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Abstract
Compared with the two-dimensional deployment, the three-dimensional deployment of sensor networks is more challenging.
We studied the problemof 3D repositioning of sensor nodes inwireless sensor networks.Weaimessentially to add a set of nodes
to the initial architecture. The positions of the added nodes are determined by the proposed algorithmswhile optimizing a set of
objectives. In this paper, we suggest twomain contributions. The first one is an analysis contributionwhere themodelling of the
problem is given and a set of modifications is incorporated on the tested multi-objective evolutionary algorithms to resolve the
issues encountered when resolving many-objective problems. These modifications concern essentially an adaptive mutation
and recombination operators with neighbourhood mating restrictions, the use of a multiple scalarizing functions concept and
the incorporation of the reduction in dimensionality. The second contribution is an application one, where an experimental
study on real testbeds is detailed to test the behaviour of the enhanced algorithms on a real-world context. Experimental tests
followed by numerical results prove the efficiency of the proposed modifications against original algorithms.

Keywords 3D indoor deployment · Experimental validation · Many-objective optimization · Neighbourhood · Adaptive
operators

1 Introduction

In wireless sensor networks (WSNs), the 3D deployment is
a strategy that defines the number of nodes, their positions
and the network topology in a 3D space. In fact, the pro-
cess of deploying and positioning nodes greatly influences
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the efficiency of the network. On both 2D and 3D spaces,
the coverage is the most considered objective when deploy-
ing nodes in WSNs. It can be considered as a measurement
of the reliability and the network quality of service. A full
probability of coverage cannot be ensured by increasing the
number of sensors when deploying nodes randomly. Further-
more, it is expensive to maintain high-density networks on
a large scale. Hence, other approaches should be proposed
to resolve these issues and to enhance the coverage degree
of the initial deployment. In the literature, different coverage
problems are investigated [1]. Among them are area cover-
age, target coverage, barrier coverage, sweep coverage and
k-coverage problem.

In most 3D deployment formulations, the coverage prob-
lem is proven and considered as a NP-hard problem [2].
Hence, this problem is unsolved using deterministic
approaches like the Branch and Bound especially for large-
scale instances. Therefore, in this study, the problem is
defined formally and a heuristic approach based on modified
algorithms is proposed to resolve it. Specially, we are inter-
ested in deployingWSN in smart buildings areas. The model
we suggest differs fromexistingmodels thanks to the fact that
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it integrates a realistic coverage model based on experimen-
tal assumptions, and a hybrid localization approach in one
model. For more details about the 3D deployment problem,
we can refer to the surveys in [3,4].

The essential goal in this study is minimizing the num-
ber of deployed nodes and maximizing the coverage and
localization rates. Other objectives which are linked to the
coverage and localization issues are also considered, such
as minimizing the energy consumption and maximizing the
network lifetime. Achieving these objectives together makes
the problemmore complex and harder to resolve using classi-
cal optimization algorithms, hence the need to improve these
optimization algorithms.

Indeed, the community of evolutionary multi-objective
optimization (EMO) is increasingly interested in many-
objective optimization (MaOO) aiming at simultaneously
optimizing more than three objectives. This is essentially
because of the unlike behaviours of EMO algorithms in
MaOO against optimization with three objectives or less. In
this regard, several EMO algorithms, known for a high per-
formance when resolving two and three objective problems,
encounter difficulties with problems having spaces with
high-dimensional objectives. Thus, a big challenge for both
practitioners and researchers in the area is faced. Different
studies are proposed in order to resolve many-objective opti-
mization problems (MaOP). However, existing approaches
are limited to a small number of studies on a few number of
test problems. The major difficulties encountered by multi-
objective evolutionary algorithms (MOEAs) when resolving
MaOPs can be summarized as follows:

– Inefficiency of the Pareto-based EMOs.
– Inaccuracy of the density estimation.
– Ineffectiveness of the recombination operation.
– Exponential increase in cost (time and space).
– Difficulty in representing the trade-off surface.

The rest of the paper is structured as follows: A set of
related recent works are investigated in Sect. 2 Then, the
problem formulation is detailed in Sect. 3, and a set of well-
justified modifications incorporated into the optimization
algorithms are presented in Sect. 4. Afterwards, an exper-
imental study based on real testbeds is discussed in Sect. 5.
Next, the behaviour of the tested modified algorithms is
assessed using the hypervolume (HV) metric in Sect. 6.
Finally, Sect. 7 concludes the paper.

2 RelatedWorks

In the literature, different works aim at resolving the problem
of deploying sensors in wireless networks. Table 1 illustrates
a comparison between the recent approaches used to resolve
the deployment problem in WSN.

More details on the coverage problems and their resolving
methods can be found on the following recent surveys: [20–
22].

Nevertheless, other than the 3D deployment, different
other methods aim to ensure the optimal coverage in wire-
less networks. Table 2 illustrates a comparison between our
approach and another one called ‘the collision free data link
layer’.

Among the main drawbacks of these studies is the non-
consideration of the many-objective case of the problem.
Even more, the majority of these studies did not test the pro-
posed approaches on real-world problems which are more
complex. Hence, the proposed contributions can be summed
up as follows: First, we suggest a set of well-studied modifi-
cations applied to the ∈-NSGA-II [24], the U-NSGA-III [25]
and the MOEA/DD [26] algorithms. Except the NSGA-II,
these modifications are applied for the first time on the pro-
posed algorithms. These modifications concern an adaptive
neighbourhood-based variation of the operators and a multi-
ple use of scalarizing functions. Moreover, in most studies,
the performance of the algorithm is not proven by empiri-
cal real-world scenarios and only simulations or theoretical
multi-objective problems (like ZDT or DTLZ) are used.
Thus, another major contribution is that in this study, exper-
imental tests are given based on a real-world environment
allowing demonstrating the real contribution of the modifi-
cation through the proposed algorithms. Thus, the originality
of this work compared to other works appears in the used
algorithms relying on real measurements allowing them to
provide more realistic hypothesis.

3 The Problem Formulation

3.1 Network Architecture

The following types of nodes are considered:

– Fixed nodes stationary nodes representing the nodes ini-
tially installed in the RoI (region of interest) with known
positions. They may be distributed randomly, or accord-
ing to a strategy. In our simulations, they are disseminated
according to the distribution law of the simulator. In
our experiments, they are disseminated according to the
applicative needs of the users.

– Mobile nodes targets representing the persons to control
which are equipped with a sensor receiving and transmit-
ting the signal. Its positions are predefined but susceptible
to be changed. In simulations, the mobile node is used
as a launcher of the first message, while in experiments,
this type of nodes is attached to a moving person in the
RoI in order to take measures in different positions.
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Table 2 Comparison between the 3D deployment and the free collision data link layer approaches

Our approach (3D indoor
deployment for coverage
problem)

Avoidance of collision data link
layer (Meribout et al. [23])

Type of deployment Offline (nodes are added after
running the last iteration of the
optimization algorithm) Indoor

Online (a real-time application)
Outdoor

Considered objectives Different objectives are considered
(from 2 to 8): coverage,
connectivity, localization, etc.

Security, reliability, link collision

Used method for resolving the coverage problem Evolutionary optimization Data link free collision

Advantages Real experimentation are given and
discussed

Reliability and security of
real-time data transfer is taken
into account

Drawbacks The used approach is complex: It is
based on adaptive operators,
neighbourhood mating, multiple
scalarizing functions and
dimensionality reduction

Real deployment is high cost
(more than simulations) since it
requires a base station every
125m of the road

– Nomad nodes to be added in order to improve the 3D
deployment. Its positions are defined by the tested algo-
rithms.

3.2 Notation

• Sets

Sps represents the different sites where to install nodes.
Stn represents the different types of nodes.
Smt represents the set of mobile targets to detect.
Snd represents the set of nodes. Each one has a type in Stn

and is deployed in site in S ps .

• Parameters

Nmt the number of targets.
Nsa the number of deployed stationary anchors.
Nnd the number of nomad nodes to add.
Dg the degree of coverage of a target, which is the mini-
mum needed number of nodes to localize it.
L > 0 the total lifetime of the network, Li is the lifetime
of the sensor i ∈ Snd.
Hwa

b the hardware cost for deploying a node having a
type a ∈ Stn, to be installed at a site b ∈ Sps.
Coord the 3D position of a sensor: its coordinates
(i, j, k) in the indoor space.
PowT r

i the emitted RSSI ((received signal strength indi-
cator) is the transmitted power of the signal) of the sender
node i ∈ Snd.
PowRr

i the emitted RSSI (the received power of the sig-
nal) at a distance r from the sender node i ∈ Snd.
Powa

min a threshold representing the minimum needed
RSSI transmitted by (received from) a node having a type
a ∈ Snd to detect it.

• Decision variables

CvPos a 0–1 variable, equal to 1 if there is a node covering the
position with the minimum needed power of transmission.
Rtbcqq ′ a 0–1 variable, equal to 1 if the link (q, q ′) to route the
traffic flow from a source b ∈ Sps to a destination c ∈ Sps is
the shortest.
Atb a 0–1 variable, equal to 1 if a node in the site b ∈ Sps,
can receive a signal from a target in a position t ∈ Smt.
Rcvaa′ a 0–1 variable, equal to 1 if a node at a site a ∈ Sps

can receive a signal from a node in a site a′ ∈ Sps.
Trsaa′ a 0–1 variable, equal to 1 if the node at a site a ∈ Sps

can transmit a signal from a node at a site a′ ∈ Sps.
Fxab a 0–1 variable, equal to 1 if a fixed node with a type
a ∈ Stn is set at a site b ∈ Sps; 0 otherwise.
Ndab a 0–1 variable, equal to 1 if a nomad sensor with a type
a ∈ Stn is set at a site b ∈ Sps; 0 otherwise.

3.3 Objectives

• Number of nomad nodes to be added

Minimizing the number of nomad nodes to add:

Minimize
∑

b∈Sps
Ndab (1)

Subject to
∑

b∈Sps
Ndab ≤ Nnd ∀b ∈ Sps, a ∈ Stn (2)

• Deployment cost

The cost of deployment of a node (a ∈ Stn) is related to its
site (b ∈ Sps). For example, attaching a node to a wall is
considered as ‘cheaper’ than attaching it in the middle of the
space. Then, the deployment cost is an objective tominimize,
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separately, the number of nomad nodes:

Minimize
∑

b∈Sps

∑

a∈Stn
Ndab Hwa

b (3)

• Localization

To enhance the localization, at leastDg anchor nodes are con-
sidered to monitor each target t ∈ Smt. Then,

∑
s∈Sps Ats ≥

Dg ∀t ∈ Smt. Hence, the following function is proposed to
model the localization:

Maximize
∑

t∈T

(
∑

b∈Sps
Atb − Dg

)
(4)

Subject to
∑

b∈Sps
Atb ≥ Dg ∀t ∈ Smt (5)

• Coverage

To achieve a full coverage, at least Dg nodes are used
to monitor each position in the 3D indoor space. Then:∑

b∈Sps CvPos ≥ Dg. Hence, the following function is pro-
posed to model the coverage:

Maximize
∑

t∈T

(
∑

b∈Sps
CvPos − Dg

)
(6)

Subject to
∑

b∈Sps
CvPos ≥ Dg (7)

• Connectivity

Each node should have at least one incoming and one out-
going link to consider the network as connected. Thus, the
connectivity probability is in general related to the strength
of the received signal and the transmission range.

Maximize PowRr
i (8)

Subject to

PowRr
i ≤ Trsaa′ ∗ Rcvaa′ ∗ α ∗ u−� ∗ PowT r

i (9)

where � is the path loss exponent and u is the distance from
the sender. u = uc ⇔ PowRr

i = Powa
min indicating that

the data may be received only if the power at the receiver
is higher or equal to Powa

min. The transmission range uc is
defined by PowRr

i (u = uc) = Powa
min.

• Energy consumption

Because sensing and being idle energies are negligible com-
pared to the receiving and transmitting energies, we propose
a model where Eelec

i is the dissipated energy to activate the

receiver/ transmitter circuit. According to the 802.15.4 pro-
tocol used in experiments, the reception energy is generally
more expensive than the transmitting one:

Minimize
∑

E transm
i +

∑
E recv
i (10)

where E recv
i = Eelec

i * m and E transm
i = Eelec

i ∗ m+ ∈amp

∗m ∗ d2 which is the energy consumed to transmit an m-bit
packet to a distance d, and the energy consumed to receive
the same packet is E recv

i . ∈amp represents the transmitter
amplifier to communicate. Different constraints are consid-
ered such as constraint (11) indicating that if there is a route
Rtabqq ′ passing through a sensor a to another one b, then the
sensor a must be in activity:

Rtbcqq ′ ≤ Zk
a (11)

where Zk
a is equal to 1 if the sensor a is activated during

a period k ∈ K. Besides, constraint (12) indicates that the
expenditure Bti of each sensor i in energy cannot exceed the
available energy in the battery of this sensor:

0 ≤ Bti ≤ E0 ≤ E transm
i + E recv

i ∀i ∈ Snd (12)

where Eo is the initial amount of energy.

• Network lifetime

The network lifetime is often defined as the time in which the
first node dissipates its energy. Several parameters affect the
network lifetime such as the node density, the initial energy
and the used routing strategies.

Maximize L (13)

Subject to L = min
i=1,2,...,max

Li (14)

where max is the maximum number of nodes that may be
deployed within the network. Constraint (14) indicates that
the lifetime is equal to the minimum lifetime Li among
all the sensors lifetimes where Li = Bti/max(E transm

i +
E recv
i ),∀i ∈ Snd.
Other constraints can be considered:

∑

q ′∈Sps
Rtbcqq ′ ∗ L −

∑

q ′∈Sps
Rtbcq ′q ∗ L

= Qc ∗ L ∗ Fxab∀b ∈ Sps, a ∈ Stn (15)
∑

q ′∈Sps
Rtbcqq ′ ∗ L +

∑

q ′∈Sps
Rtbcq ′q ∗ L

≤ Capnd ∗ L ∗ Fxab + Capnd ∗ L ∗ Ndab
∀b ∈ Sps, a ∈ Stn (16)∑

q ′∈Sps
E transm
i ∗ Rtbcqq ′ ∗ L
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+
∑

q ′∈Sps
E recv
i ∗ Rtbcq ′q ∗ L + Qc ∗ L ∗ Fxab

≤ Bti ∗ Fxab + Bti ∗ Ndab∀a ∈ Sps, b ∈ Stn (17)
∑

b∈Sps
Fxab +

∑

b∈Sps
Ndab

≤ Nmax + |Sps| − |Sps| ∗ (Fxab + Ndab )

∀a ∈ Sps, b ∈ Stn (18)

0 ≤ Rtbcqq ′ ∗ L ≤ Wlbb′ ∗ L ∗ Fxab

+Wlbb′ ∗ L ∗ Ndab∀b, b′ ∈ Sps, a ∈ Stn (19)

where Qc is the rate of generating information of a sensor
located at b′ ∈ Sps, Capnd is the capacity (maximum amount
of data a node can transmit or receive) and Wlbb′ is the wire-
less link (b, b′) capacity.

• Utilization of the network

To enhance the network lifetime, many nodes can be placed
near to the base station. However, this may increase cost and
cause a poor utilization of the resources. As a result, it is
recommended to maximize the lifetime while deploying a
reasonable number of nodes. Thus, the network utilization
(NU) is defined as:

Maximize L/
∑

(Fxab + Ndab ), ∀ a ∈ Sps, b ∈ Stn

(20)

Subject to
∑

(Fxab + Ndab )/L ≤ (1/Lup) (21)

where Lup is an L upper-bound.

4 Chromosomes Coding and Suggested
Modifications in theMaOEAs

In this section, the specifications of the proposed algo-
rithms like the manner in which chromosomes are coded
are detailed. Then, a set of suggested modifications, incor-
porated into the many-objective algorithms, are presented.
These modifications concern the use of the neighbourhood
and an adaptive guided concept in mutation and recombina-
tion operators, and the use of multiple scalarizing functions
in the aggregation-based approaches.

4.1 Chromosomes Coding for the ProposedMaOEAs

For all EMOs, the chromosome coding must be specified.
Indeed, a 3D position of a node is represented by a chromo-
some indicating the potential locations of nomad nodes in
the RoI. A point (X ,Y , Z ) models this position. Each gene
in the chromosome represents a binary digit gathering the
position’s value on the X, Y and Z axes. Different factors
influence choosing the chromosomes population size. The

most important ones are the network configuration and the
RoI. For example, considering that the node radius is equal
to 9 metres and the sensing area is equal to 70*80*120m,
the number of needed fixed nodes to deploy can be equal
to 661, (because (70*80*120)/(4*π*92)=660,19 ∼= 661);
then, the initial population should be equal to 661 chro-
mosomes randomly disseminated in the coverage area. This
value is calculated assuming that 661 sensor nodes can ensure
the coverage of the entire RoI in the case of a uniform deter-
ministic deployment in the 1-coverage case (each target must
be monitored by one node at least). In the case of k-coverage,
the initial population to start with should be equal to 661 * k
chromosomes.

The choice of the binary coding is justified by its easiness
of use and its low computational cost (a low complexity)
which is required when resolving MaOPs. Another reason
is related to the use of the neighbourhood in recombina-
tion and mutation (as explained in the next section): Indeed,
compared with other coding methods (such as the real cod-
ing), binary coding allows better assessing the differences
in genes between two chromosomes, thus better comparing
chromosomes according to their distances from each other.
Nevertheless, the binary coding may lead to non-feasible
solutions. These solutions will be penalized by a weighting
coefficient and will not be selected by the algorithm after-
wards.

Next, the usedEMOsare detailed. So are themodifications
proposed to enhance these algorithms in order to allow them
properly handling MaOPs.

4.2 Including Diversity: Neighbourhood Restriction
and Adaptive Multi-Operators

InMaOEAs, due to the high-dimensional objective space, the
population diversity increases and mutation/crossover oper-
ators become inefficient and may create an offspring which
may be not selected as a parent. To overcome this problem,
the suggestedmechanism relies on two strategies: an adaptive
multi-recombination (multi-mutation, respectively) opera-
tors with neighbourhood restrictions, named AxN (named
AmN, respectively).

4.2.1 Principles of Mutation and Recombination with the
Neighbourhood (AxN and AmN)

• The neighbourhood restriction concept

As example of the utility of using the neighbourhood in the
operator’s variation in MaOEAs, it is shown in [27] that
MaOEAs can often apply effectively recombination to solu-
tions having relatively similar gene structure where there is
a high dependency between objectives. Thus, the neighbour-
hood is used aiming at improving the effectiveness of the
mutation/recombination operators by increasing the number
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of objectives. This helps to reduce dissimilarities between
new individuals since recombining (and mutating) individu-
als which are too distinct may be penalizing and could affect
the efficiency of the operators. To achieve this, the proposed
neighbourhood concept computes the distance between indi-
viduals in the objective space. Then, it determines the set of
Nh ∗ |P| nearest neighbours for each individual where |P| is
the individual’s population and Nh is the neighbourhood size
(Nh = |P| ∗ 0.1 in this study). Moreover, the proposed strat-
egy facilitates multiple convergences by permitting higher
exploitation of the move-guiding areas.

– Neighbourhood Crossover (xN)

In EMOs, the crossover operation allows generating good
individuals as an offspring from parents. Ideally, this off-
spring must be composed of non-dominated solutions which
are uniformly scattered in the population. Initially, the idea
of using selection scheme mating supposes that each couple
of individuals from the current population can be chosen as
parents. Among the drawbacks of such mating scheme is the
randomchoice of individuals and the largeEuclidian distance
between individuals in the variable space. As a consequence,
the obtained solutions are more probably to be dominated.
As a solution to this problem, some studies suggest a more
determinist selection schemebased on the idea of considering
the proximity and picking closer individuals to achieve the
recombination which is very interesting for several multi-
objective and many-objective problems. Thus, we propose
a neighbourhood crossover that selects individuals having
short Euclidian distance in the objective space so that the
search ability can be reinforced by crossed individuals that
are close to each other in the objective space. When cross-
ing adjacent individuals in the variable space, the obtained
offspring is generated near parent individuals in terms of
their objective values and may be a non-dominated solution,
which greatly increase the population diversity although the
Euclidian distance in the variable spacemay not be defined in
several cases like combinational functions. In the case of con-
tinuous functions, adjacent individuals in the objective space
have often a high probability to be adjacent in the variable
space. Thus, in this study, crossover is performed on adja-
cent individuals in the objective space instead of the variable
space.

– Neighbourhood mutation (mN)

Same as the neighbourhood crossover, the neighbourhood
mutation aims at restricting theproductionof solutionswithin
the same niche (local area) as their parents which imply
inducing a stable niching behaviour. In this study, we aim
to minimize φ(i,j)∀i ∈ V, j ∈ V where i and j are two can-
didate sensors to cross and φ is the distance (in the search

space) between the two sensors. To perform the neighbour-
hood mutation, only one parameter is needed, which is the
neighbourhood size ns. This parameter specifies the number
ofmembers to be considered asmutation vectors in each sub-
population. In this context, the authors in [28] investigated
the effect of varying neighbourhood size on the behaviour
of the algorithm. Their works prove that the preferred range
of the neighbourhood size is between: 1/20 and 1/5 of the
overall population. For this reason, the neighbourhood size
is considered as a special niching parameter which is easy
to choose since it may be taken proportionally to the popu-
lation size. Thus, as proven later by the experimental results
(Sect. 5), the neighbourhood size does not affect the effi-
ciency of the algorithm. This strategy guarantees evolving
each individual towards its nearest optimal point. Another
advantage is the performance of the algorithm which is not
dependent on the variation of the neighbourhood size.

• The adaptive multi-operators concept

There is another problem confronted when MOEAs are used
to resolvemany-objective real-world problems.This problem
is the choice of the appropriate recombination and muta-
tion operators for each problem. In the proposed strategy,
the operator variations are applied adaptively. The contri-
bution of each operator is taken into account. Indeed, the
operator which succeeded in the last iteration is used to
adjust the selection probability of this operator. Hence, each
operator has a selection probability in the next generation
which is relative to its contribution. In the adaptive mutation,
the mutation probability is modified, while the algorithm is
executed. This adaptivemutation relies on the feedback infor-
mation from the previous generation without modifying the
probabilistic nature of the mutation. Thus, new solutions are
deterministically generated in the search space and are guided
towards the optimum by earlier individuals.

The proposed AxN strategy is based on a crossover with
neighbourhoodoperationwhich canbeperformedon apair of
parents after the selection step in the EMOalgorithm. Indeed,
we propose to use an adaptive multi-operator recombination
operator which allows the improvement of the search and
adapt it to the local characteristics of the problem. The AmN
strategy is based on amutationwith neighbourhoodoperation
which is used to avoid the local optima and to increase the
diversity by changing the chromosomes values. The used
mutation operators are chosen adaptively.

4.2.2 Implementation of the AxN and AmN Strategies on
the Proposed Algorithms

• ∈-NSGA-II-AxN-AmN

Our proposed adaptive neighbour scheme of the selection
operators of the ∈-NSGA-II stems from the selection pro-
cess of the AMALGAM algorithm [29], which uses a set of
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MOEAs controlled by a master algorithm. The AMALGAM
algorithmmeasures eachmethod contribution in the previous
iteration. Then, thesemethods are admitted according to their
contributions rates exhibiting the most relevant reproductive
success.

• U-NSGA-III-AxN-AmN

The third proposed algorithm is the U-NSGA-II-AxN-AmN
which is also based on the original U-NSGA-III algorithm
[25] within a modified neighbourhood mutation and recom-
bination phase which uses adaptively all the previously
indicated mutation operators.

• MOEA/DD-AxN-AmN

Although the original MOEA/DD [26] relies on a neigh-
bourhood strategy, as in the previous presented algorithms,
the same variations of operators are applied to the original
MOEA/DD in order to take advantage of the suggested adap-
tive multi-operators concept.

4.3 Including Single-Grid andMultiple Scalarizing
Functions in MOEA/DD

Among the advantages of the algorithms based on scalariz-
ing functions compared to the algorithms based on Pareto
dominance, their low-cost computation and scalability, dif-
ferent scalarizing functions exist. Choosing the appropriate
scalarizing function is a relevant issue to be considered when
designing scalarizing function-based algorithms since choos-
ing the suitable scalarizing function is problem-dependent
[30]. For example, according to [31], the weighted sum is
generally used when the PF is convex, but it is not suit-
able for non-convex PFs. The weighted Tchebycheff is often
used when the PF is non-convex, but its efficiency could be
affected by the increase in the objectives number. Hence, it
is interesting, to adapt the MOEA/DD, in order to have the
ability to automatically choose between several scalarizing
functions for each individual in each generation. Authors in
[30] used two ideas for simultaneously using multiple scalar-
izing functions in a single MOEA/DD algorithm. The first
idea is the use of several scalarizing functions in a multi-grid
schemewhere each scalarizing function has its uniqueweight
vectors complete grid. The second idea is alternately assign-
ing a different scalarizing function to every weight vector
in a single grid. Their results showed that, for 0/1 knap-
sack problems with six objectives, simultaneously using the
weighted Tchebycheff and the weighted sum in MOEA/D
outperforms their individual use. However, the number of
used scalarizing functions is limited to two. The aim is to use
this second idea with more than two scalarizing functions.
Indeed, as opposed to the original MOEA/D having a single
complete grid with up to 15 weight vectors, the single-grid
scheme proposed in this study relies on multiple scalarizing

functions and suppose that each weight vector has a differ-
ent scalarizing function. The following scalarizing functions
are considered: the weighted sum (WS) [31], the weighted
Tchebycheff distance (TCB) [31], the penalty-based bound-
ary intersection (PBI) [32]. Other scalarizing functions may
be considered such as the inverted PBI scalarizing function
(iPBI) [32] and the vector angle distance (VA) [33]. The
proposed algorithm using multiple scalarizing functions is
named mMOEA/DD-AxN-AmN.

4.4 Including Reduction: Incorporating the Feature
Selection

Since the 3D indoor deployment problem has dependent
objectives, we propose to incorporate a reduction algorithm
that identifies the non-essential (redundant) objectives in
order to reduce the objectives number of the problem. For
this purpose, an unsupervised feature selection approach is
used based on the original algorithm of Mitra et al. [34].
Indeed, the feature selection is a procedure which chooses a
minimum subset of correlated essential features from a given
data sets in order to construct an optimal learning model to
reduce the feature space dimensionality. In our context, a
feature is an objective.

5 Experimental Results

In this section, we present the results of the proposed con-
tributions which are experimented on a real-world problem
by deploying real testbeds. The experiments are based on
Arduino software programming platform and Teensyduino
nodes. The proposed algorithms are implemented using the
jMetal platform on an Intel core i3-3217U CPU 1.80GHz
computer. The number of constraints is determined based on
the formulation proposed in Sect. 3. Unless indicated after-
wards, other parameters are set as follows: the length of the
area (x) = 23.21m.

– Width of the area (y) = 13.95m.
– Height of the area (z) = 6.75m.
– Maximum execution time = 4280s.

5.1 Network Architecture

The proposed network is composed of 11 fixed nodes initially
deployed, 3 nomad nodes (named ‘D’, ‘E’ and ‘F’) and a
mobile node (named ‘C’). Thenode ‘C’ is attached to aperson
who can move on the building. The nomad nodes to be added
can be placed everywhere in the 3D space except the position
where there is a fixed node or an obstacle such as a wall
(several infeasible positions are discarded from the beginning
by the implemented algorithms). The RSSI value of each

123



3894 Arabian Journal for Science and Engineering (2019) 44:3883–3904

Fig. 1 The 2D and 3D architecture of the real deployed indoor network

node is indicated by a value between 0 and 255 as shown
in Figs. 2 and 3. This value can be convertible in dBm).
Although the number of all deployed nodes does not exceed
twenty in the experiments, the use of meta-heuristics as a
resolution approach is justified, since, according to [2], the
3Ddeployment problem is considered as anNP-hardproblem
starting from two nodes to deploy. Figure 1 illustrates the
deployment scheme in 2D and 3D plans. The origin of the
local-taken coordinate system is set at the point Po (0,0,0)
indicated in Fig. 1a. In the same figure, the nodes represented
by triangles are the fixed nodes and the ones represented
by circles are the nomad added nodes. The positions of the
fixed nodes are chosen by the users according to their needed
applicative objectives which explain the use of two nodes
in the same room, while there are no ones in other rooms.
The proposed deployment is considered as 3D (not a 2D
multistage deployment) because of the connections between
nodes situated in different floors of the building. Besides, the
height of the deployed nodes is not negligible compared to the
length andwidth of theRoI.Consequently, it is recommended
to consider the indoor area as a continuous 3D space.

The technical and localization specifications of the
installed nodes are listed in Table 3. Table 4 illustrates a set
of chosen positions taken by the mobile node ‘C’ on the 3D
space to assess coverage and localization. These positions

are dispersed uniformly in different regions of the 3D space.
In both mentioned tables, the x axis represents the horizontal
axis, the y axis is the vertical axis, and the z axis represents
the height. The point Po (0,0,0) corresponds to the following
WGS84 GPS coordinates expressed in sexagesimal degrees
(in degrees, minutes and seconds): latitude = 43◦38′57.4′′E;
longitude = 1◦22′28.4′′E and altitude = 164 m. These GPS
coordinates can be easily converted into the local coordinates
using appropriate formulas.

5.2 Objectives

The purpose is to add nomad nodes to the indicated loca-
tions guaranteeing a set of objectives. These objectives can
be either network objectives or applicative objectives. The
applicative objectives represent metrics measuring physical
parameters linked to sensors such as brightness, temperature
or opening and closing doors. The network objectives are
considered when the algorithms search the positions of the
nomad nodes to add. In experiments, the considered objec-
tives concern essentially in maximization: the lifetime of the
network, the coverage quality and the localization quality,
and in minimization: the consumed energy and the hardware
deployment cost. To assess those objectives, the measure-
ment of the links strength between nodes over time is used.
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Table 3 Localization and technical specifications of the installed node

N◦ Decimal
nomenclature

Short address
(the node’s 16-bit address)

Type Local-coordinate position

X Y Z

N1 01 0x0001 Teensy 3.0 mk20dx128 278 545 523

N2 02 0x0002 Teensy 3.0 mk20dx128 1063 525 521

N3 03 0x0003 Teensy 3.0 mk20dx128 683 498 526

N4 14 0x0004 Teensy 3.1 mk20dx256 663 414 206

N5 05 0x0005 Teensy 3.0 mk20dx128 2093 305 519

N6 06 0x0006 Teensy 3.0 mk20dx128 1237 1256 443

N7 15 0x0007 Teensy 3.1 mk20dx256 450 00 290

N8 1c* 0x0008 Teensy 3.1 mk20dx256 1114 1252 422

N9 31* 0x0009 Teensy 3.1 mk20dx256 416 495 336

N10 1F* 0x000A Teensy 3.1 mk20dx256 1813 306 356

N11 34* 0x000B Teensy 3.1 mk20dx256 672 270 291

N12 58 0x000D Teensy 3.1 mk20dx256 Variable

N13 59 0x000E Teensy 3.1 mk20dx256 Variable

N14 60 0x000F Teensy 3.1 mk20dx256 Variable

N15 C 0x000C Teensy 3.1 mk20dx256 Mobile

Table 4 Locations of the positions taken by the mobile node

N◦ P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17

Positions on the
local reference

X 943 938 624 345 1152 1393 1814 1646 2148 1904 1748 1167 1693 865 362 1142 2321
Y 265 422 870 1175 992 1197 1072 435 985 648 25 858 584 520 342 0 0

Z 392 386 343 518 478 462 394 502 413 517 383 187 10 100 28 140 165

The quality of links (thus the radio coverage quality) is
evaluated bymeasuring the FER (frame error rate). The local-
ization quality is evaluated by measuring the RSSI, and the
number of neighbours is evaluated by measuring the both
mentioned metrics. The following concept is used to define
a neighbour: A node ‘b’ is considered as a neighbour in the
neighbours table of another node ‘a’ only if the RSSI signal
of ‘b’, received by ‘a’ is sufficient (greater than a predefined
tuneable threshold). We define also a predefined tuneable
empirical threshold for the FER, below which a node is not
considered as a neighbour. Thus, a neighbour enters in the
table of neighbours only if the two mentioned thresholds are
respected. Indeed, to ensure the 3D coverage, each nodemust
have at least one neighbour and should be monitored by at
least one node. As regards the localization, it is based on a
hybrid 3D localizationmodel based on 3DDV-Hop (distance
vector-hop) and RSSI protocol which requires that each node
must have four neighbours. Measures are taken during day
and night. Indeed, the existence of persons during day implies
that the majority of the doors are opened which improve the
quality of the received signals. While overnight, the majority
of the doors are closed.

5.3 Variation of the Localization

To measure the localization, a localization model based on
RSSI and 3D DV-Hop hybridization is used. Indeed, the
localization quality is proportional to the RSSI value. A
neighbour may be included in the table of neighbours of a
node only if its received RSSI value is greater than the prede-
fined threshold (set to 100). Based on the obtained numerical
results, the effect of the value of the RSSI threshold and its
relationship with the FER is investigated. The value of the
RSSI can change over time, and the period of its stability
can be less than 1s. Given this instability, we take an average
value of RSSI extracted from four values for each pair of
nodes (node i–node C); i ∈ [1, 14]. A period of waiting of
20s between the four values is used. The RSSI value (noted
Rci) that represents the relationship between the node ‘C’
(the mobile node) and each node ‘i’ is taken as the maximum
value between the detection value of ‘C’ by ‘i’ (signal gen-
erated by ‘C’) and the detection value of ‘i’ by ‘C’ (signal
detected by ‘C’). The average of the Rci values between ‘C’
and all other nodes reaching the fixed threshold in each posi-
tion Pi is represented by the ordinate axis in Fig. 2, expressed
in the negative value of the dBm (the RSSI values between 0
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Fig. 2 Variations of the RSSI, during day, for different positions
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Fig. 3 Variations of the RSSI, overnight, for different positions

and 255 are converted into values expressed in dBm), accord-
ing to the proposed algorithms, by day. The horizontal axis in
Fig. 2 represents thePi positions indicated inTable 4. Figure 3
shows the variation of the same RSSI averages overnight.
Table I (in Appendix, ESM) illustrates the average values, in
different positions Pi, of the RSSI classified by neighbours
of the node ‘C’, during day. Table II (in Appendix, ESM)
illustrates the average values, in different positions Pi, of the
RSSI classified by neighbours of the node ‘C’, overnight. All
average values in the experiments are computed based on 25
executions of the algorithms.

5.4 Variation of the Coverage

The FER is used as a metric to measure the coverage and
to evaluate the quality of links between nodes. The above-
mentioned threshold of FER (used to introduce neighbours)
is fixed to 0,4. Although the FER values vary less than those
of the RSSI, we take an average value of FER extracted from
four values for each pair of nodes (node i–node C); i∈ [1,14].
A period of waiting of 10s between the four values is used.
The FER value (noted Covci) that represents the relationship
between the mobile node ‘C’ and each node ‘i’ is considered
as the average value between the detection value of ‘C’ by
‘i’ (signal generated by ‘C’) and the detection value of ‘i’ by
‘C’ (signal detected by ‘C’). The average of the Covci values
between ‘C’ and all other nodes reaching the fixed threshold
in eachpositionPi is represented by the ordinate axis inFig. 4,
using the proposed algorithms, by day. The horizontal axis in
Fig. 4 represents thePi positions indicated inTable 4. Figure 5
shows the variation of the same FER averages overnight.

0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Initial deployment

∈-NSGAII-AxN-AmN

UNSGAIII-AxN-AmN

mMOEA/DD-AxN-AmN

Positions (Pi)

FE
R

Fig. 4 Variations of the FER, during day, in different positions

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ini�al deployment

∈-NSGAII-AxN-AmN

UNSGAIII-AxN-AmN

mMOEA/DD-AxN-AmN

Posi�ons (Pi)

FE
R

Fig. 5 Variations of the FER, overnight, in different positions

0

5

10

15

P1 P3 P5 P7 P9 P11 P13 P15 P17

Initial deployment
∈-NSGAII-AxN-AmN
UNSGAIII-AxN-AmN
mMOEA/DD-AxN-AmN

N
um

be
r o

f 
ne

ig
hb

ou
rs

 

Positions (Pi)

Fig. 6 Variation of the number of neighbours, during day

Table III (in Appendix, ESM) illustrates the average values,
in different positions Pi, of the FER, classified by neighbours
of the node ‘C’, during day. Table IV (in Appendix, ESM)
illustrates the average values, in different positions Pi, of the
FER, classified by neighbours of the node ‘C’, overnight.

5.5 Variation of the Number of Neighbours

Figure 6 illustrates the variation on the number of neigh-
bours, using the proposed algorithms, during day, for the Pi
positions. Figure 7 illustrates the variation on the number of
neighbours overnight, for the same Pi positions.

5.6 Comparing Experiments and Simulations

Using the same network architecture and parameters as in
the experiments, a simulation scenario is performed using
OMNeTpp. In order to compare experiments to simulations,
the average number of neighbours is compared in both cases
when varying the number of objectives. Figures 8, 9 and 10
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illustrating these comparisons show a similar behaviour, for
each tested algorithm in both environments (experiments and
simulations). These similarities prove the effectiveness of the
proposed approach in different contexts.

5.7 Discussion

After the analysis of the experimental results, several findings
can be considered:

– In the majority of the instances, the average of RSSI sig-
nal strength is greater during day than night because of
the open doors by day, while the average of FER signal
strength is greater at night than day due to less human
activities at night involving less perturbations and signal
interference.

– When comparing the variation of the FER and the RSSI
rates between day and night, it is noted that the FER
rate is higher by day than night although the RSSI rate
is also higher by day than night: This indicates that the
introduction of neighbours according to the highest RSSI
does not always give the lowest error rate.

– The node range is not spherical: According to measures,
some nodes can be detected by a set of nodes, while
some other further near nodes cannot detect them. For
instance, the node ‘N4’ is the only one that detect the node
‘C’ which is in the location P1 although there are other
nodes which are less distant from the location P1. This
assumption has been considered when implementing the
proposed algorithms.

– The nature of the relationship between the RSSI and the
FER is investigated: Each neighbour is introduced in the
neighbours table based on a high RSSI rate, but after a
moment, the rate of lost frames may be very high. Thus,
increasing the RSSI value may not decrease the FER
value. So, the FER indicates the quality of links better
than the RSSI.

– The U-NSGA-III-AxN-AmN is more efficient in resolv-
ing the 3D deployment problem than the ∈-NSGA-II-
AxN-AmN. This is due to the selection procedure of
the U-NSGA-III-AxN-AmNwhich is based on reference
points and niching. This allows more diversity among
the members of the population. Although this selec-
tion procedure used on the U-NSGA-III-AxN-AmN, the
∈-NSGA-II-AxN-AmN seems to be (in several posi-
tions) more efficient than the U-NSGA-III-AxN-AmN:
This occurs because the U-NSGA-III-AxN-AmN is ded-
icated to resolve MaOPs and may have some difficulties
when objectives are high correlated (when the problem to
resolve can be reduced to a bi-objective ormulti-objective
problem).

6 Numerical Results of EMOs Evaluation and
Interpretations

In this section, the performance indicators and the parame-
ters setting are presented. Afterwards, the performance of the
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tested algorithms is demonstrated on the proposed real-world
MaOPs: the 3D deployment in indoor WSNs optimization
problem with eight objectives. This problem has seven deci-
sion variables as input and eight objectives as output. TheHV
is used here as an evaluation metric because of the unknown
PF of the tested real-world problem. To overcome the prob-
lem of the complexity of computing the HV in our context,
we compute theHVusing a procedure that achieves a balance
between the precision of the fitness and the cost of compu-
tation (time), so the HV computation will be possible in the
many-objective case. This procedure approximates the HV
based on a Monte Carlo sampling method proposed in [35].

6.1 Parameters Setting

The setting of the parameters affects considerably the per-
formance of the tested algorithm when resolving a particular
problem. Yet, a set of experimental tests using different sizes
of population, number of objectives, number of generations
and operators, are necessary when testing each MaOEA. In
all tables, the best performance for each instance is shown
with a grey background. Unless modification for testing the
impact of varying the concerned parameter, the commonused
values of these parameters are as follows:

– The reproduction operators The SBX (simulated binary
crossover) is used, with a large distribution index. The
probability of crossover is pc = 0.9 with a distribution
index η c = 50. The probability of mutation is pm =
1/400 with a distribution index ηm = 30.

– The population size and the number of reference points
Different specifications of the population size and the
weight vectors number are used for each test problem.
The number of reference points varies between 90 and
350. The population size varies between 100 and 1400.

– The number of runs To obtain statistically confident
results, each algorithm is performed using 25 indepen-
dent runs and a different initial population for each run.

– The objective number varies between 2 and 8 as follows:
three objectives in minimization (the number of added
nomad nodes, the hardware deployment cost and the
energy consumption) and five objectives inmaximization
(the coverage rate, the localization rate, the connectivity
rate, the lifetime and the network utilization.

– The termination condition (The maximum number of
generations) is set to 50,000 solution evaluations.

– The used scalarizing functions are the weighted sum, the
weighted Tchebycheff and the PBI with a penalty param-
eter (θ = 0.01, 0.5, 1.0 and 5.0).

– The neighbourhood size is fixed to 1/10 of the popula-
tion size (between 1/20 and 1/5 as recommended in the
Sect. 4.2.1) and the probability of selecting a parent from
this neighbourhood is 0.9.

6.2 The Effect of the Interdependence Between
Objectives

In this section, the size of the population is set to 1000.
The used scalarizing function (for MOEA/DD-AxN-AmN)
is PBI (0.5). The mutation probability is 1/400 (bit-flip muta-
tion, index of 30), and the recombination probability is
0.9 [simulated binary crossover (SBX), index of 50]. No
neighbour mating in recombination and the objectives are
correlated (For each experiment with N objectives, at least
N/2 objectives are correlated). Two hundred and fifty refer-
ence points are used for the UNGSA-III algorithm. Table 5
(Table 6, respectively) illustrates the average values of HV
with non-correlated (correlated, respectively) objectives. N
is the whole number of objectives.

Table 5 Best, average and worst values of HV using non-correlated objectives, with 25 independent runs

Objective number Max Gen ∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

3 400 0.899535 0.988986 0.983658

0.899492 0.988953 0.981922

0.899446 0.988911 0.981735

4 800 0.893884 0.974733 0.974893

0.893858 0.974578 0.974659

0.893812 0.974523 0.974468

6 1200 0.891972 0.972783 0.972589

0.891953 0.972692 0.972448

0.891927 0.972541 0.971925

8 1500 0.827925 0.964895 0.964365

0.827890 0.964772 0.964234

0.827836 0.964431 0.963827
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Table 6 Best, average and worst values of HV using n correlated objectives (n >= N/2), with 25 independent runs

Objective number Max Gen ∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

3 400 0.994562 0.994233 0.982356

0.973486 0.993568 0.981533

0.921357 0.993134 0.980621

4 800 0.968982 0.983652 0.977925

0.926065 0.981426 0.977409

0.925130 0.981124 0.977122

6 1200 0.921475 0.977123 0.975986

0.921209 0.976581 0.975574

0.920923 0.976130 0.975244

8 1500 0.920345 0.971841 0.967251

0.919803 0.969802 0.966828

0.919269 0.969023 0.966127

The obtained results show that in most cases, mMOEA/
DD-AxN-AmN is more efficient than the other algorithms.
Moreover, the HV increases if there is a correlation between
objectives, especially in the case of the ∈-NSGA-II-AxN-
AmN algorithm that has higher relative advantage improve-
ment compared to other algorithms. As a consequence, we
can conclude that ∈-NSGA-II-AxN-AmN is efficient on
resolving MaOPs having highly correlated objectives.

6.3 The Effect of Varying the Population Size

In this section, the HV values are presented for differ-
ent population sizes to test the effect of the variation in
the population size on the behaviour of MaOEAs. The
scalarizing function used in mMOEA/DD-AxN-AmN is PBI
(0.5). The probability of mutation is 1/400 (bit-flip muta-
tion), and the probability of recombination is 0.8 [simulated
binary crossover (SBX)]. No neighbour mating of parents
and the objectives are correlated. The number of reference
points is chosen according to the size of the population and
the number of objectives. Table 7 shows average HV val-
ues when varying the population size and the number of
populations.

For the majority of the used objectives number, better
results were performed by mMOEA/DD-AxN-AmN than
∈-NSGA-II-AxN-AmN. Obtained results demonstrate that
the increase in the size of the population does not affect
the ability of search of the mMOEA/DD-AxN-AmN. How-
ever, the ∈-NSGA-II-AxN-AmN efficiency is degraded by
the increase in the population size and did not work well
with large population sizes. As a result, an interesting
area of research is the determination of the appropriate
population size according to the number of considered
objectives.

6.4 The Effect of the Choice of the Scalarizing
Functions in MOEA/DD

Although it is proved that the mMOEA/DD-AxN-AmN per-
forms well on DTLZ andWFG test problems, this algorithm
was not evaluated on a real-world problem like ours. More-
over, its performance depends on the choice of the used
scalarizing function. Thus, the choice of the appropriate
scalarizing function or scalarizing function set is a relevant
field of research. To overcome the problem of choosing the
appropriate scalarizing function, we propose to use simul-
taneously several scalarizing function as described in the
approach (Sect. 4). In the experiments, mMOEA/DD-AxN-
AmN is applied with the weighted sum, the PBI function
(θ = 0,01, 0.5, 1.0, 5.0) and the weighed Tchebycheff with
α = 1, 1.01, 1.1. The performance of each scalarizing func-
tion is evaluated by calculating the average HV value over
25 runs. The population size in mMOEA/D-AxN-AmN was
specified as 1000. The mutation probability is 1/400 (bit-flip
mutation), and the recombination probability is 0.8 (SBX).
No neighbourmating in recombination and the objectives are
either non-correlated or correlated. The mMOEA/DD-AxN-
AmN algorithm is tested using the mentioned scalarizing
functions and then using the multiple scalarizing functions
concept discussed previously (Sect. 4.3). Table 8 shows the
average HV values when varying the scalarizing functions
with different correlation relations between objectives.

According to the results in Table 8, the weighted Tcheby-
cheff is not appropriate for the deployment problem with
no (or small) dependency relation between objectives, but
it is suitable when objectives are correlated. Concerning
the parameter θ , good results were performed by the PBI
function with θ = 0.01, 0.5 and 1, while the PBI with
θ = 5 is always the worst. Another constatation is that,
except for small penalty (θ) values, the deterioration of the
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Table 7 Best, average and worst HV with different population sizes and objectives number

Objective
number

Population
size

∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN Number of reference points/
weigh vectors
(U-NSGA-III/ MOEA/DD )

4 100 0.927985 0.983461 0.976237 90

0.927109 0.982320 0.975698

0.926568 0.982029 0.975205

500 0.928631 0.985237 0.976844 130

0.928028 0.984562 0.976004

0.927563 0.984103 0.975236

1000 0.929870 0.985992 0.986773 255

0.928124 0.985128 0.976165

0.928007 0.984536 0.975896

1200 0.928896 0.986213 0.987971 280

0.928364 0.985897 0.975884

0.928103 0.985251 0.974656

1400 0.928987 0.986852 0.976852 290

0.928657 0.986238 0.975366

0.927223 0.985140 0.975101

8 100 0.915631 0.970145 0.967334 90

0.914122 0.969233 0.966785

0.914033 0.969002 0.966176

500 0.919778 0.969986 0.967889 230

0.919266 0.969645 0.967034

0.919025 0.969023 0.965361

1000 0.920244 0.970243 0.971913 320

0.919963 0.969886 0.967362

0.919332 0.969122 0.966772

1200 0.921563 0.970274 0.968946 350

0.919255 0.969962 0.967691

0.918334 0.969146 0.967123

1400 0.920477 0.970988 0.968214 350

0.919876 0.970231 0.967983

0.919241 0.969862 0.967227

performance of mMOEA/DD-AxN-AmN when increasing
the objectives number was less clear when using the PBI
than the weighted Tchebycheff function. Moreover, using
high penalty values, the mMOEA/DD-AxN-AmN encoun-
tered difficulties in finding better solutions with respect to
the weighted Tchebycheff function than the PBI. Besides,
it is concluded from results that the weighed sum is not
suitable for bi-objective problems, but it is a good choice
for four to eight objectives problems. Furthermore, for most
instances, the simultaneous use of scalarizing functions gives
better results than individually using scalarizing functions.
For further investigations, the evolution of the number of
non-dominated solutions according to the size of the popu-
lation, using different scalarizing functions, can be studied.

6.5 The Effect of Using Neighbourhood Restrictions
and Adaptive Operators

In this section, the efficiency of the proposed strategies
based on mating similar parents and adaptive mutation and
crossover operators (AxN and AmN) is examined. The per-
formance of each algorithm is assessed using the average
HV over 25 runs. The population size in mMOEA/DD-AxN-
AmN was set to 1000. The mutation probability is 1/400,
and the recombination probability is 0.8. Neighbour mating
is performed in recombination, and the objectives are corre-
lated. The number of reference points is set to 100. Table 9
shows average HV values when using the neighbourhood
restrictions and adaptive operators.
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Table 9 Best, average and worst HV with neighbourhood restrictions and adaptive operators

Objective number ∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

Bit-flip mutation/SBX crossover 4 0.928687 0.983475 0.979325

0.926324 0.981874 0.977693

0.925714 0.979371 0.977102

8 0.919879 0.970251 0.967351

0.919235 0.969682 0.966487

0.918953 0.968337 0.966022

Using AxN and AmN 4 0.944941 0.983129 0.980369

0.940239 0.981952 0.979121

0.929782 0.980237 0.978922

8 0.920174 0.971002 0.971352

0.919877 0.970254 0.966964

0.919003 0.968968 0.962237

Table 10 Comparing according to the best, average and worst HV values

Original objective number Reduced objective number HV using the feature selection (applied on the reduced objective set)

∈-NSGA-II-AxN-AmN mMOEA/DD-AxN-AmN UNAGSA-III-AxN-AmN

4,5 3 0.899535 0.988986 0.983658

0.899492 0.988953 0.981922

0.899446 0.988911 0.981735

6 4 0.893884 0.974733 0.974893

0.893858 0.974578 0.974659

0.893812 0.974523 0.974468

8 6 0.891972 0.972783 0.972589

0.891953 0.972692 0.972448

0.891927 0.972541 0.971925

Obtained resultswith different numbers of objectives indi-
cate thatAxNandAmN improve considerably the search per-
formance. Better results were obtained for different numbers
of objectives on the mMOEA/DD-AxN-AmN algorithm.
When the number of objectives increases, the efficiency
of mMOEA/DD-AxN-AmN over ∈-NSGA-II-AxN-AmN
becomes clearer. Despite this, much larger improvement
in the average HV value (with and without similar par-
ent recombination) was obtained by ∈-NSGA-II-AxN-AmN
than other algorithms. Moreover, results prove that mating
similar parents improves the diversity without deteriorating
the convergence.

6.6 The Effect of Incorporating the Reduction Based
on Feature Selection

In order to test the effect of reducing the objectives using
the feature selection, we measure the HV (the best, aver-
age and worst values) issued from the proposed evolutionary
algorithm, when incorporating the feature selection pro-

cedure. Objectives are correlated. Table 10 illustrates the
results.

7 Conclusions and Perspectives

This paper aims to propose a deployment scheme in 3D
indoor wireless sensor networks. Different objectives are
considered. Three modified variants of the ∈-NSGA-II, the
U-NSGA-III and the MOEA/DD algorithms are proposed.
Different mutation operators are involved using and adaptive
neighbourhood method of operator’s selection. Moreover,
we investigate the proposed algorithms on a real deployed
testbed with real assumptions in the 3D case. The results
prove that the aggregation-based approach (MOEA/DD) is
generally more efficient than the other proposed algorithms
in resolving the 3D indoor deployment problem. In addition,
it is proven that the adaptive method of selection of mutation
and recombination operators with neighbourhood restric-
tions improves the efficiency of the algorithms. Besides, we
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assess the behaviour of the algorithms when incorporating a
feature selection dimensionality reduction procedure. In the
future, different directions canbe investigated.Wecan further
use a large-scale grid of nodes (as the IOT-Lab [36]) to test
the scalability and the behaviour of the proposed algorithms
in large scale. Moreover, we are working on well-studied and
justified hybridizations of EMOs by incorporating the user
preferences to minimize the execution time and the complex-
ity of the studied MaOP.
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