technique

Ranges (50-100)

String Bigrams
Sameh sa, am, me, ¢eh,
st nd d th .
1 bigram 2 bigram 3 bigram 4 bigram

Fig.4 Example of a string (Sameh) divided into bigrams (¢ = 2)

The proposed ASCII code Q-gram indexing technique
(ACQIT) has the following steps, as depicted in Fig. 3:

Collect Similar BKVs into
blocks

Convert BKV letters to
lowercase

Divide BKVs into bigrams

Convert bigrams into strings

Compute the Equivalent Numeric

values for the bigram strings

Yes

No

Sort input alphabetically

No

1. Convert all the letters of the BKV string into lowercase
letters to remove the effect of uppercase letters in the
conversion to numeric value.

2. Adjust the Q-gram to 2, i.e., the BKV is divided into
bigrams. An example is given in Fig. 4 where we divide
the string (Sameh) into bigrams.

3. Convert these bigrams back into strings.

4. Compute the equivalent quantified numbers for the
bigram strings through multiplying each letter position
or sequence in the BKV by its ASCII code value shown
in Table 2. This number will be used later to determine
the similarity between BKVs.

Table2 Characters ASCII code

ASCII code Alphabet ASCII code Alphabet ASCII code Alphabet
97 a 107 k 117 u
98 b 108 1 118 v
99 c 109 m 119 w
100 d 110 n 120 X
101 e 111 o 121 y
102 f 112 p 122 z
103 g 113 q

104 h 114 r

105 i 115 s

106 j 116
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Definition 3 (String numeric equivalent) Let us have a string
(S) containing N characters, ASCII is the ASCII code value
for a character, i is character position in the word, and S;
refers to a character in the string, the bigram string numeric
equivalent (String-eqv) is obtained by using the following
equation:

N—1
String-eqv = ASCII(S)) + »  2%i * ASCII(S;)
i=2

+ N*ASCII(Sy) 3)

5. Finally, similar numeric value BKVs are grouped into
blocks on which the matching process will be made.

The proposed technique uses the exact match to group
the BKVs. This, however, gives no possibility for any mis-
spelling or transpositions in the string entry session. Two
variations of this technique are presented to solve this draw-
back.

e The first variation of the proposed technique considers a
range for similarity inside blocks. The user can set this
value according to the environment under consideration;
however, we have experimentally found that the ranges 50
and 100 are considered fair differences between strings
to cover error possibilities in the data entry session. We
call the first variation technique ACQIT with a range.

e The second variation sorts BKVs alphabetically inside
blocks to reduce the matched pairs. We call this approach
ACQIT Alphabet. This idea can be combined with the
exact match technique (ACQIT) or with ACQIT with a
range technique.

Fig.5 The steps of ACQIT

The pseudocode of the proposed ACQIT is shown in Fig. 5.
The input dataset (D) contains the records to be checked
for duplication. The output of this algorithm will be a second
dataset (R) in which we will store the generated pairs. In lines
{1,2}, for each string in a dataset (D), all letters are converted
to lowercase letters. In lines {3...5}, the equivalent numeric
value of the ASCII code for the bigram strings is computed.
In lines {6...9}, we apply the alphabetical sort if we wanted
dataset (D) to be sorted. Otherwise, ranges between (0, 50)
or (0, 100) are applied. In lines {10, 11}, each row (r) in
dataset (D) is compared with all other rows having same
values or same range according to the used approach. In lines
{12...16}, if the numeric value of the ASCII code of word
(r) is equal to that of word (r + 1); Jaro distance is applied
and r and r + 1 are inserted in the generated pairs (R).

The aforementioned process is demonstrated by an exam-
ple in Fig. 6. In the figure, we have three strings to match:
Amany, Ayman and Yuomna. We begin by converting the
letters into lowercase letters. Then, each string is divided into
bigrams and reverted back to a string. Then, the strings are
converted into equivalent numbers, which can be compared
easily, using Eq. (3) as depicted in Fig. 6.

Using these numbers, the comparison shows that the
three strings are not identical and there is a slight differ-
ence between Amany and Ayman (2600-2561 = 39), but
Yuomna is very remote from both; as the numeric difference
between them is large. Amany and Ayman could be the same
record if a data entry error occurred.

In Fig. 6, another example of two other strings is given;
Omnia and Omnih. These two strings may refer to the same
record. After performing the steps of the proposed technique,
the difference between their equivalent values is only 35, due
to the variation in writing the same name. This is an accept-
able variance between the two strings, and therefore, we
should tolerate it in the proposed technique to consider them

Input: Dataset D for all the records sets

Output: Dataset R for all generated pairs

1. For each Word (w) in
2. For each Word (w) in D do
3 For each Character (ch) in (w) do
4. Sum(ASCII(ch))
5. If (D, sorted) then
6 Sort(D,Alphabetical)
7 Else
8 Use range(D, range between (0,50), range between (0,100))
9. End If
10. For each record (r) in D do
For each
11. If (ASCII(word in r) == ASCII(word in r+l1)) then
12. If (P e = M+1,,..) then
13. Jaro(r, r+l1)
14. Insert(r, r+l1) into R
15. End If
16. End If
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Bigram . . .
Record T Tt String String Weight Result
/ 1*97 + 2%2%109 + 2*3*97 \
am, ma, +2%4*%110 +2*5%121 =97
el an,ny | AWWAANNY | L ouo1g 4+ 9%001 +2%440 | 2000
+ 605
Record | Name 1*2934:927*2*51 *2111'(; 2*93; 109
ay, ym, + & =97 +
R2 ayymmaan 2,561
(" RI Amany )| @ ma, an 2%242 +2*327 +2*388 +
550
R2 Ayman [ 1*121 +2*2*117 +
yu, uo, 2*3*111 +2*4*109 +
\ R3 Yuomnay R3 om, mn, | yuuoommnna | 2*5%110+ 6*97 =121 + 3,809
- S na 2%234 +2*333 + 2*436 +
R4 Omina 2%550 + 582
: [*111 + 2%2*109 +
RS Omnih z
\ INZ (R i omymn, || 2¥3%11042%4%105+5%97 | 5;
ni, ia =111+ 436 + 660 +840 ’
+485
1*¥111 +2*2*109 +
om, mn, . 2%3%110 + 2*4*105 +
RS ni, ih ommaniih | 5104111 +436 + 660+ | 20
K 840 +520 )
Fig.6 Example of applying ACQIT
as possible matching records. The exact matching technique
Block (A) = 2532 Block (B) = 2567 Block (C) = (2532-2582)

(ACQIT) considers that only equal BK'Vs strings give exact
matching. Because of the various ways of writing names; as
names actually have no fixed ways of writing, as well as unin-
tentional keyboard mistakes or transpositions, we set a range
that tolerates and regards acceptable differences between
strings as matches.

The first variation of the proposed technique tries to solve
such problem. That is to say, if a string numeric value equals
2000 and another string numeric value equals 2050, we con-
sider them a possible matching pair. In this case, the range is
adjusted to 50; i.e., consider them a probable match if there
is a slight mistake in writing the name. Meanwhile, if the
range is taken to be 100, this means there is a larger error
in writing, but still we consider them a probable match but
with a less probability than the smaller range. We have tested
several ranges to compute the acceptable range in order to
make our technique faster in performing the comparisons. In
the proposed technique, we only use 50 and 100 as ranges
to represent different matching degrees. However, we found
out that smaller ranges might miss possible matches and big-
ger ranges result in more comparisons. Therefore, a trade-off
must be made between accuracy and time. This value can,
however, be a user’s choice parameter.

Figure 7 clarifies the above discussion; the exact match
technique for ‘Omnia-Omnih’ strings, (Fig. 7a), has pro-
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(a)

Fig.7 ACQIT. a Without and b with a range

duced two different blocks and missed a possible match
between the two strings. On applying the proposed technique
with a range on the same example; taking the range to be 50,
(Fig. 7b), the two names are put in the same block and thus
can be compared based on their characters in the next step.
In the second variation of the proposed technique, we
also divide each block into a number of sub-blocks which
are then sorted alphabetically within the sub-block before
starting records comparison so that we can reduce the effort
exerted and the time consumed in comparisons. Sorting the
data alphabetically inside the block helps realizing if pairs are
matching or non-matching much easier, as shown in Fig. 8.
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Block (A) Alphabetically

Block (A) ordered

Fig.8 ACQIT with Alphabet

4 Experiments and Results

Our simulation results were implemented on a device that
has the following system configuration: Processor Intel (R)
Core™ 2 Duo, CPU T6600 @ 2.23 GHz, installed mem-
ory (RAM) 3.00GB, and the code were built using Visual
Studio C# 2010. The performance of the proposed technique
was evaluated according to two different aspects: the time
consumed and the accuracy of the results. The carrying out
performance of the proposed indexing technique is compared
with Q-gram indexing technique to ensure that the decrease
in computational time has not affected the accuracy of DRD
process. In this experiment, which runs Q-gram, ACQIT,
ACQIT withrange (50), ACQIT withrange (100) and ACQIT
Q-gram Alphabet, we make use of a real dataset containing
10,000 records obtained from [23]. In all our experiments,
q has been set to 2. The Jaro distance is used to obtain the
match.

We have calculated the number of generated pairs, the
number of comparisons and the time consumed by the vari-
ous techniques, as shown in Table 3 and graphically depicted
in Figs. 9, 10 and 11. The results clearly show that the
proposed technique with its different variations has better
behavior with respect to the other techniques in terms of the
number of generated pairs, the number of comparisons and
the time consumed. However, when the used range is high
(100), the processing time decreased, but the generated pairs
and the number of comparisons increased, which may affect
the indexing process. Using the sorted alphabet variation
requires less time, number of generated pairs and number of
comparisons. This means achieving higher reduction ratio in
the number of compared record pairs. This reduction results

Table 3 No. of generated pairs, no. of comparisons and time taken to
perform comparison by the various techniques

No. of No. of Time taken

generated comparisons to perform

pairs comparison
Dataset 10,000
Q-gram 3539 2,650,382 2:18
ACQIT 276 15,530 1:57
ACQIT range (50) 605 255,665 1:54
ACQIT range (100) 856 480,380 1:47
ACQIT Alphabet 306 15,530 1:44

in a decreased computational time of DRD process, as shown
in Fig. 11. The decrease in time gained by the proposed tech-
nique and its variations is in the range of 20-25%. This is
due to the reduction in generated pairs and comparisons per-
formed, which were about 74-92 and 82-99%, respectively.

The quality of the results of the various indexing tech-
niques is assessed by using precision, recall and F-measure.

Definition 4 (Precision) Precision is used to measure the
quality of record linkage/duplicate record detection, and it
is considered the statistical variance of an estimation proce-
dure. Precision is measured as [33]:

. TP
Precision = —— @
TP + FP

It represents the positive predictive value, where TP is the
true positive value and FP is the false positive value.

Definition 5 (Recall) Recall is also used to measure the qual-
ity of record linkage/duplicate record detection. Recall (true
positive rate) is measured as [33]:

TP
Recall = ———— &)
TP + FN

where FN is the false negative predicted value.

Definition 6 (F-measure) F-measure is a measure that com-
bines precision and recall. The harmonic mean of precision
and recall appears in [33], the F-measure (also called F-
score) which is based on precision and recall is defined as:

2 % Precision x Recall
F-measure = — (6)
Precision + Recall

These results are presented in Table 4. From these results,
we can see that ACQIT with range (100) has the highest
precision followed by ACQIT Alphabet and ACQIT, while
the ACQIT with range (50) gives lower precision which is
less than the original Q-gram. This is due the fact that the
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range (50) was too small to detect possible matches. How-
ever, the recall value for ACQIT with range (100) and ACQIT
Alphabet reach 100%. In addition, ACQIT with range (100)

Springer

Techniques used

has the highest F-measure followed by ACQIT Alphabet
and ACQIT, while the ACQIT with range (50) gives low
F-measure value which is less than the original Q-gram. In
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Table 4 Quality metrics comparison for the various techniques

Technique used True True False False Precision Recall (%) F-measure
positives (TP) negatives (TN)  positives (FP) negatives (FN) (%) (%)

Q-gram 0.82 1 0.18 0 82 100 90

ACQIT 0.70 0.91 0.30 0.09 86 96 91

ACQIT range (50) 0.77 0.98 0.23 0.02 77 97.5 86

ACQIT range (100) 0.88 1 0.12 0 88 100 94

ACQIT Alphabet 0.87 1 0.13 0 87 100 93

general, all the variations of the proposed technique, except
ACQIT with range (50), have better precision and F-measure
than the Q-gram and has the same recall as the Q-gram.

5 Discussion of Results

As previously mentioned, indexing goal is to locate data
items within a database in an easier manner rather than hav-
ing to check each possible item individually. Reducing the
number of multiple data item matches, we can reduce the
search space of the matching process. The number of match-
ing operations in the worst case is O(N) where N is the
number of database rows. As seen from the previous results,
the proposed techniques outperform the Q-gram technique
in precision and F-measure parameters and equal to their
recall values. This is due to the indexing being based on
numbers instead of strings and because indexing through
numbers always gives more accurate results as proven in the
literature. Thus, strings having equal equivalent numbers are
probably equal in their string values than those with different
numbers. In addition to that, unlike comparing strings, com-
paring numbers takes little time which will reduce the time
required for comparisons and facilitate using such technique
for comparing large data sizes.

ACQIT with large range technique (for example, 100) is
best used when high precision is required and database sizes
are large. It has the advantage of requiring less time than the
other techniques followed by ACQIT Alphabet and ACQIT
techniques.

6 Conclusions and Future Work

DRD is extensively used in huge businesses, banks, govern-
ment and non-government organizations, to tackle people’s
accounts, information, etc. Being highly important, it may be
used everyday. We need to improve its performance and effi-
ciency to avoid duplicate records, which, in turn, may affect
people’s activities. This paper handles this notion by intro-
ducing a new idea of Q-gram indexing that uses the ASCII
Code conversion of Q-gram strings and comparing the BKVs

according to these conversions instead of comparing strings
directly. This idea can eliminate duplicated records to its min-
imum by finding them in a more accurate manner. However,
experiments only covered English letters through their ASCII
code. In a future work, we can test the results of using differ-
ent languages and suggest how to work with Arabic letters
which are the hardest language due its extra notations.
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