Arabian Journal for Science and Engineering (2019) 44:3943-3952
https://doi.org/10.1007/s13369-018-03698-2

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

@ CrossMark

Parental Prioritization-Based Task Scheduling in Heterogeneous
Systems

Muhammad Shahzad Arif' @ - Zeshan Igbal’ - Rehan Tarig? - Farhan Aadil?> - Muhammad Awais’

Received: 21 April 2018 / Accepted: 19 December 2018 / Published online: 17 January 2019
© King Fahd University of Petroleum & Minerals 2019

Abstract

Efficient task scheduling is important for achieving high performance in heterogeneous distributed computing systems. The
main focus of this research is to build a task scheduling algorithm for a heterogeneous environment. We proposed an algorithm
named parental prioritization earliest finish time. It has two phases, tasks prioritization phase and processor assigning phase.
In the tasks prioritization phase, tasks will schedule in parental priority queue (PPQ) on the basis of downward rank and
parental priority. Task prioritization is based on the directed acyclic graph. It can schedule the task of successor row before the
current row if it has less communication cost. In the processor assigning phase, the processor will allocate to the scheduled
tasks obtained from PPQ keeping the computation cost to a minimum. This proposed algorithm is compared with HEFT and
CPOP algorithms through graphs generated from random task graph generator and a set of tasks. The experimental results
show that our proposed scheduling algorithm performs significantly better than other algorithms in terms of both cost and
makespan of schedules.

Keywords Heterogeneous systems - Task scheduling - Cloud computing - Directed acyclic graph - Parental priority queue

1 Introduction

A cloud computing is an on-demand provision of processing
capability and storage of data and provides a different type of
resources through the Internet. Through Cloud, the customer
can gain access to computing power, storage and number of
software services by using different applications. Microsoft
Azure, Amazon Web Services and IBM are the cloud ser-

<] Muhammad Shahzad Arif
mshehzad77 @gmail.com

Zeshan Igbal
zeshan.igbal @uettaxila.edu.pk

Rehan Tariq
rehan @ciit-attock.edu.pk

Farhan Aadil
farhan.aadil @ciit-attock.edu.pk

Muhammad Awais

awaisntu@gmail.com

Department of Computer Science, University of Engineering
and Technology, Taxila, Pakistan

Department of Computer Science, COMSATS Institute of
Science and Technology, Attock, Pakistan

vice providers for customers. The cloud computing can be
linked to a large number of resources. Resources size can be
dynamically adjusted according to the customer demand, by
which customer can make full use of different resources in
the cloud computing. The cloud service provider gives dif-
ferent services to the customers, such as infrastructure as a
service (IaaS), platform as a service (PaaS) and software as
a service (SaaS).

With increasing tendency of usage of heterogeneous com-
puting systems, scheduling of tasks is very important to
achieve high reliability, computing powers, scalability and
accessibility in a number of research fields. A group of con-
nected computers has the same specifications (processing
capabilities, RAM, etc.) called a homogeneous system, while
the group of connected computers has different specifications
called a heterogeneous system. Homogeneous distributed
systems are easy to build and administrate because all
processing units and their capabilities are same, whereas
heterogeneous distributed systems are complex to build
and administrate because every node has different process-
ing capabilities and different internal bus architectures [1].
Heterogeneous distributed systems are capable of solving
different types of problems with the same magnitude. Homo-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-018-03698-2&domain=pdf
http://orcid.org/0000-0001-9518-8314

3944

Arabian Journal for Science and Engineering (2019) 44:3943-3952

(a) (b)

Fig.1 Scientific workflows. a Epigenomics. b Montage

geneous distributed systems can only work efficiently for the
same type of tasks.

The availability of a library of scientific workflows is
very helpful in the development and comparison of task
scheduling heterogeneous systems. Such workflows allow
the scheduling and data management for algorithms within
workflow systems. Today some scientific workflows have
been available for open use, including the access to their
data and code. The Montage [2] workflow is one of the main
workflows which is used for the evaluation of task schedul-
ing algorithms. It is an open-source toolkit created by NASA
Infrared Science Archive. The Epigenomics workflow [3] is
basically a data processing pipeline that uses the Pegasus
workflow management system to automate the implemen-
tation of the numerous genome sequencing processes. The
Epigenomics workflow is the map of epigenetic state of
human cells. Figure 1 shows the approximate structure of
both the workflows used in our experiments.

In Fig. 2, we have discussed homogeneous and heteroge-
neous distributed systems. We have four different computers,
vector, multiple instruction stream multiple data streams
(MIMD), single instruction stream multiple data stream
(SIMD) and special purpose. It is assumed that when homo-
geneous systems work independently each computer takes
25 units of time to solve a problem. When these are con-
nected in serial, total computation time is 100 units of time.
When we execute the same problem on vector system, vec-
tor application solved in 1 unit of time, MIMD application
in 17 units of time, SIMD application in 20 units of time and
special purpose application in 12 units of time. Total execu-
tion time on vector system is 50. Now we execute the same
problem on heterogeneous distributed system, all different
applications having 1 unit of time for execution. Total 4 units
of time execute all the problems in the heterogeneous suite,

@ Springer

MIMD Special Purpose Vector SIMD

Serial
Computer

Z

5 ~_— Total Time: 100 Units

Vector
Computer

20 " Total Time: 50 Units

Heterogenous
Suite

1111 Total Time: 4 Units

Fig.2 Hypothetical homogeneous and heterogeneous systems

which is better as compared to serial homogeneous systems
(100 units of time) and vector systems (50 units of time). This
simply tells us that high performance can only be achieved
by using heterogeneous distributed systems.

Heterogeneous distributed computing systems (HeDCSs)
are interconnected resources having different processing
capabilities, RAM and speed of computation [4]. When an
application is executed in HeDCSs environment, the main
concern to be observed is task scheduling. The better task
scheduling can only be possible to achieve better computing
performance as shown in Fig. 1. Any negligence or improper
schedule implicitly degrades the performance of the whole
computing system. Scheduling of tasks focuses on plotting
the tasks on the existing set of resources without violating
the priority constraints and aiming to get minimum schedule
time [5]. Task scheduling algorithms are classified into two
main classes, dynamic and static task scheduling. In dynamic
task scheduling, decision can be made at runtime of tasks,
while in static task scheduling, decision can be made at com-
pile time of tasks, data dependencies, priorities, etc. [6].

In this paper, we are focusing on the scheduling of depen-
dent tasks in heterogeneous computing environment. We
proposed a new task scheduling algorithm, namely parental
prioritization earliest finish time (PPEFT). The PPEFT algo-
rithm is proposed to schedule dependent tasks of directed
acyclic graph (DAG) tasks. For experimentation setup, we
generated DAG from random task graph generator (RTGG).
Also we used standard real-world workflow applications
(Epigenomics and Montage) for experimentation.

Task scheduling is done with processing units of the same
capabilities having negligible communication cost. In this
situation, assigning a task with high communication cost to
the same processor results in low makespan. The inspira-
tion behind this work is to develop a new algorithm for task
scheduling to achieve high performance in terms of cost and
time. We are trying to assign tasks to the same machine and if
not possible then trying to pick another machine having min-

Arabian Journal for Science and Engineering (2019) 44:3943-3952

3945

imum computation time of that task. DAG properties must
be observed, i.e., children cannot get execution time until
their parents are executed [7]. Then, we pick the processing
machine having minimum computation time of that picked
task.

2 Related Work

Scheduling and distribution of resources in cloud computing
affect the overall performance of the system. For schedul-
ing and scaling of resources, numbers of researchers have
developed different algorithms which perform scheduling in
a well-organized way. Existing algorithms are implemented
for comparative analysis. The following are the few algo-
rithms related to task scheduling.

2.1 Heterogeneous Earliest Finish Time (HEFT)
Algorithm

HEFT is an algorithm which is used to schedule dependent
tasks on a heterogeneous network communication. HEFT
algorithm execution is divided into two phases. First one is
tasks prioritization and second is a selection of processes. In
the first phase, ranks of all tasks are calculated. In the next
phase, tasks are assigned to the processor on the basis of the
earliest possible time. The task can become ready to execute
only when the previous tasks in the graph complete their
execution. HEFT algorithm [8] is appropriate for processors
which have a bounded number. The time complexity of the
HEFT algorithm is 0 (n?).

2.2 Critical Path on a Processor Algorithm (CPOP)

CPOP algorithm works same as HEFT algorithm, but it is an
extended version which uses diverse strategy. This algorithm
has two phases: First is prioritizing different tasks and second
is a selection of tasks. The first phase is managed by priority
queue through keys value, downward rank and upward rank.
Binary heaps are used to perform that queues. In the next
phase, if the path that is selected is a critical path, this will
be scheduled on the critical path processor (CCP), and if it
is not a critical path, then the tasks will be assigned to the
processors which have minimum earliest start time (EFT).
Critical path on a processor algorithm [9] is applied to the
heterogeneous computing system. The time complexity of
CPOP algorithm is O (n?).

2.3 Granularity-Based Workflow Scheduling
Algorithm (GSS)

GSS algorithm is given by Kumar [10] for workflow appli-
cations in cloud computing environment. This algorithm has

three phases, namely B-level calculation, score adjustment
and task ranking and scheduling. The objective of GSS algo-
rithm is to minimize the overall makespan and also maximize
the utilization of virtual machines.

2.4 Normalization-Based Task Scheduling
Algorithms for Heterogeneous Multi-cloud
Environment (CZSN, CDSN, CDN and CNRSN)

Panda[11] have presented normalization-based task schedul-
ing algorithms for heterogeneous multi-cloud environment.
These algorithms consist of two-phase scheduling. The
CZSN and CDSN algorithms are based on traditional normal-
ization techniques, while the CDN and CNRSN algorithms
are based on distributed scaling and nearest radix scaling
normalization, respectively.

2.5 Heterogeneous Dynamic List Task Scheduling
Heuristics (HDLTS) Algorithm

HDLTS algorithm is given by Qasim et al. [12] for schedul-
ing of tasks in heterogeneous computing environment. This
algorithm has three main phases: first, selection of entry task
which reduces the execution time; second, mapping of tasks;
third, selection of the task which takes the maximum execu-
tion time and assigning the task to the resource which takes
minimum execution time to execute the task.

2.6 Synthesized Heuristic Task Scheduling
(HCPPEFT) Algorithm

This algorithm works on the basis of duplications base tech-
nique as well as lists base technique in a heterogeneous
system. HCPPEFT algorithm [13] consists of two steps. The
first step is prioritizing the tasks followed by selecting the
resources. In this step, the newest technique is applied in
which there are three levels. The second step is optimizing
the replication of different tasks performed.

2.7 Sorted Nodes in Leveled DAG Division (SNLDD)
Algorithm

SNLDD algorithm is used for task scheduling in a heteroge-
neous distributed computing systems [14]. This algorithm is
also called a high-performance scheduling of tasks algorithm.
SNLDD algorithm has better performance for a less number
of processors. In SNLDD algorithm, DAG is distributed and
used to divide into the levels in view of dependent prioritized
condition between different tasks, in which every task level is
arranged in a descending order with respect to computation
sizes.

@ Springer

3946

Arabian Journal for Science and Engineering (2019) 44:3943-3952

2.8 Allocation-Aware Min—-Min Max-Min Batch
(AMinMaxB) Algorithm

Panda et al. [15] have proposed allocation-aware Min—Min
Max—Min batch (AMinMaxB) algorithm for heterogeneous
multi-cloud systems, which consists of three phases, namely
matching, allocating and scheduling to fit them in multi-cloud
environment. The allocating phase is used to fill the gaps
between matching and scheduling phases.

2.9 Constrained Earliest Finish Time (CEFT)
Algorithm

Jiang [16] has proposed improved CEFT algorithm for het-
erogeneous system scheduling by the use of concepts of
constraining critical path. Constraining critical path is estab-
lished for the relevant DAG, while the task scheduling is
performed on the basis of EFT algorithm technique. This
algorithm technique is used for scheduling tasks of limited
time span.

3 Problem Definition

In HeDCSs, the scheduling of static tasks is represented by
DAG for a parallel application. It contains n tasks of set
T and number of edges e, and both are defined as a tuple
(T, E). In a parallel application, every task #; € T, while
the communication path between #; and ¢; is represented by
edge (1;, t;). If the (#;, t;) € E, thent; € T must finish its
execution before the start of ; € T execution. In an edge (#;,
tj), the task ¢; is a child task and #; is a parent task. If task f;
has no parent, then it is called an initial task and if #; has no
child, then task is called a final task of DAG. On every edge
(#i,tj), a value cc;; linked with it shows the communication
cost from tasks #; to ¢;.

The HeDCSs contain m processors of set P where each
processor has various computation capabilities. The matrix
C contains the computation cost m x n where m is the number
of processors and 7 is a set of tasks. Every element of matrix
w;; € C shows the computation cost of task #; on processor
pj,and here it assumes each processor is completely linked.
For the execution of concurrent tasks on different processors,
the autonomous communication unit is used that helps in
communication among processors. If two tasks are scheduled
on different processors, the total data transmitted on edge (%;,
tj) are equal to the communication cost cc;; from task f;
to task #;. If task # and task t; are executed on the same
processor, then its communication cost cc;; will be taken as
zero. Execution of child task can only start on the processor
when parent task is finished its execution, and all data are
available to that processor. Each task must be assigned to
the processor in a schedule that total makespan (runtime)

@ Springer

Fig.3 DAG example for dependent tasks

should be minimum for parallel execution of tasks. Figure 2
shows an example of a DAG for the dependent task with a
computation time matrix.

Figure 3 shows the example of DAG consisting of 11 tasks
with #y as an initial task and #1¢ as a final task. Tasks #q, t2,
13, 14, t5 and t¢ are dependent on 7y, all these tasks can only
be executed once 7y finished its execution, and all data are
available. An edge (7o, t1) has a communication cost of 5,
while an edge (#1, #7) has a communication cost of 7. Task
119 is dependent on tasks #7, rg and f9.

4 The Proposed Algorithm Parental
Prioritization Earliest Finish Time

PPEFT algorithm is proposed to schedule dependent tasks
in a heterogeneous environment. PPEFT algorithm has two
phases, prioritization of task phase and processor assigning
phase for execution of tasks. Tasks prioritization phase ranks
all tasks calculated on the basis of parental prioritization.
Processor selection phase tasks are assigning to the processor
on the basis of earliest possible finish time.

4.1 Tasks Prioritization Phase

Tasks prioritization phase (TTP) is an important phase of
task scheduling. This phase decides the priority of each task
on the basis of ranks calculated by parental prioritization.
A tasks list is generated by sorting the ranks of all tasks.
Ranks are calculated top-down of a DAG starting from the
initial task. Then, it calculates the rank of tasks which is
dependent on the initial task. The rank values of each task
are calculated by combining communication costs (CCs) and
mean computation time. The parental prioritization give the

Arabian Journal for Science and Engineering (2019) 44:3943-3952

3947

advantage to schedule the task which is on next layer before
the tasks of the current layer in DAG, if it has less rank value
as well as not dependent on any other tasks of which rank
value is not calculated. Rank of node n; can be calculated
using mean computation time (w;) of all processors of the
current task, maximum communication cost of parent task
and its rank value. All the calculated ranks are sorted in a
descending order and line up in a queue to assign to the
processor. To calculate the rank of task n;, it is defined as

rank (n;) = w; + max
n;epar(n;)

(ccij + rank (n})) 60
where n; is the current node, w; is the mean computation
time of task n;, par(n;) is parent tasks of n; and cc;; is a
communication cost of edge (#;, f;). As ranks are calculated
by traversing from top to down on the tasks graph, itis started
from the initial task. Rank of initial task njy; is equal to

rank (ini) = Winj (2)

where njpy; is a first node and wyjy; is an average computation
time of the initial task.

4.2 Processor Assigning Phase

In this phase, the processor assigns to each task on the basis of
task scheduled in tasks prioritization phase. Most algorithms
for task scheduling consider the earliest possible available
time, at the time processor finished its execution. But in
PPEFT algorithm, it considers the insertion policy in which
tasks assign to the processor on the basis of earliest start time
(EST) of available processors and earliest finish time (EFT).
EST is the earliest possible time to start the execution of the
task. The EST of node n; can be calculated by

EST (ni, pj) = max [avail (pj) , (AFT + CCij)] 3)

where n; is the current node, pis the total computation time
on the processor, avail(p ;) is the availability of processor p;
and cc;; is the communication cost. For initial task, EST for
each processor considers as zero because computation time
starts from zero on each processor. EFT can be calculated by

EFT (n;) = w; +EST (n;, p;))

where w; is the computation time of each processor. EFT is
the earliest finish time of tasks on each processor, consider-
ing EST and computation of each processor for task ;. The
processor which has least EFT value considers as idle time
slot of task n;; it will be scheduled on that processor. Fig-
ure 4 shows the flowchart of our proposed algorithm. It starts
with the input of computation time and communication cost

of tasks. Two different types of input are taken from real-
world applications workflows (Montage and Epigenomics)
and RTGG. At the end of flowchart, our proposed algorithm
outputs the scheduled tasks.

5 Experimental Results and Discussion

In this section, we present the performance comparison of our
proposed algorithm PPEFT with well-known task schedul-
ing algorithms such as HEFT and CPOP algorithm. To test
the performance of task scheduling algorithms, simulation
environment is run on CloudSim 3.0.3 and WorkflowSim
1.0 with graphs generated through python library. Different
sets of dependent tasks graphs are created with random and
manually application DAGs. We also performed experiments
using standard scientific workflows. Each task scheduling
algorithm is run on tasks DAG to generate resulted sched-
ules of given tasks. Finally, a set of performance metrics is
applied to each algorithm for performance comparison.

5.1 Performance Comparison Metrics

The performance of scheduling algorithms is compared on
the basis of the following metrics:

e Schedule length ratio (SLR): As a different set of tasks
graphs (DAGs) are used, it is important to calculate the
makespan (scheduling length) of the output of above-
mentioned algorithms. It is compulsory to normalize the
makespan to lower bound called SLR.

makespan

SLR = :
> nj €CPyinmin pj e Q {wi,j}

&)

where makespan is the scheduling length and CPy, is the
minimum computation cost of critical path tasks in SLR.
Since SLR is lower bound, it cannot be less than one for every
scheduling algorithm. The best algorithm on performance is
the one which has the lowest SLR on the graph.

e Speedup: The speedup value for a DAG is the ratio of
sequential execution time (SET) to the parallel execution
time (PET). The SET is calculated by assigning each task
to one processor, while PET is calculated by assigning
tasks to more than one processor.

minpj €0 {an € VWiyj}
makespan

Speedup = (6)

Springer

3948

Arabian Journal for Science and Engineering (2019) 44:3943-3952

[Start

v

Input Computation Time and
Commumnication Cost of Tasks

¥

Calculate Ranks downward from eqn. (1)

'

Insert initial node nini to PPQ and Lookup List

v

e

4

Remove node n: from Lookup list

Insert node with smallest rank ns from lookup listin PPQ

No All tasks are
inserted in PPQ

v

Get all dependent child tasks of ns

L

Take first node n; from child tasks

¥

«///I;“ZI parents of
q:}_ node executed

Yes

Insert node niin lookup list

4

Remove node niin child tasks list h—

If child taskslist
isempty

Fig.4 PPEFT algorithm (flowchart)

e Efficiency: It is obtained by the ratio of speedup value to
total resources used for task scheduling graph, which is
defined as

speedup

Efficiency = @)

total resources

5.2 Randomly Generated Task Graphs and
Performance Comparison

To assess the performance of our proposed algorithm PPEFT,
we considered task graphs which are randomly generated.
RTGG was implemented to get weighted tasks graphs with
different properties which rely on various input parameters.

Springer

et
(a1
i

Select node nj fom PPQ

¥
Compute EFT from eqn (4)

r

Assign Task nj with minimum EFT to
Processor pj

All Tasks
scheduled

[End

Our simulation structure permits us to give different values
to the parameters used in RTGG. The simulation framework
works in a manner. It first executes RTGG program to gen-
erate random tasks DAGs, then it executes the different task
scheduling algorithms to get the result in scheduling outputs,
and finally, it computes the performance metrics of the output
schedules.

5.3 Real-World Scientific Workflow Performance
Comparison

In addition to the RTGG, we evaluate the performance of our
proposed algorithm and we also perform simulations with
two real-world scientific workflows such as Montage [2] and

Arabian Journal for Science and Engineering (2019) 44:3943-3952

3949

Table 1 Details of workflows

used in experiments Workflows Total number of tasks in different workflow sizes
Small Medium Large XL

Montage 25 50 100 1000
Epigenomics 24 46 100 997

I;:ifP?EFi‘Cglegd(l)lrli:hI; Oi(:lug:ghby Step Ready queue Task selected EFT Processor assigned

iteration P1 P2 P3
1 to to 12 23 19 p1
2 f1t2,13,14,15,16 f 25 34 27 P
3 1,13,14,15,t6,17 5] 42 45 41 P3
4 13,14,15,16,17,18 15 69 89 73 P1
5 13,14,16,17,18 16 75 91 81 P1
6 13,14,17,18 13 102 97 103 P2
7 13,14,17 14 104 114 109 P1
8 13,17 13 124 117 121)2
9 17,9 f9 126 125 129 P2
10 t7 t7 145 172 152 Pl
11 Ho 1o 189 213 194 P1

Epigenomics [3]. For each workflow, we have used four dif- 200 { (g 1EFT

ferent sizes in our experiments (small, medium, large and cPoP

extra large) given in Table 1. Small-size workflow of Mon- | el

tage has 25 tasks and Epigenomics has 24 tasks, medium-size 150 -

workflow of Montage has 50 tasks and Epigenomics has 125]

46 tasks, large-size workflow of Montage and Epigenomics f

has 100 tasks, and extra-large-size workflow of Montage has @ 100

1000 and Epigenomics has 997 tasks. z 75 |

The performance of our proposed algorithm PPEFT is

compared with HEFT and CPOP algorithms on different 50 4

graphs generated from RTGG on the basis of SLR, speedup s |

and efficiency. First, we compare the performance of schedul-

ing algorithms by considering a number of tasks to a fixed
value of 10 (0, 1,2 ...19) and a fixed number of proces-
sors to 3 (p0, plandp2). Each of the results is calculated
from the average of 100 random task graphs generated from
RTGG. The weight of edges is given randomly from 5 to 25,
while the weight of tasks varies from 10 to 30. Table 2 shows
the schedule produced by the PPEFT algorithm in each iter-
ation. This table consists of ready queue, task selected (tasks
which are ready to be assigned to the processor), EFT of tasks
on each processor and the possessor assigning to the task.
Figures 5 and 6 show that results after simulation of our
proposed algorithm PPEFT outperform other algorithms on
the basis of SLR and speedup. By comparing the average
SLR value of each scheduling algorithm, the PPEFT algo-
rithm gives improved results than the HEFT algorithm by
13.00% and the CPOP algorithm by 15.00%. Figures 7 and 8
show that average efficiency of PPEFT algorithm is far better

10
Number of Tasks

Fig.5 Average SLR with ten tasks

than of HEFT algorithm and CPOP algorithm. With increas-
ing the number of processors, PPEFT algorithm gives more
improved results.

Figure 9 shows the comparison of the overall schedule
length of PPEFT algorithm with HEFT and CPOP algo-
rithms. This comparison is made by taking three processors
and ten tasks. Random DAG was generated from RTGG. Our
proposed PPEFT algorithm gives improved results as com-
pared to other algorithms.

Figure 10 shows the average SLR of PPEFT, HEFT and
CPOP algorithms by increasing the number of tasks to 100.
‘We can see that with the increase in a number of tasks, PPEFT
algorithm gives improved results. PPEFT algorithm clearly
outperforms HEFT and CPOP algorithms.

@ Springer

3950

Arabian Journal for Science and Engineering (2019) 44:3943-3952

200 1 T HeFT n

175 A

150 A

Average SLR
5 K
o w

Number of Tasks

Fig.6 Average SLR of ten tasks

1.6

1.4

Efficiency
o o B &
o [+ o N

o
£
|

o
N
|

o
=)
|

6 12
Number of Processors

Fig. 7 Efficiency of PPEFT, HEFT and CPOP algorithms on 24 pro-
cessors

3.5 [mmm HEFT
CPOP
m— PPEFT

Efficiency

05

00
100 200 300 400 500

Number of Processors

Fig. 8 Efficiency of PPEFT, HEFT and CPOP algorithms on 500 pro-
cessors

Figures 11 and 12 show the increase in the number
of tasks to 500. The average SLR of PPEFT, HEFT and
CPOP algorithms is calculated. The average schedule length
ratio of CPOP is highest, followed by HEFT algorithm and
our proposed algorithm having the smallest SLR value. So

Springer

200 - . HEFT
cPoP
175 - W PPEFT
150 -
125 -

100 -

75

Schedule Length

HEFT CP'OP
Algorithms

PPEFT

Fig.9 Execution time of PPEFT, HEFT and CPOP algorithms

600 - [mmm HEFT
cPoOP
NN PPEFT
500 A
400
[
-
(9]
&
@ 300 A
[
>
X
200 -
100 -

10 20 30 40 50 60 70 80 90 100
Number of Tasks

Fig. 10 Average SLR of 100 tasks

5000 - |mmmm HEFT
CcPOP
EEE PPEFT

3000

Average SLR

2000

1000

50 100 150 200 250 300 350 400 450 500
Number of Tasks

Fig. 11 Average SLR of 500 tasks

increasing the number of tasks and processor effects in per-
formance improvement in PPEFT algorithm.

Arabian Journal for Science and Engineering (2019) 44:3943-3952

3951

Average SLR
8
8

N
o
o
o

1000

) 100 260 300 400 500
Number of Tasks

Fig.12 Average SLR of 500 tasks

5000 - W HEFT
cPoP
W= PPEFT
4000 4
<
-
g
S 3000
-
2
S
°
]
£ 2000
O
]
1000
0- -
HEFT cpoP PPEFT
Algorithms

Fig. 13 Schedule length of HEFT, CPOP and PPEFT on 500 tasks

1.0 | [mm HEFT
cPoP
m— PPEFT

o o b4
S o ®

Normalized Average Makespan

o
o

Montage_25 Montage_50 Montage_100

Montage Workflow Schedule

Montage_1000

Fig. 14 Average makespan of Montage workflow

Figure 13 shows the comparison of schedule length of
HEFT, CPOP and PPEFT, respectively. This experimental
results show that schedule length of PPEFT algorithm is less
as compared to other algorithms. Increasing the total number
of tasks and processor results in better task scheduling.

m— HEFT
cPoP
0. || mm peeFT

o °
FY o

Normalized Average Makespan
o
2

0.0+

24 a6 100 997

Epigenomics Workflow Schedule

Fig. 15 Average makespan of Epigenomics workflow

Figure 14 shows the average makespan of Montage work-
flow. In this experiment, four different sizes of Montage
workflow are used. Montage_25 is the smallest size con-
taining 25 tasks, Montage_50 is the medium size containing
50 tasks, Montage_100 is the large size containing 100
tasks, and Montage_1000 is the extra large size containing
1000 tasks. Experimental results show that PPEFT algorithm
works better on Montage workflow as compared to HEFT and
CPOP algorithms. Figure 15 shows the Epigenomics work-
flow used for experimentation. Four different sizes are used
(small, medium, large and extra large) containing 24, 46, 100
and 997 tasks, respectively. Experimental results show that
PPEFT algorithm outperforms HEFT and CPOP algorithm
on Epigenomics workflow.

6 Conclusion and Future Work

In this paper, we have proposed the scheduling of a task algo-
rithm for heterogeneous computing systems called PPEFT.
This new algorithm has two phases, tasks prioritization phase
and processor assigning phase. In tasks prioritization phase,
tasks are scheduled on the basis of downward ranks and
parental priority. PPEFT uses parental prioritization queue
to schedule tasks. PPQ uses to schedule dependent tasks of
next row of task graph (DAG) before the current row, which
have less communication cost. In the processor assigning
phase, the processor is assigned to tasks list obtained from
PPQ, which give the minimum computation time. Therefore,
PPEFT gives more efficient results for scheduling of tasks
than other task scheduling algorithms. The performance of
our new proposed algorithm PPEFT is compared with well-
known algorithms HEFT and CPOP. The comparison of the
algorithm is made on the basis of the RTGG and various set of
tasks graphs (DAGs). The PPEFT algorithm gives improved
results in terms of average SLR, efficiency and speedup. Our
future research plan is to extend the PPEFT algorithm for the

@ Springer

3952

Arabian Journal for Science and Engineering (2019) 44:3943-3952

scheduling of tasks that will respond to the changes in virtual
machines and network load.

References

1. Convolbo, M.W.; Chou, J.: Cost-aware DAG scheduling algorithms
for minimizing execution cost on cloud resources. J. Supercomput.
72(3), 985-1012 (2016)

2. Montage: An astronomical image engine. http://montage.ipac.
caltech.edu. Accessed 19 Aug 2018

3. Epigenomics: USC Epigenome Center. http://epigenome.usc.edu.
Accessed 19 Aug 2018

4. Xie, Y.; Wu, J.; Liu, F.: A hierarchic hybrid scheduling algorithm
for static task with precedence constraints. In: 2016 IEEE Trust-
com/BigDataSE/ISPA, 2079-2085 (2016)

5. Zhang, L.; Li, K.; Xu, Y.; Mei, J.; Zhang, F.; Li, K.: Maximizing
reliability with energy conservation for parallel task scheduling in
a heterogeneous cluster. Inf. Sci. 319, 113-131 (2015)

6. Zhang, Q.; Zhani, M.E,; Boutaba, R.; Hellerstein, J.L.: Dynamic
heterogeneity-aware resource provisioning in the cloud. IEEE
Trans. Cloud Comput. 2(1), 14-28 (2014)

7. Wu, W.; Bouteiller, A.; Bosilca, G.; Faverge, M.; Dongarra, J.:
Hierarchical DAG scheduling for hybrid distributed systems. In:
2015 IEEE International Conference on Parallel and Distributed
Processing Symposium, pp. 156-165 (2015)

@ Springer

10.

11.

12.

13.

14.

15.

16.

. Keshanchi, B.; Souri, A.; Navimipour, N.J.: An improved genetic

algorithm for task scheduling in the cloud environments using the
priority queues: formal verification, simulation, and statistical test-
ing. J. Syst. Softw. 124, 1-21 (2017)

. Dai, Y.; Zhang, X.: A synthesized heuristic task scheduling algo-

rithm. Sci. World J. 2014, 1-9 (2014)

Kumar, M.S.; Gupta, I.; Panda, S.K.; Jana, P.K.: Granularity-based
workflow scheduling algorithm for cloud computing. J. Supercom-
put. 73(12), 5440-5464 (2017)

Panda, S.K.; Jana, P.K.: Normalization-based task scheduling algo-
rithms for heterogeneous multi-cloud environment. Inf. Syst. Front.
20(2), 373-399 (2018)

Qasim, M.; Igbal, T.; Munir, E. U.; Tziritas, N.; Khan, S. U.; Yang,
L. T.: Dynamic mapping of application workflows in heterogeneous
computing environments. In: IEEE international parallel and dis-
tributed processing symposium workshops, pp. 462471 (2017)
Nasr, A.A.; Bahnasawy, N.A.E.; Sayed, A.E.: A new duplication
task scheduling algorithm in heterogeneous distributed computing
systems. Bull. Electr. Eng. Inform. 5(3), 373-382 (2016)

Eswari, R.; Nickolas, S.; Arock, M.: A path priority-based task
scheduling algorithm for heterogeneous distributed systems. Int. J.
Commun. Netw. Distrib. Syst. 12(2), 183-201 (2014)

Panda, S.K.; Gupta, I.; Jana, P.K.: Task scheduling algorithms for
multi-cloud systems: allocation-aware approach. Inf. Syst. Front.
19, 1-19 (2017)

Jiang, Y.; Shao, Z.; Guo, Y.: A DAG scheduling scheme on hetero-
geneous computing systems using tuple-based chemical reaction
optimization. Sci. World J. 2014, 1-23 (2014)

http://montage.ipac.caltech.edu
http://montage.ipac.caltech.edu
http://epigenome.usc.edu

	Parental Prioritization-Based Task Scheduling in Heterogeneous Systems
	Abstract
	1 Introduction
	2 Related Work
	2.1 Heterogeneous Earliest Finish Time (HEFT) Algorithm
	2.2 Critical Path on a Processor Algorithm (CPOP)
	2.3 Granularity-Based Workflow Scheduling Algorithm (GSS)
	2.4 Normalization-Based Task Scheduling Algorithms for Heterogeneous Multi-cloud Environment (CZSN, CDSN, CDN and CNRSN)
	2.5 Heterogeneous Dynamic List Task Scheduling Heuristics (HDLTS) Algorithm
	2.6 Synthesized Heuristic Task Scheduling (HCPPEFT) Algorithm
	2.7 Sorted Nodes in Leveled DAG Division (SNLDD) Algorithm
	2.8 Allocation-Aware Min–Min Max–Min Batch (AMinMaxB) Algorithm
	2.9 Constrained Earliest Finish Time (CEFT) Algorithm

	3 Problem Definition
	4 The Proposed Algorithm Parental Prioritization Earliest Finish Time
	4.1 Tasks Prioritization Phase
	4.2 Processor Assigning Phase

	5 Experimental Results and Discussion
	5.1 Performance Comparison Metrics
	5.2 Randomly Generated Task Graphs and Performance Comparison
	5.3 Real-World Scientific Workflow Performance Comparison

	6 Conclusion and Future Work
	References

