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Abstract
Density and delta-distance clustering (DDC) is an ideal clusteringmethod that computes the density and delta distance of data.
When data derived from the two indicators are large, these areas can be defined as cluster centers. DDC has good clustering
performance comparedwith some other clustering algorithms. However, DDC has a high time complexity and requiresmanual
identification of cluster centers. To fill these gaps, an efficient and intelligent DDC (EIDDC) algorithm is proposed in this
study. EIDDC begins from using a sampling method based on locality-sensitive hashing (LSH) to obtain a small-scale dataset.
The density and delta distance of each data point are calculated from this dataset to reduce time complexity. Cluster centers
are intelligently recognized by utilizing density-based spatial clustering of applications with noise-based outlier detection
technology. Experiment results show that LSH can obtain good representatives of the original dataset and that the proposed
outlier detection method can recognize the cluster centers of a given dataset. The results also reveal the efficiency of EIDDC.

Keywords LSH · Outlier detection · Density · Delta distance · Clustering

1 Introduction

Clustering is a method of unsupervised learning that parti-
tions a dataset into clusters, such that intra-cluster similarity
ismaximized and inter-cluster similarity isminimized [1]. Its
applications range from image processing to pattern recogni-
tion and social networks [2–4]. Many clustering algorithms
have been developed, such as K-means [5], fuzzy C-means
[6], and self-organizing map [7]. In these algorithms, the
number of clusters is required to be preset and the local opti-
mal solution is often obtained. Moreover, cluster results rely
on data distribution [8]. Rodriguez and Laio presented a new
clustering method based on the metrics of density and delta-
distance clustering (DDC), which can identify the number of
clusters and shows good performance for data with arbitrary
shape [9].
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DDC has been adopted in numerous applications because
of its good performance. This method has been enhanced for
hyperspectral band selection. First, the ranking score of each
band was computed by weighing the normalized density and
delta distance and an exponential-based learning rule was
then employed to adjust the cutoff threshold for a different
number of selected bands [10]. A density-ordered tree (DOT)
was constructed using DDC to represent the original data in
hypernetwork, and community detection was converted to a
DOT partition problem [11]. The age of facial image was
estimated using DDC in [12]. The estimation process mainly
includes the following two steps: (1) estimating the density
peaks for each age group and (2) obtaining the possible esti-
mated ages according to the distances of the facial image to
the peaks. In [13], DDC was used in calculating the density
and delta distance of each user to find social circles in social
networks. Other applications include anomalous cell detec-
tion [14], fault diagnosis in cloud computing [15], and image
processing [16].

DDCbeginswith computing the density and delta distance
of data, and the data with anomalously large indicators are
defined as cluster centers. The performance of EIDDC, as an
ideal clustering method, should still be improved. Wang [17]
introduced the concept of entropy to determine the cutoff
distance value dc, which is a parameter used in calculating
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density.Without a quantitative criterion to determinewhether
a data point is a cluster center in DDC, Zhong [18] pro-
posed that the product of density and delta distance could
be used as quantitative criteria to recognize cluster centers,
whereas other parameters must be preset. Other improve-
ments in DDC include using kernel density estimation to
obtain the density [13]. Nevertheless, work has seldom been
performed to resolve the high computation complexity and
the manual recognition of cluster center problem in DDC.

An efficient and intelligent DDC (EIDDC) is developed
in this study. The novelty of EIDDC is due to introduc-
ing a sampling method based on locality-sensitive hashing
(LSH) function to improve clustering speed, and embedding
a density-based spatial clustering of applications with noise
(DBSCAN)-based outlier detection approach to determine
cluster centers intelligently.

The rest of this paper is organized as follows: Sect. 2
briefly introduces the original DDC algorithm. Section 3
presents the EIDDC algorithm. Details and results of the
experiment on synthetic and UCI dataset are presented in
Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Original DDC Approach

For a given dataset X = {x1, x2, . . . , xN }, N is the size
of dataset X , and clustering divides X into k clusters
C = {c1, c2, . . . , ck}. For each cluster Ci ,Ci ⊆ X and
C1 ∪ C2 . . .Ck = X .

The clustering process of DDC consists of two steps. The
first step is to compute the density and delta distance of
each data point. The data with two large parameters are then
defined as cluster centers. As used in [13], the Gaussian ker-
nel function is adopted in this study in computing density to
avoid large statistical errors. Density ρi is defined as follows:

ρi =
∑

j

exp

(
−‖ di, j − dc ‖2

2σ 2

)
, (1)

whereσ is a smoothing parameter, ‖ di, j−dc ‖ represents the
distance between di, j and dc, di, j represents the Euclidean
distance between data i and j , and dc denotes cutoff distance.
Delta distance δi is defined as the minimum distance from xi
to points of higher density, and δi is calculated as

δi =
{
max j (di j ) if datum i has the biggest density
min j :ρ j>ρi (di j ) otherwise.

(2)

In the first step, the time complexity of computing these
two parameters is O(N 2). The second step is assigning each
data point to the same clusters as those of its nearest neighbor

in the cluster centers, and the corresponding complexity is
O(N ).

The time complexity in DDC is O(N 2), and such clus-
tering speed is considered slow in the current big data era.
Moreover, manual recognition of cluster centers may be dif-
ficult. Some improvements are proposed in this study to solve
these issues.

3 EIDDC Approach

In this study, the EIDDC approach divides clustering into
three steps. The first step is using LSH to sample dataset X
to obtain a small Y . The second step is calculating the density
and delta distance of each data point in Y . The cluster centers
are then recognized by utilizing outlier detection technology.
The last step is assigning a label for each data point of dataset
X .

3.1 LSH Sampling

On the basis of the principle of DDC, the key process is
to obtain the cluster centers, which are the data points with
relatively large density and are far away from the others in
the dataset. However, the time complexity O(N 2) in DDC is
high. If the size of dataset X is reduced, and data that aremore
likely to be cluster centers are kept, clustering may perform
poorly or be the same as the original approach, but with high
clustering speed.

LSH is a sensitive distance hash function [19] that can
map data close to each other into a same bucket and those
distant from each other into a different one. If LSH is used
as a sampling method for a dataset, then densely distributed
data can be mapped into the same bucket and sparsely into
a different one. During sampling, a large amount of data can
be extracted from a bucket with many data, and only few data
can be extracted from a bucket with small amount of data.
Thus, data located in or around the center of a densely dis-
tributed data region can be extracted as the sample dataset.
These data are preferred cluster centers in DDC algorithm.
Therefore, determining the better cluster centers among those
from the small-scale dataset sampled by a LSH-based sam-
pling method will exert little or no impact.

Several distance-sensitive functions can be used in LSH
[20,24,25]. Due to being the most best-known distance mea-
sure and useful in many cases, the Euclidean distance is
usually used as a similarity metric in many clustering algo-
rithms. In the present study, the Euclidean distance is also
selected as the hash function [20] in the sampling process.
The function is defined as follows:

ha,b(v) =
⌊
a · v + b

w

⌋
, (3)
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Fig. 1 The principle of LSH

where v is the data to be mapped, a is a random vector of the
same dimension to v, w is the bandwidth of the bucket, b is
a random variable between [0, w], and a · v is an operation
of v projecting to a. The result ha,b(v) is an integer and the
label of the bucket. Figure 1 shows the mapping of data into
buckets using the Euclidean distance-based hash function,
and the data have two dimensions x and y. In Fig. 1, v1, v2,
and v3 are mapped into the same bucket (bucket 2) because
they are relatively close to each other, whereas v4 is mapped
into another bucket (bucket 3) because of its distance from
the others.

The sampling process for dataset X using the Euclidean
distance-based hash function is described in Algorithm 1. a,
b, and w are the parameters of the Euclidean distance-based
hash function, and r is the sampling ratio. The first step is
to define the initial sampled dataset Y . The second is to map
each data point into its corresponding bucket. Third, data
points are extracted at the ratio r from each bucket. At last,
sampled dataset Y is returned, that is |Y | = r |X |.

Algorithm 1 LSH sampling algorithm
I nput : X , a, b, w, r
Output : Y
Procedure :
1: Def ine Y = []
2: for each xi ∈ X do
3: ha,b(v) = � a·v+b

w
�

4: end for
5: for each ha,b(xi ) do
6: select r ∗ |ha,b(xi )| number of data to obtain Y
7: end for
8: return Y
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Fig. 2 An example of cluster centers

3.2 Intelligent Recognition of Clusters Centers

The manual recognition of cluster centers is difficult and
troublesome when the number of cluster centers is consider-
ably large. Thus, an outlier detection technology is proposed
to identify the cluster centers intelligently. Only the density
and delta distance of the sampled dataset Y should be com-
puted. In this study, cluster centers are also recognized from
this small-scale dataset.

Given that their density ρ and delta distance δ are rela-
tively large, cluster centers are distant from most of other
data in a 2D coordinate map, which consists of two param-
eters. Figure 2 shows an example of the DDC approach, in
which the 98th, 122nd, and 148th data points are the cluster
centers of a given dataset. These cluster centers are distant
from the other non-cluster centers. Figure 2 also illustrates
that these non-cluster centers are connected as a respective
cluster. In this study, a new dataset Z , which comprises den-
sity and delta distance, can be determined. The cluster centers
are the outliers of this dataset because they are distant from
most other data points. In this manner, the cluster centers,
which are also the outliers in dataset Z , can be determined
using the outlier detection technology.

Several commonly used outlier detectionmethods include
those that are based on statistical distribution, density, or
clustering. In dataset Z , non-outliers connect together to
form a density-connected region; however, outliers are far
from the density-connected region. In comparison with other
methods, DBSCAN has better performance for clustering
density-connected regions [21], and it is developed in this
study to find the outliers of dataset Z ; these outliers are also
the cluster centers of dataset Y .

The process of intelligently recognizing cluster centers
using DBSCAN is described in Algorithm 2. For each data
point zi in dataset Z , if zi is core data, then cluster C is gen-
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erated and expanded by finding all the data that are densely
connected to it. After the expansion, cluster C is removed
from dataset Z . Otherwise, zi , being not core data, can be
joined in dataset O . Finally, O is defined as the dataset of all
the outliers in Z ; these outliers are also the cluster centers of
dataset Y .

Algorithm 2 Intelligent recognition of cluster centers
I nput : Z
Output : O
Procedure :
1: Def ine O = []
2: for each zi ⊆ Z do
3: if zi is a core data then
4: create a cluster C included zi and its nearest neighbors;
5: f ind zi which is densi t y connected to C to expand C;
6: remove C f rom Z;
7: else
8: zi is an outlier
9: O = O ∪ zi
10: end if
11: end for
12: return O

3.3 EIDDC Approach

To increase the clustering speed and obtain data with high
probability to be cluster centers, a LSH-based sampling
method is used to extract small dataset Y from X in EIDDC.
After computing the density ρ and delta distance δ of each
data point in dataset Y , a DBSCAN-based outlier detec-
tion method is utilized to recognize cluster centers O =
{o1, o2, . . . , ok}. Finally, each data point in dataset X is
labeled according to its distance to each cluster center in
dataset O .

In EIDDC, the size of the sampled dataset Y is assumed
as n, and n < N . The time complexity of the LSH sampling
process is O(N ). The required time for the computation of
the density and delta distance of each data point in dataset Y
is O(n2). The time complexity of recognizing cluster centers
using the DBSCAN-based method is O(n∗log(n)) [21], and
the final step is O(N ). Thus, the time complexity of EIDDC
is O(n2). Such clustering speed will be faster than that of
DDC, whose time complexity is O(N 2).

4 Experimental Evaluation

Experiments were conducted to assess the efficiency and
intelligence of the proposed method. The datasets used in
the experiments are shown in Table 1, among which datasets
test and test1 are synthetic datasets, whereas the other five

Table 1 Dataset used in experiments

Dataset Size Dimension Clusters

Test 2580 2 3

Test1 150 2 3

Wine 178 13 3

Seeds 210 7 3

Banknote 1372 4 2

Spambase 4601 58 2

Imageseg 2100 19 7
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Fig. 3 The distribution of the dataset test

are UCI datasets. All the UCI datasets are normalized before
the experiments.

The experiments aim to answer the following questions:

1. Is the dataset extracted by LSH method a good represen-
tation?

2. Can the outlier detection technology, which is based on
DBSCAN, identify clustering centers intelligently?

3. In comparisonwithDDC, can EIDDC cluster efficiently?
4. In comparison with the other clustering methods, how

well does EIDDC perform?

4.1 LSH Sampling Experiment

The following experimentswere validated via the dataset test.
Different parameters and sampling ratio were introduced to
verify the effects of LSH sampling method. Figure 3 shows
the distribution of the initial dataset test, and the distributions
of sampled dataset are exhibited in Fig. 4. The left and right
column show the distribution of sampled dataset obtained
by LSH sampling method when ratio r = 0.2 and r = 0.1,
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Fig. 4 The results of LSH sampling
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respectively. The difference among these three rows lies in
the setting of different sampling parameters.

First, the parameters of LSH sampling are as follows: a =
[6, 6],w = 0.3, and b = 0.2. The results are shown in Fig. 4.
Figure 4a, b represents the subdata when the sampling ratios
are r = 0.2 and r = 0.1, respectively. On the basis of the
description of the DDC approach, a cluster center should
be located in or around the center of densely distributed data
region. FromFig. 4a, b, the points that have higher probability
to be cluster centers can be extracted exactlywhether r = 0.2
or r = 0.1. Thus, the reduction in the dataset size using the
proposed method will not affect the process of finding the
cluster centers. Then, different parameters of LSHare also set
as a = [4, 3], w = 0.5, b = 0.2 and a = [0.5, 0.3], w = 3,
b = 2, respectively. The results are shown in Fig. 4c–f. In
these two cases, good cluster centers can also be obtained
whether r = 0.2 or r = 0.1, and the sampled subdata are a
good representation of the original dataset.

Hence, regardless of the parameters and sampling ratio,
data that have high probability to be cluster centers can
remain in the subdata using LSH sampling method.

4.2 Intelligent Recognition of Cluster Centers

In dataset test1 and some UCI datasets, experiments verified
whether the DBSCAN-based method (Algorithm 2) could
intelligently find the cluster centers, and Fig. 5 shows the
results in 2D coordinate maps, where the x-axis stands for
density and the y-axis stands for delta distance. The left col-
umn demonstrates the result of the original approach, namely
DDC in a different instance. The right column provides the
result of the intelligent recognition of cluster centers corre-
sponding to that in the left column. In each right subfigure,
each digit encircled in red stands for the index in the dataset,
and it is recognized as a cluster center. Non-clustered centers
are not marked with digits and not encircled in red in the
right subfigure. To effectively identify cluster centers using
the DBSCAN method, the density ρ and delta distance δ are
normalized. This normalization is also embodied in the axes
of the right column.

The result of the DDC experiment on test1 is shown in
Fig. 5a, in which the 95th, 145th, and 150th data points
are the cluster centers of test1. Figure 5b shows the result
of Algorithm 2, in which the data encircled in red are the
cluster centers. By comparing Fig. 5a, b, Algorithm 2 can
accurately identify the cluster centers. If the cutoff distance
dc is changed, then the 106th, 113th, and 133th data points
are the cluster centers, as shown in Fig. 5c. In this situa-
tion, Algorithm 2 also recognizes these cluster centers, as
shown in Fig. 5d. The same contrasts are deployed in the UCI
datasets of wine and seeds. The comparison of wine is shown
in Fig. 5e, f, and that of seeds is shown in Fig. 5g, h. The com-

parison of these two datasets reveals that theDBSCAN-based
method can intelligently identify the cluster centers.

This study also verifies through experiments whether
Algorithm 2 works when the cluster centers are close to each
other. Figure 6 shows the third run of experiment on EIDDC
on imageseg dataset (w = 0.4, b = 0.1, r = 0.2). From
Fig. 6a, finding the cluster centers is difficult, and the 184th
and 20th data points are extremely close neighbors. After uti-
lizing Algorithm 2, the data encircled in red are recognized
as the cluster centers (Fig. 6b). The performance of EIDDC is
relatively good, as shown in Table 4. That is, if cluster centers
are close neighbors, Algorithm 2 can also recognize them.
However, EIDDC may not be suitable when the cluster cen-
ters exactly form a cluster in the 2D coordinate map, which
consists of density and delta distance. In this situation, two
conditions must be satisfied: The number of clusters is par-
ticularly large and the cluster centers should connect densely
together; however, these conditions are rarely encountered in
normal circumstances.

Overall, the results of experiments show the DBSCAN-
based outlier detection method can intelligently recognize
the cluster centers.

4.3 Experiment on the Efficiency of EIDDC Approach

The following experiments utilized DDC and EIDDC algo-
rithm on the UCI dataset to demonstrate the efficiency of
EIDDC in terms of cluster accuracy (CA) and cluster time
(CT).

For a given dataset X = {x1, x2, . . . , xN }, the actual label
of xi is L(xi ) and the resulting label in the experiments is
L‘(xi ). CA compares the resulting label of every data point
with its actual label and is defined as follows:

CA = 1

N

N∑

i=1

f (L‘(xi ) − L(xi )), (4)

where

{
f (x) = 1 if x = 0
f (x) = 0 otherwise.

(5)

CT is the time for clustering. Two sampling ratios were
selected as r = 0.2 and r = 0.1 in EIDDC. For every
dataset, the DDC approach is performed, followed by the
EIDDC approach for five times for every subdataset to avoid
randomness from the process of sampling. The parameters
of LSH in EIDDC were reset as w = 0.3 and b = 0.12, and
vector a was generated by a random function. The results of
CA and CT are shown in Tables 2 and 3, and the maximum
of CA values and minimum of CT are rendered in bold in the
corresponding table.
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Fig. 5 The results of intelligent recognition of cluster centers
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Fig. 6 Intelligent recognition of cluster centers near each other

Table 2 The comparison of
CAs between DDC and EIDDC
(%): w = 0.3, b = 0.12

Dataset DDC EIDDC
1 2 3 4 5 Average

Seeds 86.7 r = 0.2 90.0 66.7 66.7 85.7 85.2 77.2

r = 0.1 88.6 33.3 66.7 66.7 66.7 64.4

Wine 66.7 r = 0.2 46.6 53.9 86.0 89.9 70.8 69.4

r = 0.1 33.3 66.7 91.0 54.5 33.3 55.8

Banknote 88.9 r = 0.2 74.1 76.2 87.5 83.9 50.0 74.3

r = 0.1 59.1 82.8 81.9 70.0 61.5 71.1

Spambase 57.9 r = 0.2 33.3 34.7 45.2 40.2 60.6 42.8

r = 0.1 57.9 56.8 36.4 50.0 50.0 50.0

Imageseg 67.8 r = 0.2 70.4 67.4 66.4 55.2 67.6 65.1

r = 0.1 63.1 67.4 67.3 67.1 60.3 65.1

Table 3 The comparison of CTs
between DDC and EIDDC (s):
w = 0.3, b = 0.12

Dataset DDC EIDDC
1 2 3 4 5 Average

Seeds 5.14 r = 0.2 2.08 1.63 1.63 1.67 1.73 1.75

r = 0.1 1.12 1.19 1.24 1.16 1.28 1.2

Wine 4.53 r = 0.2 1.5 1.48 1.46 1.54 1.63 1.52

r = 0.1 1.36 1.33 1.41 1.41 1.42 1.39

Banknote 164.9 r = 0.2 11.1 10.5 10.9 10.2 9.86 10.5

r = 0.1 4.94 4.56 4.84 4.63 4.42 4.68

Spambase 2240 r = 0.2 58.8 56.2 49.9 56.3 53.8 55.0

r = 0.1 18.4 19.3 18.6 20.1 20.5 19.4

Imageseg 403 r = 0.2 21.6 20.1 20.6 20.6 20.7 20.7

r = 0.1 8.63 8.83 8.25 8.62 8.58 8.58

As given in Table 2, most CA values in EIDDC, including
the average, are lower than those inDDCbecause the reduced
dataset size may have caused the improved option for cluster
centers to be left out. Nevertheless, in other cases, the CAs
of EIDDC are higher than those of DDC because the most
remarkable option may have appeared, while other data are
removed during sampling. Although the overall clustering

effect decreases, the magnitude of this decrease is within the
acceptable range. As shown in Table 3, each CT in EIDDC
is less than that in DDC, and CT is less when the sampling
ratio is smaller. Evidently, the CT value is lesser when r =
0.1 than that when r = 0.2 in dataset. The same trend is
observed for other datasets in Table 3. In addition, the size of
a dataset is large and this acceleration effect is considerably
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Table 4 The comparison of
CAs between DDC and EIDDC
(%): w = 0.4, b = 0.1

Dataset DDC EIDDC
1 2 3 4 5 Average

Seeds 86.7 r = 0.2 86.7 86.2 50.5 85.2 87.6 79.2

r = 0.1 65.0 55.8 68.1 53.2 66.7 61.8

Wine 66.7 r = 0.2 55.1 92.7 91.6 89.3 53.2 76.4

r = 0.1 46.1 52.2 88.8 45.3 46.6 55.8

Banknote 88.9 r = 0.2 83.8 80.8 84.6 66.9 86.4 80.5

r = 0.1 56.8 78.6 50.0 84.4 67.6 67.5

Spambase 57.9 r = 0.2 60.6 59.8 60.6 60.6 62.2 60.7

r = 0.1 59.8 57.9 57.9 57.7 50.0 56.6

Imageseg 67.8 r = 0.2 57.0 64.5 64.1 59.4 66.3 62.3

r = 0.1 67.4 64.0 64.4 55.2 63.7 62.9

Table 5 The comparison of CTs
between DDC and EIDDC (s):
w = 0.4, b = 0.1

Dataset DDC EIDDC
1 2 3 4 5 Average

Seeds 5.14 r = 0.2 1.82 1.7 1.83 1.66 1.68 1.74

r = 0.1 1.26 1.28 1.36 1.33 1.23 1.29

Wine 4.53 r = 0.2 1.6 1.55 1.51 1.51 1.61 1.56

r = 0.1 1.13 1.11 1.15 1.2 1.16 1.15

Banknote 164.9 r = 0.2 14.6 10.9 10.8 10.7 11.8 11.8

r = 0.1 4.51 4.32 4.78 4.6 4.75 4.59

Spambase 2240 r = 0.2 54.5 57.7 55.5 53.5 52.2 54.7

r = 0.1 18.1 19.3 20.1 18.5 19.2 19.0

Imageseg 403 r = 0.2 21.1 21.3 21.2 0.9 20.9 21.1

r = 0.1 8.54 8.79 8.8 8.75 9.07 8.79

excellent. Taking dataset images as an example, when r =
0.2, the acceleration rate equals 20.7/403 = 0.05. This rate
is only slightly higher than (r = 0.2)2 = 0.04. The ideal
acceleration effect is not achieved because the time for LSH
sampling and intelligent recognition of clustering centers is
also included in CT in the EIDDC method.

In addition, other experiments were conducted to observe
whether the same effect can be achieved if the parameters of
LSH function were changed as w = 0.4, b = 0.1, and α was
also generated by a random function. The results are shown
in Tables 4 and 5. The comparison of CAs in Tables 2 and 4
and CTs in Tables 3 and 5 reveals that EIDDC can achieve
the same effect even when the LSH parameters have been
changed.

Based on the above analysis, EIDDC can obtain the effect
of efficient clustering compared with DDC.

4.4 Comparison of Experiments with Other
ClusteringMethods

Other experiments were also conducted to compare EIDDC
with other clusteringmethods, such as KSOM [22], K-means
[5], and spectral clustering methods.

To eliminate the random effects of the presetting of ini-
tial value, KSOM and K-means methods were run five times
to obtain the average clustering performance. Spectral clus-
tering method was only run once. In KSOM, the number of
iterations was limited to 200, the weight matrix was gener-
ated by a random function in [0, 1], and the learning rate
decreased with the number of iterations, whose initial value
was preset at 0.5. In K-means, the initial cluster centers were
randomly selected from the dataset and the iteration times
were also preset to 200. For the spectral clustering method,
the algorithm in [23] was utilized to cluster all the datasets.
Owing to clustering being an unsupervised machine learn-
ing method, the number of clusters k is usually unknown
and is only preset as the actual value of every dataset in
the three clustering methods. Tables 6 and 7 summarize the
comparison of CA and CT results between EIDDC and the
other clustering methods, respectively. For the convenience
of comparison, the maximal CA and minimal CT are also,
respectively, shown in bold in Tables 6 and 7. Table 6 shows
that CAs of EIDDC are nearly the same values with other
methods in datasets banknote, spambase, and imageseg and
smaller values in datasets seeds and wine. In Table 7, the
CTs of EIDDC are less than those of the others in all the
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Table 6 The comparison of CAs between EIDDC and other clustering
methods (%)

Algorithm Seeds Wine Banknote Spambase Imageseg

KSOM 60.9 52.0 58.6 56.9 40.9

K-means 88.5 92.3 59.2 62.2 61.3

Spectral 84.8 94.9 62.6 57.3 65.7

EIDDC

r = 0.2 79.2 76.4 80.5 60.7 62.3

r = 0.1 61.8 55.8 67.5 56.6 62.9

Table 7 The comparison of CTs between EIDDC and other clustering
methods (s)

Algorithm Seeds Wine Banknote Spambase Imageseg

KSOM 3.51 2.79 8.85 34.5 25.5

K-means 2.11 2.14 4.47 20.6 9.63

Spectral 4.47 4.0 68.9 5131 458.0

EIDDC

r = 0.2 1.74 1.56 11.8 54.7 21.1

r = 0.1 1.29 1.15 4.59 19.0 8.79

Table 8 The comparison of CTs between EIDDC and other clustering
methods (s)

Algorithm Seeds Wine Banknote Spambase Imageseg

KSOM 52.5 47.5 45.0 52.2 37.9

K-means 73.4 79.2 57.7 60.2 59.6

Spectral 80.0 84.8 58.7 53.4 61.0

EIDDC

r = 0.2 79.2 76.4 80.5 60.7 62.3

r = 0.1 61.8 55.8 67.5 56.6 62.9

given datasets when the sampling ratio r = 0.1 and only
larger than that of KSOM and K-means in dataset Banknote
and Spambase when r = 0.2. Comprehensively, considering
the two terms of CA and CT, EIDDC has nearly the same
performance with the other clustering methods.

The results shown in Tables 6 and 7 were obtained when
the number of clusters k is exactly equal to the real number of
clusters in every dataset. However, in the usual case, obtain-
ing the value of k is difficult without any prior knowledge.
Nevertheless, the value of k can be intelligently achieved
in EIDDC. How will the other clustering methods perform
if the k value is incorrectly set? Therefore, additional con-
trast experiments, in which the other parameters remain
unchanged, except for k slightly larger than its real value,
were also conducted. KSOM and K-means also ran five
times, while the spectral clustering ran only once. The com-
parison of CAs is shown in Table 8. In this case, the CAs
of the other clustering methods decrease due to the incorrect

setting of k value. The performance of the other clustering
methods is reasonably believed to be worse if the difference
between the actual and hypothetical k value is larger. By con-
trast, confusion from presetting the k value rarely appears in
the EIDDC method.

5 Conclusion

In this study, EIDDC algorithm was proposed to solve the
high time complexity and manual identification of cluster
centers of the original approach. In the proposed method,
the size of the original dataset was initially reduced using
the LSH method. Density and delta distance for the reduced
dataset were then computed, from which the cluster centers
were intelligently recognized using DBSCAN-based outlier
technology. The time required for the two additional steps
in EIDDC is minimal and can be ignored compared with the
entire clustering time in DDC. The clustering accuracy of the
proposedmethod is a little lower than that of DDC. However,
when considering the magnitude of decrease in cluster-
ing time, this limitation can also be insignificant. Overall,
EIDDC can achieve more efficient and intelligent cluster-
ing effects compared with those of the original approach.
Although it is performed more commonly compared with
the other methods, EIDDC can be a good option as a clus-
tering method due to its ability to recognize the numbers of
clusters and cluster centers automatically.
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