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Abstract
Energy is increasingly becoming the major constraint in designing multicore chips. Power and performance are the main
components of energy and are inversely correlated. In this paper, we study the energy optimization of multicore chips that
process parallel workloads using either power or performance optimization. To do so, we propose novel machine learning-
based global and dynamic power management controller. The controller is used either to maximize performance within a fixed
power budget or to minimize the consumed power to achieve the same baseline performance. The controller is also scalable,
as it does not incur significant overhead as the number of cores or demands increases. The technique was evaluated using
the PARSEC benchmark suite on a full-system simulator. The experimental results show that our global power controller
outperforms, in terms of the EDP metric, the non-DVFS baseline by 28 and 35.5%, when optimized for performance and
power, respectively. This suggests that optimizing power is more related to energy efficiency than optimizing performance.

Keywords Dynamic power management · Dynamic voltage/ frequency scaling · Machine learning · Multicore · Scalability

1 Introduction

Power consumption was the major reason leading to the
architecture shift towardmulticore chips, as a way tomanage
the demand for increasing frequency. But, to keep up with
the performance demands, more and more cores are added
to the processors. As a result, power is again a key design
issue; in particular, the challenge now is to manage a large
number of cores as to deliver the most performance at the
least power consumption. Thus, improving the performance
directly through frequency or indirectly through increas-
ing chip resources such as cores or even cache memories
and communication bandwidths would result in more power
consumption. Energy is the by-product of performance and
power requirements; thus, it is appealing to study this rela-
tionship.

The problem of managing the power consumption has
been thoroughly studied resulting in breakthrough tech-
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niques such as dynamic voltage/frequency scaling (DVFS)
and dynamic power management (DPM) and many other
algorithms based on these techniques that directly target
power reduction such as [1,2]. In contrast, other studies
have indirectly targeted the energy efficiency through per-
formance improvement such as [3,4]. Up to our knowledge,
none has considered the relationship between power and
performance using a comparison between the two optimiza-
tion approaches. In this paper, we study the relationship
between power and performance by optimizing each one
individually to improve the energy efficiency of a multicore
chip that process parallel workloads. To do so, we extend
our work in [5], where we proposed a power management
technique based on performance optimization, whereas in
this work we propose a power management technique that
can be used to do either power or performance optimiza-
tion.

Recently, machine learning-based DVFS and DPM
approaches have been used as to tackle the complex issue
of reducing the power consumption of multicore chips [6].
These techniques have been successfully applied at the core
level.Nevertheless, such strategies are not able to scale grace-
fully to the chip level, where the management needs to be
applied to all cores in a coordinated way. In particular, the
overheads of the technique would be unacceptable with the
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Fig. 1 Multicore chip that consists of 16 tiles connected in an 4×4
MESH NoC architecture, used for the evaluation of our proposed tech-
niques

increasing number of cores [7]. Reinforcement learning (RL)
was used in previous work as a technique to help manage the
power consumption, as it is adaptive and requires no prior
knowledge [8,9]. However, none of this work has considered
allocating power among chip tiles or clusters dynamically for
the purpose of either improving the performance or saving
power, while maintaining the scalability of the system.

In our proposed power management technique, an RL-
based power agent monitors each multicore chip tile, where
tiles are connected via an MESH Network on Chip (NoC)
architecture, shown in Fig. 1. The agent dynamically learns
which power policy (V/F) achieves either:

• the maximum performance for the tile, in the case of
performance optimization, or

• the baseline performance for the tile, in the case of power
optimization

The major contribution of this work is to study the rela-
tionship between power and performance in the context of
multicore chips that process parallel workloads. This paper
also makes the following contributions:

• Global adaptation of core power level. Based on local
learning, the intelligent controller allows for the exchange
of power between cores, thus providing a solution that is
more flexible and closer to optimal.

• Dynamic adaptation of the core power level. The learning
is done continuously during the execution of the applica-
tion, and actions are taken at fixedquantum time intervals.

This allows for the power to change dynamically as to
satisfy changes in workload behavior.

• Scalable algorithm. The proposed technique is based on
a local learning agent that incurs low overhead and an
intelligent controller that is scalable, with the increase in
the number of chip resources.

The rest of this paper is organized as follows. In Sect. 2,
we review the literature on the performance and power opti-
mization, where we focus in particular on the usage of RL
in DVFS and DPM. In Sect. 3, we describe the methodology
of our work. Results and discussion are presented in Sect. 4.
Finally, we conclude our paper in Sect. 5.

2 RelatedWork

In this section we survey existing work on power and perfor-
mance optimization. We pay more attention at the machine
learning-based techniques done for such kind of optimiza-
tion.

2.1 Power Optimization

There are numerous researches on power optimization. This
research can be broadly classified into software and hardware
solutions. Software solutions are those that use intelligent
scheduling and learning techniques to optimize DVFS and
DPM decisions, whereas hardware solutions are mainly con-
cerned with designing hardware components or processors
that consume less power.While the power optimization com-
ponent of our proposed algorithm is a software solution, for
the sake of completeness in this section we survey the most
recent advances in both classes.

We first survey some existing software solutions. For
instance, Kianzad et al. [10] integrate DVFS with genetic-
based scheduling strategy, in order to meet deadlines in
embedded systems and to save power, whereas our approach
is more general in that it uses Q-learning to improve per-
formance in terms of execution time, as well as power
consumption.Hua et al. [11] studied the trade-off of quality of
service and power consumption in multimedia applications.
Our approach, in contrast, considers all application types.
Choi et al. [12] proposed a DVFS method that is fed with
data about memory accesses and their relation to CPU fre-
quency and voltage levels. Gheorghita et al. [13] proposed a
technique for saving power by classifying the modes of exe-
cution to guide power adaptation at runtime. Xian et al. [14]
presented a technique to save energy by choosing the best
scheduling policy for the task type. Yang et al. [15] proposed
a technique for scheduling concurrent tasks onto a hetero-
geneous multiprocessor in a way that saves energy. Kim et
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al. [16] presented an offline approach to find the optimal
frequency and voltage settings. Hua et al. [17] studied the
optimal number of voltage levels, in order to save overhead.
In contrast to [12–17], our algorithm learns these informa-
tion, and more, at runtime.

Other software techniques consider the definition of power
management modes at different levels in computing. For
instance, Li et al. [18] proposed a method for selecting the
power modes for the optimal power management. Hoeller et
al. [19] proposed an interface for powermanagement for both
hardware and software elements. Huang et al. [1] proposed
an energy-saving technique which dynamically controls the
powermode of the embedded system according to the history
of tasks arrival. Bhatti et al. [20] presented an online frame-
work that uses machine learning approach to dynamically
select the best performing policy for any given workload.
Niu et al. [21] proposed a technique to save both leakage
and dynamic power by using both DVFS and power modes.
Kim et al. [22] proposed a technique which partitions the
task execution into several intervals and shuts down the
unneeded components, in each interval. Similarly, Shin et
al. [23] exploited slack for saving energy, by using an offline
and online DVFS approaches. Our approach is different than
the work in the above-referenced software solutions in that
it uses multitier power management that considers the scal-
ability issue. Jha et al. [2] proposed a two-tier hierarchal
power management technique that controls power at the tile-
level and the last-level cache and supports thread migration.
While the work in [2] used hierarchal power management,
our approach distributes power allocations dynamically.

On the other hand, hardware solutions focus mainly on
designing power-aware memories. For instance, Yang et al.
[15] discuss a technique for savingmainmemory energy. Tra-
jkovic et al. [24] proposed a buffering-based technique for
saving energy, by adaptingwrite-combining and pre-fetching
schemes for each application. Reddy et al. [25] presented
an approach that selects best cache partitioning for differ-
ent running applications in an offline manner and uses this
information at runtime. Tsai et al. [26] proposed a technique
for saving energy by using a new memory structure called
Trace Reuse Cache (TRC). Hajimiri et al. [27] integrated
cache reconfiguration and code compression to improve both
performance and energy efficiency. Albonesi [28] proposed
selective-way approach in cache memories, where some of
the ways are turned off to save energy, while maintaining
reasonable performance levels. Zhang et al. [29] proposed
highly configurable cache architecture to save energy. Kin
et al. [30] proposed another technique by filtering accesses
to cache. Steinke et al. [31] proposed another technique by
utilizing scratchpad memories. Benini et al. [32] discussed
the mapping of the most frequently accessed locations onto
a small memory that can be placed on chip, thus save mem-
ory. Bournoutian et al. [33] presented another technique

by reducing L1 cache misses. Recently approximate com-
puting has emerged to sacrifice performance for the sake
of saving energy by designing lower-performance hardware
components [34]. Moreover, power optimization has been
considered in designing hardware such as GPUs, FPGAs,
ASICs and DSPs [35,36]. While these approaches tackled
the increasing cost problemof hardware solutions, they sacri-
ficed the system performance. Moreover, hardware solutions
are static solutions that cannot adapt to the different execution
scenarios, in contrast to machine learning-based software
solutions.

2.2 Performance Optimization

Other studies have reversely targeted energy through opti-
mizing performance. These studies can be classified into
centralized and decentralized techniques for multicore chips.

Examples of centralized techniques include the following
studies. Sharifi et al. [3] proposed a power budget distribu-
tion algorithm for NoC-based multicores, PEPON, at both
the chip and resource levels in order to maximize workload
performance within the specified power budget. At the chip
level, specific portions of the total power budget are dis-
tributed among cores, networks and memories. Then at each
resource level, each portion is distributed among the different
instances of the same type of that resource. This distribution
is changing every specific amount of time by a feedback con-
troller that uses mathematical equations to adapt frequency
levels to the changes in the workload to achieve high per-
formance. Ma et al. [37] designed a scalable three-layer
approach to maximize the performance of a multicore chip
that processes a mix of single and multithreaded workloads,
within a fixed power budget. This approach targets chip cores
only, neglecting the power of memories and communication
resources. Isci et al. [4] proposed a global power manager
to maximize performance that senses the per-core power and
performanceof themulticore chip at periodic intervals.Based
on that, it dynamically sets the power mode of each core to
not exceed the assigned chip power budget. Wang et al. [38]
proposed a global power control algorithm that uses control
theory to maximize performance.Mishra et al. [39] proposed
a two-tier powermanagement approach for chipmultiproces-
sors. At the first tier, a global power manager provides power
to individual voltage/frequency islands. At the second tier it
regulates island power consumption using DVFS to dynam-
ically adapt to workload changes. The proposed approach
is illustrated using performance-aware, thermal-aware and
variation-aware power provisioning.

On the other hand, examples of decentralized techniques
include the following studies. Sartori and Kumar [40] pro-
posed a decentralized power management technique for
many core architectures that maximizes performance within
a peak power level by placing several more cores on a
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die. Winter et al. [41] analyzed different scheduling and
powermanagement algorithms for effectiveness and scalabil-
ity without affecting the power–performance optimization.
For example, Hanson et al. [42] proposed a runtimemanager,
PET, feasible for single processor to optimize for multiple
constraints, namely performance, power, energy and tem-
perature, by continuously monitoring the system and choose
the appropriate power state that is mainly a v/f setting.
They demonstrated how PETmaximizes performance within
power and thermal budgets by dynamically applying DVFS
settings at runtime on an Intel Pentium M system to adapt
to the dynamic nature of the SPEC CPU2000 suite workload
behavior. Cochran et al. [43] proposed a technique, named
Pack & Cap, for datacenters and HPC clusters to maximize
the performance within variable power caps running PAR-
SEC parallel, multithreaded workloads. The Pack & Cap
manages V/F settings and thread packing in order to maxi-
mize performance within a fixed power budget. Etinski et al.
[44] proposed a job scheduling policy thatmaximized overall
job performance within a fixed power budget.

The performance optimization component of our pro-
posed algorithm uses a hybrid approach, where a central
controller dynamically distributes chip power budget among
tiles and a local agent that learns the best power allocation
for its tile.

2.3 Machine Learning

RLhas been exploited inDPMandDVFS formulticore chips.
Compared to our proposedRL-basedmodel, to the best of our
knowledge, no one has developed a runtime global solution
that is also linearly scalable with the increase of the number
of cores and the variability of workloads.

Khan and Rinner [6] developed an RL-based approach for
optimal selection of time-out values in the different opera-
tional states of a computing system.Das et al. [4] proposed an
RL-based, run-time approach formulticore system to adapt to
both inter- and intra-application thermal variations. The num-
ber of different affinity masks grows exponentially with the
number of threads and cores. Ye and Xu [45] developed a Q-
learning formulticore processors to learn the systembehavior
and determine proper processor power state transitions. The
solution space increases exponentially with the increase of
processor cores; thus, a neural network is used to speed up
the training process. Shen et al. [46] present an RL-based
approach tominimize the energy dissipation of the peripheral
device and the microprocessor under a given performance
constraint. Lie et al. [8] improve the convergence speed of
the Q-learning for the DPMproblem by restricting the search
space to the policies that may increase the performance. Juan
and Marculescu [47] proposed a semi-supervised RL-based
approach for performing DVFS to evaluate and analyze the
advantages ofmanaging the processing cores and the on-chip

communication fabric in synergy for the purpose of perfor-
mance increase under power constraints. In our proposed
work we dynamically allocate portions of the total power
available to the chip, based on the expected performance gain
of individual tiles, whereas this proposed technique allocates
statically equal portions of the total power budget. Instead of
developing new real-time DVFS techniques, Islam and Lin
proposed a reinforcement learning approach that learn the
best DVFS policy from a set of predefined DVFS policies
[48]. Wang et al. [49] proposed an online DVFS based on
reinforcement learning at the core level to select the appro-
priate voltage/frequency values. Biswas et al. [50] proposed
a run-time powermanagement approach based onQ-learning
to select the appropriate voltage/frequency values for a given
workload.

Kumar and Vidyarthi utilize genetic algorithm and DVFS
for workload scheduling in multicore systems. The proposed
genetic algorithm balanced the power–performance trade-
off and the DVFS controls the voltage and frequency [51].
Zhu andDing proposed a genetic-based scheduling approach
for heterogeneousmulticore tominimize power consumption
[52].

Other works have adopted different learning techniques in
power management. However, these techniques suffer from
a considerable amount of computation overhead. Jung and
Pedram [7] developed a supervised learning-based DVFS for
the multicores to predict for each incoming task the system
state by using a Bayesian classification technique, provided
with collected input features. Dhiman and Rosing [53] apply
online learning to select among a set of experts a possible
DPM policy or a DVFS setting based on workload character-
ization that has the best chance to perform well. Kolpe et al.
[54] grouped cores in a multicore processor into clusters at
design time such that the performance and power dissipation
of the clusters is optimized at runtime.

There is also plenary amount of work on maximizing per-
formance under power and thermal constraints using the OS
or task schedulers [55]. Such algorithms are centralized and
cannot scale well with the increase in the number of cores
and variable demands.

2.4 Summary

This section surveyed tens of research contributions in the
area of saving energy of multicore chips. These contributions
target energy savings using power or performance optimiza-
tion techniques—as power and performance are the twomain
components of energy. Power optimization techniques are
classified into developing software solutions such as sched-
ulers or hardware solutions such as designing power-aware
memories, approximate hardware, GPUs. On the other hand,
performance optimization techniques focus on algorithms
that intelligently optimize performance for specific power
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budget. The section also focused on the machine learning
algorithms such as Q-learning and genetic algorithms used
to support techniques for both power and performance opti-
mizations. However, none has studied the effects of both
optimizations for the same system.

Based on that, our work proposes to study and analyze
power and performance optimizations for the system shown
in Fig. 1, with a hope to come up with some insights. More-
over, all surveyed work considered power or performance
optimization using static power distribution at tile and/or chip
levels, whereas this paper proposes an intelligent powerman-
agement technique implemented at the tile (core/memory)
level as well as the chip level that dynamically distributes
power to tiles, and pays attention to its scalability when num-
ber of tiles and types of workloads increases.

3 Methodology

3.1 Overview

This work addresses power management on multicore chips.
We first deploy a reinforcement learning-based agent in each
tile to learn the best power needed to achieve the maximum
reward (i.e., performance) of the corresponding tile. This
knowledge is then communicated to a chip-level controller
for allocating power budgets to tileswith the objective to opti-
mize either performance or power consumption of the overall
system. The chip-level controller utilizes proposed simple
heuristic-based algorithms to allocate power. Experiments
are then conducted by considering the PARSEC benchmark
in a setup with 16 core processor model, shown in Fig. 1, to
analyze both optimization cases.

3.2 Reinforcement Learning-Based Agent Model

RL techniques such as Q-learning are used to find an optimal
policy for a set of states in a given Markov decision pro-
cess [56]. Q-learning model consists of: an agent, a finite set
of states, S, a finite set of actions, A and a reward function,
Rt = R(St , At ), where t is a time step. A policy is a set of
rules that constructs a mapping between the states and the
actions that the agent follows in selecting action(s) in any
given state(s). The agent interacts with the environment to
learn the optimal policy that maximizes a defined reward
function by simply selecting the action that enhances the
system performance in any given state at any point in time.
Note that the convergence speed to the best power policy can
be improved more than conventional Q-learning using other
techniques that determine the transition probability [47]. But,
since the conventional Q-learning algorithm has experimen-
tally shown at the tile level an acceptable convergence speed,
we opt to not proceed with any improvement.

Here, the agent is implemented in each tile, which consists
of a core, L1 private cache, L2 shared cache and a router:

• The states are defined using three representative metrics
for cores, caches andNoCs, respectively: Instructions Per
Cycles (IPC), Misses Per Kilo Instructions (MPKI) and
Buffer Utilization (BU),

• The actions are power actions that are defined using two
power-dependent parameters: V and F and

• The reward function is defined differently for each of the
two investigated cases, specifically:

Case A the reward functionmeasures the number of instruc-
tions per second (IPS) and is defined as:

R = IPS (1)

IPS is a representativemetric formulticores because
it indicates not just the performance of processing
cores but also is a reflect on the performance of
memories and NoCs.

Case B the reward function measures the inverse of the
power consumption cost, P:

R =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

P
if P is sufficient for the

current workload

0 otherwise

(2)

power is the costmetric of interest in this case. Since
RL is designed tomaximize the reward function and
our target in this case is to minimize the power, we
used the inverse power.

The complexity of the algorithm at the tile level is O(|S|),
where |S| = |IPC| × |MPKI| × |BU|. The complexity of the
algorithm, if applied at the chip level, is O(|S|N ), where N
is the number of tiles. Thus, with the increase in the number
of tiles, the Q-learning algorithm complexity becomes expo-
nential. In the next section, we define an alternative, scalable
solution, with approximately same performance, as a major
contribution of this work.

3.3 Chip-Level Controller Model

For the multicore chips that process parallel, multithreaded
applications, efficient power management approaches need
to be applied at the chip level. The chip-level view allows
for power to be exchanged among cores (e.g., cores that
have lower demands can give power to cores with higher
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demands), and also it is a better fit to the execution of multi-
threaded applications, where different threads are related to
each other through application dependencies.

3.3.1 Case A: Performance Optimization

In the first case, we assume in our model that the power
budget available to the chip is fixed; thus, the design goal
of our global power controller is to maximize the system
performance under this power constraint. We find it rational
to do so because the typical design goal of multicore chips
that run multithreaded programs in parallel is to integrate as
much functionality as possible whilemaintaining the thermal
design power (TDP) limit.

Because of the exponential complexity of modeling an Q-
learning algorithm at the chip level, we propose a complexity
relaxation approach in which we distribute the power model
into two hierarchical levels. At the tile level, we deploy a
Q-learning agent that learns the best power policy (V/F) for
that tile that maximizes the tile performance. At the chip
level, we design a power controller that collects from each
agent the power-level request needed to apply the best power
policy and intelligently allocates to each tile a portion of the
power available to the chip that maximizes the overall chip
performance. Here, we define a set of notions:

1. N : is the no. of tiles,
2. M : is the no. of clusters,
3. Pbase: is the baseline power level applied to a tile,
4. Pbest(i): is the best power policy learned by the proposed

RL model that achieves a high tile performance, when
applied to tile i,

5. Gbase(i): is the gain (Instructions per Joule in a Second)
achieved by allocating Pbase Watts to tile i,

6. Gbest(i): is the gain (Instructions per Joule in a Second)
achieved by allocating Pbest Watts to tile i, and

7. Ptotal: is the total power budget available to the chip.

The gain,G, is defined inEquation 3 as the number of instruc-
tions executed per energy unit in a second,

G = IPS

P
(3)

where P is power. G is representative because it puts all
processing cores on the same power scale, regardless of the
type of the core or the executed workload.

Algorithm 1 defines our problem. Our proposed global
controller should be able to maximize the total gain, TG,
while maintaining the power within the total fixed chip
power, Ptotal. The problem of defining the best power por-
tion allocations among multiple tiles that maximizes overall
performance is an optimization problem, which needs to be

solved using an integer linear programming (ILP) optimizer;
as such its complexity is exponential, as well.

Algorithm 1: Problem Definition of Case A
Data: Power Level Request j
Result: Total Gain TG

X j=
{
0 Base Power
1 Best Power

Maximize:

TG =
∑

j

Gbest ( j).X j +
∑

j

Gbase( j).(1 − X j )

Subject to:

∑

j

Pbest .X j +
∑

j

Pbase.(1 − X j ) ≤ Ptotal

To reduce the complexity of the ILP model, we develop
a heuristic model that has approximately the same perfor-
mance as the ILP, butwith polynomial complexity.Algorithm
2 describes the heuristic model implemented in our con-
troller, in which at the start of each control period the model
receives from each agent the best power action learned by
its Q-learning algorithm, Pbest. The controller estimates the
required power using the power model described later in the
experiments section. The model also receives the expected
reward and calculates the associated gain, Gbest, that can be
achieved by the best power policy, and the gain that can be
received when the baseline power is applied, Gbase, using
prior execution knowledge. The model then sorts the power-
level requests in descending order according to the gain, both
Gbest and Gbase—because it may happen that the Gbase is
greater than the Gbest depending on the type of the workload
processed on the cores. The model after that starts with the
request with the highest gain. If the difference between the
available power budget, Ptotal, and the requested power, Pbest ,
is enough to provide the baseline power to each of the other

Algorithm 2: Heuristic Model for Case A
Data: Power Level Request j , Number of Agents N
Result: Total Gain TG
Sort j based on (Gbest , Gbase) in descending order
for each j in the sorted list do

if (Ptotal - Pbest ) >
∑N

j Pbase then
Ptotal = Ptotal - Pbest
TG + = Gbest

else
Ptotal = Ptotal - Pbase
TG + = Gbase

end
end
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Fig. 2 The relative error, defined as the ratio of the difference between
our heuristics and the optimal to the optimal, for different number of
tiles N

remaining requests, that best power-level request is granted.
Otherwise, the baseline power-level request is granted. Note
here that we assume that the chip power budget, Ptotal, is at
least enough to provide each tile with the baseline power,
Pbase.

Figure 2 shows the performance of our heuristics, com-
pared to the ILP optimal solution computed using the IBM
CPLEXOptimizer [57], for different number of tiles, N . Note
that the relative error, defined as the ratio of the difference to
the optimal, is less than 1%, at worst. Also, note that there is
no difference between our heuristic and the ILP model as the
total power budget, Ptotal, is close to the summation of the
baseline or the maximum power levels because the optimal
solution would be to provide each tile with the baseline or
the best power, respectively, where α defines how much the
power budget is above the baseline power of the N cores.
Note that even when N increases from four to 32 cores the
relative error stays within an acceptable margin of maximum
0.25%. The data used to validate our heuristic, 700 in total
where each include Pbest, Pbase, Gbest, Gbase and Ptotal, were
generated using random functions fed with measured data
from our experiments. We have chosen five power levels for
each tile that range from 16 to 32 W, where the TDP of the
Intel Xeon processor used in our experiments is 32.5 W.

The control period chosen is 1 ms, while the controller
timing overhead found experimentally is 29µs, which is
included in the execution time. The complexity of our heuris-
tics model is the complexity of the sort procedure. We used
the simple bubble sort, which has a quadratic complexity, at
worst. This is due to the fact that the complexity of the Q-
learning algorithm is at least quadratic as well. So even if
O(n log n) sorting algorithm is used, the overall complexity
will remain quadratic.

3.3.2 Case B: Power Optimization

In the second case, we aim at minimizing the total chip
power consumption, while maintaining constant perfor-
mance, which is similar to the objective of conventional
DVFS techniques. Algorithm 3 formally defines the design
objective of Case B as to minimize the consumed power,
Pconsumed, while maintaining a constant chip total gain,
Gconst. Similar to the problem definition in Case A, the
complexity of this algorithm has been relaxed using a heuris-
tic model, described in Algorithm 4. Note that in this case
we employ the same system-level model, described in the
previous section of Case A. However, the heuristic model
that controls the function of the global controller has been
changed.

The model shown in Algorithm 4 receives at each con-
trol epoch best power actions from each tile-based agent,
learned using the Q-learning algorithm, Pbest, as well as the

Algorithm 3: Problem Definition of Case B
Data: Power Level Request j , Total Constant Gain Gconst
Result: Total Consumed Power Pconsumed

X j=
{
0 Constant Power
1 Best Power

Minimize:

Pconsumed =
∑

j

Pbest ( j).X j +
∑

j

Pconst ( j).(1 − X j )

Subject to:

∑

j

Gbest .X j +
∑

j

Gconst .(1 − X j ) ≥ Gconst

Algorithm 4: Heuristic Model for Case B
Data: Power Level Request j , Number of Agents N , Constant

Gain Gconst
Result: Total Consumed Power Pconsumed
if (

∑N
1 Gbest ) ≥ Gconst then

Grant requested power levels Pbest i ∀ i from 1 to N
else

Gremaining = Gconst
Sort j based on diff (Gbest , Gconst ) in descending order
for each j in the sorted list do

if (
∑N

j Gbest ) ≥ Gremaining then
Grant requested power levels Pbest i ∀ i from j to N
Pconsumed = Pconsumed + ∑N

j Pbest
else

Grant request j its Pconst j
Gremaining = Gremaining − Gconst j
Pconsumed = Pconsumed + Pconst j

end
end

end
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associated IPS result from applying this power policy. The
model uses this information to calculate the expected gain,
Gbest, according to Eq. 3. Note that the model also defines
a constant power level, Pconst, and accordingly calculates
the associated gain that may be achieved from applying this
power level, Gconst. Using this information, the model first
checks whether the total gain, Gbest, expected from apply-
ing the requested power levels, Pbest, would reach the total
gain the chip needs to maintain, Gconst. If so, the controller
would grant all agents the requested power levels; otherwise,
the controller would sort the requests in descending order
according to the difference between the gain expected from
applying the requested power, Gbest, and that of the constant
power level, Gconst. Then, the controller starts granting the
constant gain, Gconst, so long as the remaining gain expected
from applying the Pbest is not sufficient to reach the total
constant gain, Gconst.

Note that our definition of the gain works for both of Case
A and Case B as our goal is to maximize the gain either
throughmaximizing the performance, I PS, (CaseA) ormin-
imizing the consumed power, Pconsumed, (Case B). For the
purpose of this paper, Gconst, used in Case B, is assigned
to different values generated from Case A, as discussed in
the next section, as a common ground to compare the two
optimization techniques.

Remember that the RL agent developed at the tile level
has also been changed in this case (Case B), as described
in Sect. 3, as its reward function is to minimize power con-
sumption, in contrast to that of the first case (Case A) where
the goal is to maximize the performance.

3.4 Experimental Setup

We evaluate the power–performance efficiency of the two
proposed techniques, and thus the associated proposed algo-
rithms, for a 16-core processor as shown in Fig. 1. This
chip consists of 16 tiles connected with a 4 × 4 MESH
NoC architecture. Each tile includes a processing core,
a L1 cache, a portion of the shared L2 cache, and a
router.

The applications used in the evaluation belong to the
PARSEC 2.1 benchmark suite [58]. PARSEC targets mul-
ticore chips with shared memory and includes programs
from emerging workloads and diverse domains [59]. For
this work we used the medium input dataset for the exe-
cution of the applications. We run the workloads on the
gem5 full-systemmode. gem5 is widely used in the design of
multicore systems because of its flexible simulation frame-
work [60]. The applicationswere simulated until completion.
For real implementation, there are many APIs/tools that
can be used to monitor hardware performance counters
including time, cache hits and misses and power. Since our
proposed algorithms use Intel-based implementation, Intel

Table 1 Architectural parameters

Parameter Value

Number of tiles 16

Core type Intel Xeon

L1-I/D caches Private 32KB, 8-way SA

L2 caches Shared 4MB, 32-way SA

DRAM 2 GB

NoC GARNET model

Technology 45 nm

Power L1 (V, F) 0.6, 2.0 GHz

Power L2 (V, F) 0.8, 2.5 GHz

Power L3 (V, F) 1.0, 3.0 GHz

Power L4 (V, F) 1.2, 3.5 GHz

Power L5 (V, F) 1.4, 4.0 GHz

offers many APIs/tools to monitor hardware performance
counters such as Intel PCM (performance counter monitor)
[61].

Table 1 summarizes the architectural parameters for the
targetmulticore chip. For theNoC,we usedGARNET’s fixed
pipeline model [62]. GARNET is a detailed cycle-accurate
interconnection network model that can be integrated with
gem5 simulator. It supports flit size of 16 bytes, buffer size of
four bytes, five pipeline stages, five virtual networks and four
virtual channels per virtual network. For the power model of
NoC, we use Orion [63] incorporated into GARNET. Orion
is a power area simulator to obtain the power consumption of
NoCs including routers, FIFO buffers, arbiters and physical
links.

In order to control the power levels of the processing cores
we used five V/F pairs (L1 to L5) as shown in Table 1. To
estimate the power consumption of the cores, we use the
power model of Bartolini et al. [64]. This model was verified
to be 90% accurate, compared to the actual power consump-
tion.

RUBY [60] is a built-in component in gem5. It is used to
model memories. To calculate the power dissipated by the
L1 and L2 caches, we integrate CACTI [65] with RUBY.

The Q-learning agent was implemented on each pro-
cessing core as a kernel thread, whereas the global-level
power controller was implemented at the OS level in
gem5’s FS mode. We used linux 2.6.28.4 for x86-64
bits multicore chip. The same implementation of the Q-
learning and the global controller can be used on a real
machine.

We design three sets of experiments for each optimization
case to demonstrate our contribution, described in the fol-
lowing subsections. As in other similar studies, the baseline
to compare the performance of our proposed algorithm is the
non-DVFS static power assignment.
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3.4.1 Setup of Case A

In this case we configure different power allocations as fol-
lows:

1. Tile Level Each tile is assigned statically a specific por-
tion of the total power budget. We developed a recursive
model, Algorithm 5, to generate all possible combina-
tions of three fractions of the total power (M): 1

2M , 1
M ,

and 3
2M . This results into nine configurations (T 1 to T 9)

for N = 16, where M = N , as shown in Table 2.
2. Cluster Level If tiles are grouped into clusters, then we

can statically assign a specific portion of the total bud-
get to the cluster. We choose three cluster sizes: 2-way:
eight clusters, 4-way: four clusters and 8-way: two clus-
ters. Again, we use the recursive algorithm to generate all
possible allocation combinations (C1 toC10 in Table 2).
For instance, C6 is similar to the model proposed by
[47]. Inside each cluster, we dynamically allocate power
among tiles using Algorithm 2.

3. Global Level The total power budget is assigned to the
whole chip. The core power levels are assigned dynami-
cally using our Algorithm 2.

Algorithm 5: Recursive Model
Let W = {β1Ptotal , β2Ptotal , · · · , βM Ptotal } be a power portion
allocation for the M clusters such that:

1. β j ∈ { 1

2M
,
1

M
,

3

2M
}

2.
M∑

j=1

β j = 1

Then, W is defined as the set of all possible power portion
allocations that satisfy the two conditions mentioned above.

3.4.2 Setup of Case B

In this case we configure different gain assignments that need
to be maintained at the tile/chip level as follows:

1. Tile LevelEach tile is assigned statically a specific portion
of the total chip constant gain, Gconst. We use the same
recursive model, Algorithm 5, to generate all possible
combinations of three fractions of the total constant gain
(M): 1

2M , 1
M and 3

2M . This results into nine configurations
(T 1 to T 9) for N = 16, where M = N , similar to the
power portion distribution shown in Table 2.

2. Cluster Level We statically assign a specific portion of
the chip constant gain, Gconst, to each cluster. We choose
three cluster sizes: 2-way: eight clusters, 4-way: four
clusters and 8-way: two clusters. Again, we use the
recursive algorithm to generate all possible allocation

Table 2 Power portion distribution

Tile based Cluster based

2-Way 4-Way 8-Way

{ 1
32 , 1

16 , 3
32 } { 1

16 , 1
8 , 3

16 } { 1
8 , 1

4 , 3
8 } { 1

4 , 1
2 , 3

4 }

T1. {0, 16, 0} C1. {0, 8, 0} C6. {0, 4, 0) C9. {0, 2, 0}

T2. {1, 14, 1} C2. {1, 6, 1} C7. {1, 2, 1} C10. {1, 0, 1}

T3. {2, 12, 2} C3. {2, 4, 2} C8. {2, 0, 2}

T4. {3, 10, 3} C4. {3, 2, 3}

T5. {4, 8, 4} C5. {4, 0, 4}

T6. {5, 6, 5}

T7. {6, 4, 6}

T8. {7, 2, 7}

T9. {8, 0, 8}

combinations (C1–C10 in Table 2). Inside each cluster,
we dynamically allocate power among tiles using Algo-
rithm 4, in a way to maintain the assigned gain for that
cluster.

3. Global Level The total chip constant gain, Gconst, is
assigned to the whole chip. The core power levels that
achieve this gain are assigned dynamically using our
Algorithm 4.

In order to compare the two proposed optimization
methodologies, we set the values of chip constant gain,
Gconst, of the tile-level experiment to the best gain resulted
from the nine tile-level power configurations of Case A. Sim-
ilarly, Gconst of each cluster-level experiment is set to the
best gain resulted from the corresponding cluster-level power
configurations of Case A. Finally, in the case of the global-
level experiment, we set Gconst to the global-level gain of
Case A. The gain is obtained from the execution time using
Equation 4.

G = IC
ETP

(4)

where IC, ET and P are the instruction count, the execu-
tion time and the consumed power, respectively, of specific
benchmark application.

4 Results and Discussion

4.1 Results

4.1.1 Results of Case A

We present the experimental results where we compare the
performance of the tile- and cluster-level power controllers
to our proposed dynamic global power controller.
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Fig. 3 Case A: the execution time of the best performing tile and cluster, compared to our global controller, normalized to the baseline

Figure 3 depicts the execution time of each PARSEC
benchmark, normalized to the execution time of the base-
line. To focus the discussion onto themain findings, the figure
shows only the results of the best tile-, cluster- and global-
level configurations.

The results in Fig. 3 show that the best tile configuration
(T 3) outperforms the baseline by 9%, on average. Configura-
tion T 3 statically allocates the chip power budget unevenly
(2 × 1

32 , 12 × 1
16 , and 2 × 3

32 )—this allows some bench-
marks to take advantage of this diversity to match their
different runtime requirements. For instance, the pipeline-
parallel benchmarks, dedup and ferret, behave worse than
the baseline because their execution phases are short, so
runtime DVFS does not help. Others like swaptions, vips
and x264 show also worse performance than the baseline,
because the fixed tile budget cannot grant the best power pol-
icy, especially for the phases that include high data transfer.
Benchmarks with high Clock per Instruction (CPI) variations
such as bodytrack, canneal, facesim and streamcluster per-
form better because they exhibit frequent, long phases that
can take advantage of DVFS.

Figure 3 also shows the best performing configurations for
each cluster size: configuration C4 in the 2-way cluster, con-
figuration C7 in the 4-way cluster and configuration C9 in
the 8-way cluster. The figure shows that configuration C9 is
the best configuration with 25% performance improvement
on average, relative to the baseline. It is again observed from
the results that themore flexibility of allocating power among
tiles (i.e., larger cluster sizes) is better because it provides
more flexibility and thus is able to match better the different
program needs at runtime. Interestingly, benchmarks such
as canneal and streamcluster become worse, in contrast to
tile level, especially in configurations that have smaller clus-
ter sizes. This is because the implementation of the DVFS
struggles with the competition of the different tiles within
each cluster, for the fixed cluster power budget.

Notice the results show that it is relevant to study a large
set of configurations since in most cases the best configura-

tion is one with uneven power distribution among the tiles
or clusters. For example, for the tile based, the applications
achieve better performance with T 3 as compared to T 1.

Figure 3 shows that our dynamic global power controller
outperforms the baseline on average by 39%. Compared to
[47],C6, our system outperforms by 30%. This demonstrates
that global-level power adaptation respondsmore properly to
the changes in the workloads. Most of the benchmarks took
advantage of the adaptability provided by our proposed con-
troller except vips because of its high network contention that
result from frequent access to thememory and dedup because
of the unpredictability due to the frequent phase changeswith
short periods.

In addition to improving the performance by reducing the
execution time of the applications, the proposed algorithm
can also achieve benefits in terms of power consumption
since it adapts better to the specific needs of the applica-
tion. In order to show this we depict in Fig. 4 the Energy
Delay Product (EDP), which is a metric that is used to eval-
uate the power–performance of the execution. The results in
Fig. 4 show that our dynamic global controller outperforms
the baseline by 28%, on average. This is the best performance
for all three techniques studied since the best cluster-level
controller achieves only 21%and the best tile-level controller
only 6%, compared with the baseline. Compared to [47],C6,
our system outperforms by 16%.

Overall, the results show that the more flexibility there
is for allocating the power budget at runtime, the more per-
formance improvement is achieved. This is justified by the
fact that there are conditions for the better utilization of the
power budget in order to maximize the performance. The
gains observed for the dynamic global algorithm are in terms
of both performance and energy.

4.1.2 Results of Case B

Here, we show the experimental results from which we com-
pare the power consumption of the tile- and cluster-level
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Fig. 4 Case A: the EDP of the best performing tile and cluster, compared to our controller, normalized to the baseline

Fig. 5 Case B: the power consumption of the best performing tile and cluster, compared to our global controller, normalized to the baseline

power controllers to our proposed dynamic global power con-
troller, normalized to the non-DVFS baseline.

Figure 5 depicts the power consumption of each PAR-
SEC benchmark, normalized to the power consumption of
the baseline. Again, we show only the results of the best
tile-, best cluster- and global-level configurations.

The results in Fig. 5 show that the best tile configura-
tion (T 2) outperforms the baseline by saving 26% of the
power, on average. Configuration T 2 statically distributes
the chip constant gain that needs to be maintained. Remem-
ber that, in this case, the chip constant gain is the one
obtained from the best tile-level configuration of Case A
(T3). For instance, dedup and ferret benchmarks consume
power a little more than the baseline because their execu-
tion phases are short—so runtime dynamic power actions do
not help, but incur more power overhead. Similarly, other
benchmarks like swaptions, vips and x264 show a little more
power saving than the baseline because these benchmarks
by default need power especially for the phases that include
high data transfer, so dynamic power actions donotwork very
well. Benchmarks such as bodytrack, canneal, facesim and
streamcluster, characterized with high CPI variations, saved
more power because they exhibit frequent, long phases that
can take advantage of dynamic power actions. blackscholes
already do not require too much power; thus, dynamic power
actions do not help that much. Benchmarks like fluidanimate

and freqmine showed a tangible amount of power saving as
they by default consume considerable amount of power.

Figure 5 also shows the best performing configurations for
each cluster size: configuration C2 in the 2-way cluster, con-
figuration C6 in the 4-way cluster and configuration C9 in
the 8-way cluster. The figure shows that configuration C9 is
the best configuration with 37.5% power saving on average,
relative to the baseline. Interestingly, the results trendof intra-
cluster configurations (not shown) is that the more the gain
distribution is even, the more power is saved. This is due to
the fact that cores used in this experiment are homogeneous;
thus, balanced distribution of the gain (which is interpreted
as load) would result in better performance. Further, some
benchmarks have slightly affected negatively in cluster con-
figurations relative to the baseline, such as blackscholes and
freqmine.

Figure 5 shows that our dynamic global power controller
outperforms the baseline in terms of power saving by 41%,
on average. This demonstrates that the global controller was
able to monitor the gain received from tiles and intelligently
distribute the power, accordingly.

Similar to the experiment of case A, Fig. 6 depicts the
Energy Delay Product (EDP) of Case B to evaluate the
power–performance trade-off of the execution. The results
in Fig. 6 show that our dynamic global controller outper-
forms the baseline by 35.5%, on average. This is the best
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Fig. 6 Case B: the EDP of the best performing tile and cluster, compared to our controller, normalized to the baseline

performance for all three techniques studied since the best
cluster-level controller achieves 32% and the best tile-level
controller achieves 30%, compared with the baseline.

Overall, the results suggest that when using the global
controller to balance load distribution, better performance
improvement was achieved.

4.2 Discussion and Analysis

In the previous section we presented the results for our
dynamic global algorithm for both optimization cases. The
goal of the algorithm in the first case (Case A) is to achieve
the best performance within a fixed power budget. Some
energy savings in the execution (as seen in the benefits in
terms of EDP that are shown in Fig. 4) were achieved as a
side effect from the algorithm trying to optimize performance
and improve the power utilization (as depicted in Equation
5, where P and T (t) are the constant power and the time-
varying execution time, respectively, for each benchmark).
Similarly, the algorithm of the second case (Case B) achieves
the power–performance trade-off through optimizing power
consumption while maintaining a constant performance of
the chip, as described in Eq. 6, where P(t) and T are the
time-varying power and the constant reciprocal performance
or execution time, respectively, for each benchmark. This
raises the question of which optimization technique provides
better power–performance benefits (i.e., lower EDP metric).

EDPA = P ∗ T (t)2 (5)

EDPB = P(t) ∗ T 2 (6)

Figure 7 depicts the differences between the two differ-
ent energy optimizations. It shows for each benchmark the
difference between Case A and Case B in terms of the EDP,
normalized to the non-DVFS baseline. The positive differ-
ence is in favor of Case B, whereas the negative difference
is in favor of Case A. The results show the following:

• Energy is reduced more effectively in most benchmarks
when Case B is used. For instance, Fig. 7a shows that
11 out of the 12 benchmarks have positive difference,
i.e., the normalized EDP of Case B prevails. This ratio
changes over different experiments, but preserved same
trend.

• The previous point is demonstrated in Fig. 7f which
clearly shows, overall, optimizing energy through power
was more effective. While this contradicts the math in
Eqs. 5 and 6 as execution time is squared and thus should
have more impact, power is more direct to saving energy.
Also, the figure shows that optimizing the power distri-
bution favors themore flexibility, whereas optimizing the
load distribution favors the more balancing, especially in
homogeneous chip multiprocessors.

• Figure 7a–e shows that different benchmarks behave dif-
ferently from one configuration to another and relative to
each other in the same configuration. Specifically, the fig-
ures show that the only benchmark that favored Case A in
all configurations is the freqmine. This benchmark does
not consume too much power; thus, performance opti-
mization is more effective. The Canneal benchmark also
favored Case A in the more flexible configurations only.
The high CPI variations and long, frequent execution
phases in the Canneal benchmark took more advantage
of performance optimization, especially when the por-
tion distribution of the total power budget was dynamic.
Another exception is thededupbenchmarkwhich showed
energy saving slightly below and above the bar, where
both optimizations show the same performance.

Since the global controller in Case A showed best perfor-
mance than anyother configuration, thismeans that the global
controller can satisfy the performance of the other configura-
tions at a smaller power budget. Figure 8depicts these savings
relative to the baseline, tile and cluster configurations. The
curves of the tile- and cluster-based techniques, as well as
the baseline, shown in the figure, demonstrate the percentage
increase in the total power budget and the speedup achieved,

123



Arabian Journal for Science and Engineering (2018) 43:7343–7358 7355

Fig. 7 Comparison between the performance optimization (Case A)
and power optimization (Case B) in trading off the power–performance
metrics for chip multiprocessors executing parallel workloads. a–e The
difference between the EDPmetric, normalized to the baseline, of Case

B and that of Case A for best tile-, 2-way, 4-way and 8-way cluster and
global configurations, respectively. f The average EDP metric, normal-
ized to the baseline, for all benchmarks in the best configuration of each
type

Fig. 8 The percentage increase in the total power budget (for both tile-
and cluster-level controllers) to achieve same performance as of our
global controller

relative to the global controller. The points where the curves
cross the vertical axis indicate the speedup achieved by the
other techniques, compared to global, when the power budget
is the same as the one for global. On the other hand, the points
where the curves cross the horizontal axis indicate the extra
power budget that is necessary for the different techniques to
achieve the same performance as global.

Consequently, from Fig. 8 it is possible to observe that
the best cluster, best tile and non-DVFS techniques required
18, 27 and 31% more power than the global controller,
respectively, to achieve the same performance of the global.
Therefore, the global controller can also be used as a way to
satisfy the performance of the other techniques but at a lower
power budget.

123



7356 Arabian Journal for Science and Engineering (2018) 43:7343–7358

Table 3 Power consumption, normalized to the baseline

Chip configuration Optimization case

Case A Case B

Tile 0.95 0.74

2-Way cluster 0.91 0.71

4-Way cluster 0.87 0.66

8-Way cluster 0.84 0.63

Global 0.69 0.59

Table 3 compares these power savings to the power con-
sumed by the different techniques in Case B. Note that
comparison between the two optimization cases is valid aswe
use the same generated gain fromCaseA, having fixed power
budget, to be achieved in Case B, where no power limitation
exists. The results demonstrate that targeting power opti-
mization leads to better power–performance trade-off than
optimizing performance. This confirms the findings of the
previous analysis.

5 Conclusions and FutureWork

In this paper, we proposed a novel machine learning-based
energy optimization technique that we used to either max-
imize the performance within a fixed power budget or
minimize the consumed power to achieve the same baseline
performance. We showed experimentally that using our pro-
posed technique outperformed, in terms of the EDP metric,
the non-DVFS baseline by 28 and 35.5%, when optimized
for performance and power, respectively. This suggests that
optimizing power is more direct to energy efficiency than
optimizing performance.

For future work, we plan to test our proposed algo-
rithm along with other state-of-the-art algorithms using real
workloads on different real platforms to provide amore com-
prehensive cause and effect analysis.
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