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Abstract Trust management system in Wireless Sensor
Network (WSN) is rudimentary to identify malicious, selfish
and compromised nodes. Many proposed trust management
systems provide security to WSN from various internal
attacks. However, like other security systems, trust manage-
ment schemes are also vulnerable to attacks. In this paper, we
have proposed a lightweight trust management scheme based
on penalty and reward policy.We have investigated three dif-
ferent types of attacks against the trust management scheme
and provide a defense mechanism for those attacks. The pro-
posed mechanism is based on dynamic time sliding window
for calculating the trust value of the nodes and finding out
the behavior of the nodes. Theory and simulation show that
the proposed GATE method has a high detection rate of the
malicious nodes and it demands fewer resources than some
of the recently proposed trust management schemes.

Keywords Trust management · Vulnerabilities · Attacks ·
Trust regain · Dynamic sliding window

1 Introduction

Thebrisk advances in the collaborative andopen environment
have increased attention on security issues. The open and
collaborative environment makes the Wireless Sensor Net-
work (WSN) easily vulnerable to a variety of internal attacks
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such as eavesdropping, node compromising and physical
disruption [1]. Unfortunately, conventional security mecha-
nism like authentication and cryptography cannot adequately
guard against internal attacks [2]. Trust and reputation system
has been considered as the principal tool to defend against
various insider attacks that happen in WSN [2,3]. The con-
cept of trust has been derived from social science, which
helps to improve collaboration between the nodes of WSN
bypredicting the future behaviors of nodes based on their past
interactions. Trust value of a node is directly proportional to
the positive interactions between nodes, i.e., trust value of a
node increases with increase in positive interaction and vice
versa. However, like other security mechanisms, trust man-
agement system inWSN is also vulnerable to various attacks
[4,5]. Because the primary intention of a malicious node is
to remain undetected by performing various kinds of attacks
like ON–OFF attack, bad mouthing attack and ballot stuffing
attack [4]. Moreover, malicious nodes can deliberately and
persistently uphold fewer bad behaviors compared to benev-
olent behavior so that they cannot be detected easily and can
damage the network gradually. In the ON–OFF attack, mali-
cious node behaves alternatively as good and bad. In the case
of badmouthing attack, the primary intentionof themalicious
node is to provide the malicious recommendation, which
degrades the trustworthiness of node. In ballot stuffing attack,
the malicious node intends to provide the malicious rec-
ommendation, which increases the trustworthiness of node.
Among these attacks, the ON–OFF attack is manifested in
data forwarding plane. However, bad mouthing attack and
ballot stuffing attack are manifested in trust evaluation plane
[6,7]. Furthermore, a WSN consists of lots of resource con-
straint tiny sensors and unreliable radio for communication;
it may suffer from unintended transitory errors. Because of
that, unintended transitory error node is considered as mali-
cious and debarred from the network by trust management
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system. Even after that node returns to its normal behavior,
that node may not be used again in the network, which is
considered as wastage of system resources [8,9]. To avoid
that wastage of system resource, we have used a trust regain
scheme. A trust regain scheme provides additional opportu-
nities to those transitory erroneous nodes to regain their trust
value by performing some benevolent activities over some
period. Although several types of research have been pro-
posed, the defense of trust management scheme has received
a very few attention from researchers. Thus, by consider-
ing the vulnerability of trust management scheme to various
attacks and the resource constraint nature of sensor nodes in
WSN, in this paper, we propose a defense mechanism, which
can provide shielding to trust management scheme in WSN
from attacks mentioned above.

The rest of this article is structured as follows: Section 2
presents our major contribution to this paper. Section 3 dis-
cusses related works. The system model used in this article
is provided in Sect. 4. Proposed direct trust management
scheme and its defense from ON–OFF attacks are shown
in Sect. 5. Section 6 presents the indirect trust computation
approach. In Sect. 7, theoretical analysis of proposed direct
trust and indirect trust computation approach and their perfor-
mance are presented. Simulation-basedperformance analysis
is discussed in Sect. 8. Section 9 concludes the paper.

2 Our Contributions

The major contributions of this paper are presented as fol-
lows.

(i) Periodicity of misbehavior
We have introduced a new factor for trust estimation
called as the periodicity of misbehavior, which enables
us to mitigate the effect of ON–OFF attackers. Further,
the periodicity of misbehavior is also capable of detect-
ing the persistent malicious nodes. The periodicity of
misbehavior shows how frequently a node misbehaves
in a time window. The consideration of periodicity of
misbehavior is more vital than the good behavior of
node because the misbehaviors are dangerous.

(ii) Trust regain
Due to unreliable link and open nature of WSN, some-
times nodes of the network may suffer from transitory
errors. That errormakes the node as transientmalicious.
Adopted trust regain method enables the trust manage-
ment system to detect those transient malicious nodes
by differentiating from the persistent malicious node
and make them as benevolent nodes for further consid-
eration in the network.

(iii) Dynamic sliding time window
Unlike static sliding time window used in trust eval-

uation of the nodes, we have used the concept of the
dynamic sliding time window to detect the low propor-
tional malicious behavior nodes. Because whenever the
proportion of malicious behavior is very less, it is quite
difficult to detect those persistent malicious nodes.

3 Related Research

Although many research has been carried out on trust model
in recent past, however, most of the schemes are lacking
in various aspects of trust model in WSN. In this, we have
mentioned some of the issues present in recently proposed
schemes.

Research work in trust management for WSNs usually
based on either direct observation or indirect recommen-
dation or combination of both. In [10], authors proposed a
robust trust establishment scheme based on direct observa-
tion of nodes behavior only. This scheme captures the node
behavior and stores the observation value in a fixed size slid-
ing time window. This scheme lacks in providing defense
against insider attacks like bad mouthing and ballot stuffing
attack.

In 2013, Li et al. [11] proposed aLightweight andDepend-
able Trust System for clustered Wireless Sensor Networks
(LDTS), which uses both observation and feedback to calcu-
late the trust. The proposed direct trust computation method
uses the strict penalty policy for each bad behavior of the
node. This approach uses a self-adaptive weighted method
for trust aggregation at cluster head level (CH). However, this
scheme lacks in distinguishing between the persistent mali-
cious and transient malicious nodes. Further, in this scheme,
the indirect trust is calculated based on the number of positive
or negative feedback instead of the actual value of feedbacks.

Shaik et al. [12] proposed a Group-based Trust Manage-
ment Scheme (GTMS), which is based on both time-based
past interaction observation and peer recommendation. This
scheme also uses the fixed sliding window to capture the
interaction values. This scheme does not provide any mech-
anism to detect transitory malicious node and filtering of
dishonest recommendations.

In [13], Ishmanov et al. proposed a secure trust estab-
lishment scheme, which also combines both observation and
recommendation to evaluate the trust of a node. Further,
this scheme uses a modified M-estimator method to aggre-
gate the recommendations securely. This scheme provides
the defense against ON–OFF and bad mouthing attack. The
scheme of Ishmanov et al. also fails to distinguish between
transient and persistent malicious nodes.

Due to different temporary errors, a node may consider as
an untrustworthy node, so a trust regain scheme is essential
to allow such node for recovering its trust value. The trust
regain method is also known as trust redemption method,
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which is broadly categorized into behavior and time-based
redemption method [8]. Chae et al. [8] used both behavior
and time-based trust redemption scheme. It also uses both
good and bad behavior windows to detect ON–OFF attack
node.

Many types of research already have been carried to
deal with dishonest recommendations. Most of the existing
research uses three different approaches to filtering out dis-
honest recommendations [14]. These are personal experience
based [15], majority opinion based [14] and service reputa-
tion based [14].

4 System Model

The system model consists of network-related assumptions
and node behavioral assumptions.

4.1 Network-Related Assumptions

The proposed model (GATE) is based on the following net-
work model and assumptions.

(i) All sensor nodes in the network are homogeneous with
computation capabilities, transmission power, commu-
nication range (r) and initial energy.

(ii) All the sensors nodes are static in nature, and all the
nodes in the network know their respective position,
i.e., x and y coordinates.

(iii) A sensor node can compute the approximate distance
from another node by the help of Received Signal
Strength Indicator (RSSI).

(iv) A node j is said to be the neighbor of node i if node
j falls in the transmission range of node i , i.e., if the
Euclidean distance between nodes i and j is less than
or equal to communication range (r).

(v) Each sensor node can capture the activities of their
neighbor nodes byoverhearing the transmission through
promiscuous mode.

(vi) Each sensor node has a unique identification number
and authentication method to defend the proposed trust
model against the Sybil attack.

4.2 Nodes Behavioral Assumptions

The proposed GATE model is based on the behavior of
a node in the network. Here, we have categorized the
nodes of the network into three different categories, i.e.,
benevolent/legitimate nodes, persistent malicious nodes and
transientmalicious nodes.Abenevolent node always behaves
well; sometimes, it might misbehave transiently because of
various factors like channel errors, computation errors or
sensing errors. That is the reason why we have assumed that

the behavior of benevolent nodes is similar to the behavior
of transient malicious nodes or ON–OFF attacking nodes.
However, in an ON–OFF attack, the attacking behavior pat-
tern of a node is random, i.e., based on the rate of attack, the
pattern of ON and OFF behavior gets changed.

A malicious node exhibits bad behavior persistently by
dropping packets, modifying the integrity of data packets,
showing selfish behavior to conserve the energy, providing
false trust value about benevolent nodes to perform bad and
good mouthing attack about well-behaving nodes. However,
the periodicity of misbehavior can be either significant or
insignificant.Whenever the periodicity ofmisbehavior is sig-
nificant (i.e., the proportion of malicious behavior is more),
the detection of the malicious node is easier. However, when
the malicious nodes exhibit insignificant and persistent mis-
behavior, it is more challenging to detect them.

5 Proposed Trust Evaluation Method

Like other trust model proposed by various authors, in this
section we have also proposed a trust model to compute the
direct trust and indirect trust. The proposed direct trust com-
putation scheme protects the trust evaluation model from
ON–OFF attack, whereas indirect trust computation scheme
provides a guard against bad mouthing and ballot stuffing
attacks. Usually, nodes in WSN compute the trust value of
their neighbors by observing theweight of transactions. Trust
value defines the level of confidence of a node ni on neighbor
node n j based on the performance of assigned task [16–25].
Further, the trust value of a node is usually expressed as a
numerical value. In particular, in WSN trust model deciding
the boundary of this trust value is more pivotal because of the
resource constraint nature of nodes. In this paper, we have
set the sphere of trust value as a positive integer between [0,
10] with an initial trust value of each node is 5, inspired by
[21]. Authors Bao et al. [19] and Momani et al. [18] have
chosen the sphere of trust value as real numbers (between 0
and 1). In [20], authors have set the trust value as unsigned
integer numbers (between 0 and 100). Choosing the trust
value as real or unsigned integer increases the communica-
tion overhead as well as memory overhead. However, our
consideration of positive integer between 0 and 10 has the
following advantages.

(i) Less memory overhead
An integer representation of trust value between 0 and
100 consumes 1 Byte of memory, and a real-valued
representation of trust between 0 and 1 uses 4 Bytes.
However, the representation of trust domain between 0
and 10 consumes only one nibble (0.5 Bytes). There-
fore, there is a substantial gain of 50 and 87.5% of
storage space as compared to integer [0, 100] and real
[0, 1], respectively.
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(ii) Less communication overhead
As the fewer number of bits of the trust value are trans-
mitted from one node to another, the communication
overhead is less.

(iii) Less energy consumption
As there is involvement of a smaller number of bits of
the trust value in transmission, the energy consumption
of a sensor node is less.

To keep track of these observations and to compute the
trust value of nodes, we have used a dynamic timing sliding
window. In [10,11] and [12], authors have used the fixed-
sized sliding window to compute the trust value of nodes.
In [10,11] and [12], the authors have set the window size to
the initialization state of the system, and it remains fixed till
the completion of the entire process of trust calculation, but
in our case after each time unit the window size either may
prolong or reduced based on the behavior of the node. The
dynamic timing slidingwindowhas the following advantages
over the fixed-sized sliding window.

(i) Better utilization of system resources
The system resources have better utilization as com-
pared to fixed size sliding window because in fixed size
sliding window if the size is very large, then it is a
wastage of system resources.

(ii) Detection of malicious nodes is effective
In comparison with the fixed-sized sliding window, the
detection of malicious behavior of the nodes is more
effective in dynamic timing sliding window because if
fixed size is small, then detection of misbehavior by the
malicious nodes or benevolent nodes is not effective.

The dynamic timing sliding window consists of a k number
of time units, in which each time unit tk contains the number
of successful interactions (good behavior) and unsuccessful
interactions (misbehavior) of node i with node j . An interac-
tion between two nodes i and j is said to be successful if the
data packets or control packets sent by the node i , received
by the node j in the given time to live (TTL); otherwise,
the interaction will be called as unsuccessful. Although the
dynamic sliding window stores both good and bad behaviors
of a node, we are more focused on the bad behavior of a
node than good behaviors because bad behaviors of a node
are more harmful than good behavior. Figure 1 shows the
structure of dynamic timing sliding window. According to
Fig. 1, node i stores the observations about node j , in which
Si, j and Ui, j are the successful and unsuccessful transac-
tions of node j observed by the node i , in time unit tk .WL is
the sliding window length. The length of the sliding window
changes dynamically based on the periodicity of misbehav-
ior of the node (see Sect. 5.2.1). After each time unit, the left

Fig. 1 Structure of the sliding window

boundary of the window moves to the right to forget the pre-
vious interaction history and the window length either may
prolong or shrinks based on the periodicity of misbehavior.
However, the setting of minimum and maximum length of
the window depends on system designer, i.e., the boundary
of the window is adaptive. The system designer decides the
minimum and maximum window size based on the fact that
how much damage the system can endure.

5.1 Direct Trust Computation Approach

5.1.1 Direct Trust Calculation

Based on the observed information in a time window, the
direct trust value is computed. The direct trust value of node
i on node j in a time window (W) is denoted by DTi, j (W ).
Since the concept of trust is dynamic, i.e., the trustworthi-
ness either may increase due to the good behavior, or it may
decrease due to bad behavior. So in the proposed scheme
GATE, we have considered both the reward and penalty poli-
cies, i.e., the node that exhibits good behavior is rewarded
and the node that shows malicious behavior is penalized.
This consideration of both reward and penalty policies in
GATE makes it different from other proposed trust compu-
tation scheme in WSN. To the best of our knowledge, we
are the first to consider both reward and penalty policies for
direct trust computation.

DTi, j (W ) =
⌈

n∏
k=1

(TFk × DTi, j (tk))
1
n

⌉
(1)

DTi, j (tk) =
⌈
10 ×

(
Si, j (tk)

Si, j (tk) +Ui, j (tk)

)(
Si, j (tk)

1 + Si, j (tk)

)
(

1√
Ui, j (tk)

)⌉
(2)

where DTi, j (tk) is the direct trust value of node i on node
j in each time unit tk and is the direct trust of node i on
j within the entire time window W . Initially, the minimum
and maximum length of the window (WL ) can be set based
on network scenarios. However, with the elapse of time, the
prolongation and reduction of WL depend on the behavior
of node (see Sect. 5.2.1). In Eq. (1), n is the number of time
unit in time window W and is a trust aging factor, which is
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Fig. 2 ON–OFF detection in
each time unit

an exponential decrease function and used to ensure that the
trust value fades with time. Further, TFk assigns less weight
to older measured trust value so that current performance is
given more importance. Therefore, TF1 < TF2 < TF3 <

TFk . More specifically, TFk = μn−k where 0 < μ < 1.
To calculate the direct trust in a time window (W ), we use
geometric mean of all direct trust computed in each time
unit (tk) instead of simple average (mean). This is because
the geometric mean is more suitable for time series data and
not sensitive to extreme values of a data set, whereas simple
mean is highly sensitive to extreme values of a data set. � . �
represents the nearest integer value, such that � 4.01 � = 4. In
Eq. (2), Si, j (tk) is the number of successful interactions of
node i with node j during tk ; Ui, j (tk) �= 0 is the number of
unsuccessful interactions of node i with node j during time
unit (tk). In a special case, if Si, j (tk) �= 0 and Ui, j (tk) = 0,
then we set DTi, j (tk) = 10. The first term represents the
rate of the successful transactions of node i with node j .

The second term
(

Si, j (tk)
1+Si, j (tk )

)
signifies the reward factor. The

reward points are given to every successful transaction (good
behavior) of node i with j . Further, reward factor also ensures
that there is a slow rise in trust value with an increase in

good behavior. The third term

(
1√

Ui, j (tk )

)
represents severe

punishment factor and also ensures the rapid drop of trust
value to zero with an increase in unsuccessful transactions
(misbehavior) of node i with j .

5.1.2 Detection of ON–OFF Behavior Using Direct Trust

To detect the ON–OFF attackers, we use an important factor,
i.e., the periodicity of misbehavior. The section that follows
describes its importance. Since the sliding time window W
has several time units tk , each tk is set as either an ON or
OFF period based on the calculated trust value of node j in
that time unit. Hence, attack type of node j in time unit tk is
A j (tk), and it is defined as follows:

A j (tk) =
{
ON if DTi,j(tk) < λ

OFF otherwise
(3)

where λ is the trust threshold of behavior. More specifically,
we have set the value as 5, and the reason behind it is dis-
cussed in Sect. 7.1. Therefore, if the direct trust value of a

node in time unit tk is less than 5, then the tk is set as ON
period; otherwise, OFF period.

In Fig. 2, node i records the behavior of node j and sets
each time unit tk with either ON or OFF based on Eq. (3).
For example, in time unit t1 the DTi, j (t1) = 2, which is less
than λ (i.e., DTi, j (t1) < 5), so in time unit t1 node j shows
the ON behavior. Similarly, in t4 the DTi, j (t4) = 6, which
is greater than λ. Hence, the time unit t4 of node j is set as
OFF period.

5.1.3 Calculation of Periodicity of Misbehavior

The periodicity of misbehavior of a node j (PM j (W )) is one
of the important factors because it says how frequently a node
j misbehaves within a time window W . PM j (W ) is calcu-
lated based on the number of ON and OFF periods during a
sliding window period W . After setting the entire time unit
with either ON or OFF period within the timewindowW , the
periodicity of misbehavior is calculated as follows (Eq. (4)):

PM j (W ) =
∑

ONunit∑
ONunit + ∑

OFFunit
(4)

Based on the value of periodicity of misbehavior of a node
within a time W , the status of the node is determined by Eq.
(5).

S j (W ) =

⎧⎪⎪⎨
⎪⎪⎩
1. BenevolentNode if 0 ≤ PM j ≤ θ,

2. PersistentMaliciousNode if PM j = 1,
3. TransientMalicious (TM)
orON–OFFAttackingNode if θ < PM j < 1.

(5)

where S j (W ) is the status of the node j in timewindowW and
θ is the threshold value of periodicity of misbehavior. Note
that, here the (0 < θ < 0.5) because, since the entire range of
the status of node j is lies between 0 and 1, we have consid-
ered themidway for the value of θ . This value of θ is set by the
observer node i . Further, a node is considered as benevolent
if in each time unit tk the node exhibits OFF behavior, i.e.,
PM jε (0, θ). On the other hand, the node is considered as per-
sistentmalicious if in all time units a node exhibitsONattack,
i.e., PM j = 1. A node is considered as either a transientmali-
cious or ON–OFF attack node if PM jε (θ, 1). In the next sec-
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Fig. 3 Size of window
(prolonged) and TM/ON–OFF
node confirmed as ON–OFF
attacking node

tion, we have shown the procedure to differentiate the tran-
sient malicious (TM) and ON–OFF attacking node by using
trust regain method with dynamic timing sliding window.

5.2 Trust Regain

It is utmost important to find the actual status of a node,
i.e., whether the node is a transient malicious or ON–OFF
attacker because a node whose status is transient malicious
may recover its trust value by exhibiting good behavior over
some time to become benevolent. However, a node which is
ON–OFF attacker cannot recover its trust. Hence, this pro-
posed trust regain method can help the transient malicious
node to recover its trust value over some time and to become
benevolent (i.e., to decrease their periodicity ofmisbehavior).
However, sometimes it may so happen that a transient mali-
cious node may not recover its trust value within the chance
given. Further, the transient malicious node may convert to
persistent malicious within the chance given. On the other
hand, an ON–OFF attacking node launches the attack in a
preset manner (i.e., its periodicity of misbehavior remains
almost constant).

Therefore, the nodes with transient malicious/ON–OFF
attacking status are given some more time unit, and their
periodicity of misbehavior is calculated. If the updated value
of the periodicity of misbehavior in the subsequent time win-
dow is:

(i) Remains almost same, as previously, then the node will
be conferred as an ON–OFF attacking node.

(ii) Float between θ and 1, then the status of the node will
be conferred as transient malicious.

(iii) Decreases and reaches the threshold θ or below θ , then
the status of the node will be changed from transient
malicious to the benevolent node.

(iv) Increases and reaches to 1, then the status of the node
will be changed from transient malicious to the persis-
tent malicious node.

5.2.1 Update of Periodicity of Misbehavior Using Dynamic
Time Sliding Window

Toupdate the periodicity ofmisbehavior of a node,we resized
the sliding window size into kind of dynamic timing slid-
ing window. The change in the size of the sliding window
depends on the following two cases.

(i) When the number of ON period (misbehavior) is less
than or equal to the number of OFF period (good
behavior) within the time window, the window size
is prolonged by one-time unit at a time till it reaches
the maximum size of window length, to cover more
observed behavior.

(ii) When the number of ON period (misbehavior) is more
than the number of OFF period (good behavior) within
the time window, the window size is reduced by one
at a time till it reaches the minimum size of window
length because the smaller size of the sliding window
can detect the misbehavior effectively.

Therefore, mathematically size of dynamic timing sliding
window is defined as:

ON period α
1

WL
(6)

According to Eq. (6), the size of sliding window is inversely
proportional to ON Attack in that window, i.e., if the num-
ber of ON period is more than number of OFF period in a
window, then the size of the window (WL ) is reduced, and if
the number of OFF period is more than ON period, then the
size of the window (WL ) is prolonged. Some sample scenario
of dynamic timing sliding window usage, for calculating the
updated value of PM j (W ) and detecting the transient and
ON–OFF attacking nodes are present through an example.
An illustrative example is shown in four different scenarios
in Figs. 3, 4, 5 and 6. In this example, the minimumWL = 3
andmaximumWL = 7, and initially,we consider thewindow
size is five and threshold of the periodicity of misbehavior
θ = 0.3.

According to Figs. 3, 4, 5 and 6, the size of the dynamic
sliding window is changed based the ON attack period. Sce-
nario 1 shows a node with transient malicious/ON–OFF
attacking status has given some more chances to decrease
its periodicity of misbehavior and to become benevolent, but
node could not decrease its periodicity ofmisbehavior; rather,
it maintains the almost same periodicity of misbehavior. So
the node finally confirmed as an ON–OFF attacking node
(i.e., not a transient malicious node).

Scenario 1, in Fig. 3, node i observes the behavior of
node j and node i suspects that node j launches two ON and
three OFF attacks, with initial window length W1 = 5 and
PM j (W ) = 0.4. As the PM j (W ) lies in [θ , 1], node i sets
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Fig. 4 Size of window
(prolonged & reduced) and TM
converted to transient malicious

Fig. 5 Size of window (reduced) and TM converted to persistent mali-
cious

the status node j to transient malicious/ON–OFF attacking
node. Further, as the first window has less number of ON
period than OFF period, node i prolonged the window size
by one-time unit, which results in the second window length
W2 = 6 with updated PM j (W ) = 0.33. Further, in second
window node i found that node j has two ON units and four
OFF units, so node prolonged the second window to the third
window with W3 = 7 and updated PM j (W ) = 0.42. Since
the prolongation of window reaches to its maximum length
(i.e., seven), final updated value of periodicity ofmisbehavior
is 0.42 (which is almost similar to the initial periodicity of
misbehavior value, i.e., 0.4). Therefore, node i confirms that
node j is an ON–OFF attacking node.

According to scenario 2, Fig. 4, the first window has three
ON and two OFF units with window length W1 = 5 and
PM j (W ) = 0.6. As the PM j (W ) lies in [θ , 1], the status of
the node j is transient malicious/ON–OFF attacking node.
Since in the first window, the number of ON unit is more
than the OFF unit, node i reduces the size of the window
by one unit, which results in the second window with length
W2 = 4. Further, the second window has two ON units and
two OFF units with updated PM j (W ) = 0.5. As the sec-
ond window has an equal number of ON and OFF units, the
second window prolonged by 1 unit, which results in the
third window with W3 = 5, updated PM j (W ) = 0.4 and

two ON units and three OFF units. As the third window has
two ON and three OFF units, the third window prolonged
by 1 unit, which results in the fourth window with W4 = 6,
updated PM j (W ) = 0.5 and three ON units and three OFF
units. Further, as the fourth window has an equal number
of ON and OFF units, the fourth window prolonged by 1
unit, which results in the fifth window withW5 = 7, updated
PM j (W ) = 0.71. Now, the window length reaches its maxi-
mum value, i.e., 7 with a final updated value of periodicity of
misbehavior which is 0.71 (which lies in [θ , 1]). Therefore,
node i confirms that node j is transient malicious.

In scenario 3, a transient malicious node could not regain
its trust value in the given a chance and become persistent
malicious. In Fig. 5, the first window has four ON and one
OFF units with window length W1 = 5 and PM j (W ) = 0.8.
As the PM j (W ) lies in [θ , 1], the status of the node j is
transient malicious/ON–OFF attacking node. Since in the
first window, the number of ON unit is more than the OFF
unit, node i reduces the size of the window by 1 unit, which
results in the second window with length W2 = 4. Further,
the second window has three ON units and one OFF unit
with updated PM j (W ) = 0.75. Since the second window has
more ON unit than OFF unit, the window is again reduced
by 1 unit, which results in W3 = 3 and PM j (W ) = 1. Now,
the window length reaches its minimum value (i.e., 3) with a
final updated value of periodicity of misbehavior which is 1.
Therefore, the status of that node j changes from transient
malicious to persistent malicious.

In scenario 4, a transient malicious node regains its trust
value by showing good behavior with the given a chance and
becomes a benevolent one. In Fig. 6, the final window has
length W5 = 7 with final updated PM j (W ) = 0.28. As the
window reaches its maximum length (i.e., 7) and PM j (W )

lies [0, θ ], the status of that node j changes from transient
malicious to benevolent.

Fig. 6 Size of window (prolonged and reduced) and TM/ON–OFF converted to benevolent
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Fig. 7 Indirect trust

Fig. 8 Indirect trust computation with honest recommendations

6 Indirect Trust Computation Approach

Direct trust value of a node is computed completely based
on node behavior by observations. However, the indirect trust
value is calculated based on recommendations provided by
the neighbors. Whenever a node (assessing node) has no
personal observation with another node (assessed node) to
compute the direct trust value, assessing node seeks the rec-
ommendations from the neighbors of the assessed node to
calculate the indirect trust value. Indirect trust can provide
the confidence to a node to interact with unknown nodes in a
network. However, the computation of indirect trust through
recommendations is vulnerable to various kinds of attacks
like bad mouthing attack and ballot stuffing attack.

In Fig. 7, node x (assessing node) has no personal experi-
ence with node y (assessed node).Whenever node x wants to
interact with node y, it has to compute the indirect trust value
of node y by gathering the recommendations from common
neighbors (recommender) of node x and node y, and the rec-
ommendations given by the neighbors to node x are the direct
trust value on node y. Further, the recommendations provided
by each neighbor can be either honest or dishonest. Hence,
for calculating the indirect trust, dishonest recommendations
are filtered out as outliers. Figure 8 shows the flow of indirect
trust calculation with honest recommendations.

In the proposed indirect trust computation scheme, the
set of recommendations given by all recommenders for
the assessed node is denoted by the set RTS and the set
TE represents the set of trust value of assessing node
on each of the recommenders. In another word, the set

TE denotes the trustworthiness of each recommender. The
set RTS = RT1,RT2,RT3, ...RTn−1,RTn and set TE =
TE1,TE2,TE3, ...TEn − 1,TEn are given as input to rec-
ommendation filter module, and it segregates the honest
recommendations from dishonest. Finally, all the filtered
honest recommendations are gathered for indirect trust com-
putation.

6.1 Recommendation Filtering

This section presents the segregation of honest and dishonest
recommendations from entire set RTS by using a modified
median of median absolute deviation (MADAM) statisti-
cal technique, inspired by Huber et al. [26]. To calculate
(MADAM) for the given recommendation set (RTS), the
absolute deviation from the median for each of the data in
RTS is calculated by Eq. (7).

|RTi − median(RTS)| , for i = 1, 2, 3...n (7)

where RTi is the recommendation given by ith node about
the assessed node. Now, MADAM is determined as Eq. (8)

MADAM = median |RTi − median(RTS)| (8)

With the help of MADAM, we calculate the variation fac-
tor (VF), which gives the notion of deviation of TE from
MADAM.The variation factor is defined as the ratio between
MADAM and TE.
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VFi = MADAM

TEi
(9)

In Eq. (9), VFi is the variation factor which signifies
the dissimilarity of each received recommendation from
MADAM and value of TEi �= 0 (i.e., if the trust of assessing
node is zero on any of the recommender nodes then the rec-
ommendation given by that node is ignored). Based on the
calculated value of VFi , the type of recommendation (i.e.,
honest or dishonest) is determined by Eq. (10).

recommendation_type

=
{
Dishonest recommender if VFi ≥ C

Honest recommender Otherwise
(10)

where C is the threshold value of variation factor. The value
of threshold C depends on the system designer. A system
designer can choose the appropriate value ofC and can verify
how tolerant the trust management system will be to differ-
ent attacks. The analytical section shows that which value
of threshold C is more suitable for system tolerance. Based
on the recommendation type, one recommender either will
fall into the category of honest recommendation set (HRS)
or dishonest recommender set (DRS). Section 6.2 shows an
illustrative example of separating the honest recommenda-
tions from dishonest recommendations. Moreover, Eq. (9)
signifies that if the trust value of assessing node on any of
the recommender is more, then the value of variation factor is
less and vice versa. Further, it is noteworthy that the compu-
tation of MADAM considers the views of all recommenders
(i.e.,medianofRTS), andon theother hand, calculationofVF
considers the personal interaction experience on each recom-
mender (i.e., set TE). The combination of all recommender’s
views and personal interaction experiences makes the indi-
rect trust computation unbiased. If the calculation VF only
depends on views of all recommenders, then there is a chance
that whenever most of the recommendations are malicious;
the indirect trust computationmay negatively influence. Sim-
ilarly, if the calculation VF only depends on the personal
interaction experience of evaluating node, then there is a
chance that smart attacker may give dishonest trust value
to assessing node after winning its confidence.

6.1.1 Indirect Trust Computation

After filtering out all dishonest recommenders, the indirect
trust of assessing node on the assessed node is computed
by using the recommendations of honest recommender only.
The indirect trust can be calculated by Eq. (11):

ITx,y =
∑m

i=1

√(
TEx,HRSi × avg(HRS)

)
|m| (11)

where ITx,y is the indirect trust of node x on node y. TEx,HRSi
is the direct trust value of node x on each honest recom-
mender. |m| represents cardinality of honest recommender
set (HRS).

6.2 An Illustrative Example

In this section, the proposed recommendation filtering tech-
nique is validated by taking an illustrative example for
filtering out the all the dishonest recommender. Let us con-
sider a node x (assessing node) which has no prior interaction
with node y (assessed node). Now, node x wants to interact
with node y. Therefore, node x has to evaluate the trust-
worthiness of node y. For evaluating the trust worthiness of
node y, node x seeks the recommendation from the common
neighbors ni = 16.

Let RTS = {RT1,RT2,RT3...RT15,RT16} be a recom-
mendation set received by node x from the common neighbor
nodes n1, n2, n3...n16 about node y. Further, set TE =
{TE1,TE2,TE3...TE15,TE16} is the direct trust value of
node x on each recommender n1, n2, n3...n16.
Illustration:
Let RTS = {0, 0, 2, 1, 3, 4, 5, 4, 6, 7, 7, 8, 9, 10, 9, 10}, is
the recommendation set.
TE = {1, 4, 2, 8, 4, 2, 5, 9, 7, 8, 3, 9, 6, 10, 9, 9}, is the set
of trust value of evaluating node on recommender. After
finding the value of MADAM using Eq. (8) (see column
4, Table 1), the value of variation factor (VF) is com-
puted for each recommender node using Eq. (9). In order
to identify the dishonest recommender, the value of VFi
is compared with a threshold value C , Eq. (10). If the
value of VFi is greater than or equal to C , then the rec-
ommender is considered as dishonest one. Here, we have
considered the value of threshold C = 1. By comparing
the VFi with C , we found the dishonest recommender set
DRS = {n1, n3, n6, n11} and honest recommendation set
HRS = {n2, n4, n5, n7, n8, n9, n10, n12, n13, n14, n15, n16}.
In Table 1 columns 6 and 7, the symbols Y and N signify that
the particular recommender falls under DRS or HRS.

7 Theoretical Analysis and Performance
Evaluation of GATE

In this section, we analyze and proof that our proposed
GATE scheme provides a guard to the trust management
system against the malicious node. This analysis section
analyzes the robustness of the GATE in two ways. Firstly,
we analyze the direct trust evaluation method and prove
how the direct trust evaluation could provide a guard to
the trust management against the malicious node. Secondly,
we analyze the indirect trust evaluation method to show the
robustness of proposed trust management system. To ana-
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Table 1 An example of finding
the trustworthiness of
recommender

Recommender
node

Recommender
set (RTS)

TE RTi-median
(RTS)

Variation
factor (VF)

DRS HRS

n1 0 1 5.5 3 Y N

n2 0 7 5.5 0.428571 N Y

n3 2 2 3.5 1.5 Y N

n4 1 8 4.5 1.5 Y N

n5 3 6 2.5 0.5 N Y

n6 4 2 1.5 1.5 Y N

n7 5 5 0.5 0.5 N Y

n8 4 9 1.5 0.3333 N Y

n9 6 7 0.5 0.428571 N Y

n10 7 8 1.5 0.375 N Y

n11 7 3 1.5 1 Y N

n12 8 9 2.5 0.3333 N Y

n13 9 6 3.5 0.5 N Y

n14 10 10 4.5 0.3 N Y

n15 9 9 3.5 0.3333 N Y

n16 10 9 4.5 0.3333 N Y

lyze the GATE protocol, we broadly categorized the nodes
of WSN into two types of node: benevolent and persistent
malicious. Our assumption is that a benevolent node always
exhibits OFF behaviors and provides honest recommenda-
tions. However, persistent malicious nodes always exhibit
ON behaviors and give manipulated recommendations by
launching various attacks. Note that, in this section, we do
not distinguish between persistent and transient malicious
nodes. In Sect. 5.2.1, we have already shown how to differ-
entiate between transient malicious and persistent malicious
nodes. Further, in Sect. 8, we capture the behavior of mali-
cious nodes for providing the guard to trust management
system against various attacks.

7.1 Analysis of Direct Trust Evaluation Scheme

Definition 1 In the GATE protocol, node j exhibits ON
behavior in a time unit tk , when the measured direct trust
value of node i on node j in time unit tk is less than
or equal to a threshold λ = 5 (i.e., A j (tk) is ON when
DTi, j (tk) ≤ 5). Further, for ON behavior the number of
unsuccessful interaction is more than the successful interac-
tion (Ui, j (tk) > Si, j (tk)).

Definition 2 In the GATE protocol, node j exhibits OFF
behavior in a time unit tk , when the measured direct trust
value of node i on node j in time unit tk is greater than a
threshold λ = 5 (i.e., A j (tk) is OFF when DTi, j (tk) > 5).
Since a time window W is consist of many time unit tk , a
node is considered as a benevolent or malicious based on its
periodicity of ON or OFF behavior in a time window.

Definition 3 A node j is said to be benevolent if it always
shows OFF behavior in a time window W with any other
node i and also gives honest recommendations for indirect
trust computation.

Definition 4 A node j is said to be persistent malicious if
it always shows ON behavior in a time window W with any
other node i and also gives dishonest recommendations for
indirect trust computation.

Lemma 1 The proposed direct trust computation method
prevents the malicious nodes to deceive the trust manage-
ment system.

Proof To prove Lemma 1, we use the method of contra-
diction. Assume that a malicious node j deceives the trust
management system. Then, according to definition 3, the
malicious node j always shows OFF behavior in a time
window W to be benevolent and remains undetected, and
according to definition 2, for malicious node j all the
time units tk of the sliding window W must be OFF, i.e.,
DTi, j (tk) > 5. Therefore, we prove that the computed direct
trust value of malicious node j in all the time units tk can
never be greater than five, i.e., DTi, j (tk) ≤ 5. To prove
the lemma by contradiction, we consider the definition 2,
in which DTi, j (tk) > 5 and Ui, j (tk) > Si, j (tk) follow three
cases:

Case 1 If Si, j (tk) > 1, i.e., node i has some successful inter-
action with node j in time unit tk .

Let p = Ui, j (tk)
Si, j (tk )

Given thatUi, j (tk) > Si, j (tk), we can derive
that p > 1. So, Ui, j (tk) + Si, j (tk) �= 0.
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According to Eq. (2), the direct trust in a time unit tk is:

DTi, j (tk) =
⌈
10 ×

(
Si, j (tk)

Si, j (tk) +Ui, j (tk)

) (
Si, j (tk)

1 + Si, j (tk)

) (
1√

Ui, j (tk)

)⌉

=
⎡
⎢⎢⎢10 ×

⎛
⎝ 1

1 + Ui, j (tk )
Si, j (tk )

⎞
⎠ ×

(
Si, j (tk)

1 + Si, j (tk)

)
×

(
1√

p × Si, j (tk)

)⎤
⎥⎥⎥

As, p = Ui, j (tk)

Si, j (tk)
, ∴ Ui, j (tk) = p × Si, j (tk)

=
⎡
⎢⎢⎢10 ×

⎛
⎝ 1

1 + Ui, j (tk )
Si, j (tk )

⎞
⎠ ×

(
Si, j (tk)

1 + Si, j (tk)

)
×

(
1√

p × Si, j (tk)

)⎤
⎥⎥⎥

=
⌈(

10

1 + p

)(
Si, j (tk)

1 + Si, j (tk)

)
×

(
1√

p × Si, j (tk)

)⌉

=

⎡
⎢⎢⎢⎢⎢

10

(1 + p)
(
1 + Si, j (tk)

) (√
p×Si, j (tk )
Si, j (tk )

)
⎤
⎥⎥⎥⎥⎥

=

⎡
⎢⎢⎢⎢⎢

10

(1 + p)
(
1 + Si, j (tk)

) ( √
p√

Si, j (tk )

)
⎤
⎥⎥⎥⎥⎥

=

⎡
⎢⎢⎢⎢⎢

10(√
p
)
(1 + p)

(
1√

Si, j (tk )
+ √

Si, j (tk)

)
⎤
⎥⎥⎥⎥⎥

As, p > 1 and Si, j (tk)

So, the terms of denominator

(√
p
)

> 1, (1 + p) ≥ 2 and(
1√

Si, j (tk)
+

√
Si, j (tk)

)
≥ 2

DTi, j (tk)

=

⎡
⎢⎢⎢⎢⎢

10(√
p
)
(1 + p)

(
1√

Si, j (tk)
+ √

Si, j (tk)

)
⎤
⎥⎥⎥⎥⎥

≥
⌈
10

4

⌉

Since it is given that DTi, j > 5, it yields a contradiction.
Thus, it proves our Lemma 1. �	
Case 2 If Si, j (tk) = 0 and Ui, j (tk) > 1, i.e., node i has no
successful interactionwith node j , but has someunsuccessful
interaction with node j in time unit tk .

Proof According to Eq. (2), the direct trust in a time unit tk is:

DTi, j (tk)=
⌈
10 ×

(
Si, j (tk)

Si, j (tk )+Ui, j (tk )

) (
Si, j (tk )

1+Si, j (tk )

)(
1√

Ui, j (tk)

)⌉

DTi, j (tk) =
⌈
10 ×

(
0

Si, j (tk )+Ui, j (tk )

) (
0

1+0

)(
1√

Ui, j (tk )

)⌉
=

0,which signifies that if a node i has no successful interaction
with another node j in time unit tk , then node i exhibits ON
behavior only in tk , so DTi, j (tk) is zero, which contradicts
our assumption; thus, prove Lemma 1. �	

The following case 3 is a special case.

Case 3 if Si, j (tk) = 0 and Ui, j (tk) = 0, i.e., there is no
interaction between nodes i and j in time unit tk . As there
are no interactions in tk , there may be a chance that node i
may interact with node j in other time unit tk of sliding win-
dowW . If it interacts, then either through case 1 or case 2, its
maliciousness can be proved. If it does not interact through-
out the sliding window W , then indirect trust is calculated
through recommendations.

7.2 Analysis of Indirect Trust Evaluation

Definition 5 In the GATE protocol, an honest recommender
n1 always gives the trust value greater than or equal to five,
about a benevolent assessed node y.

Definition 6 In the GATE protocol, an honest recommender
n1 always gives the trust value less than five, about a mali-
cious assessed node y.

Lemma 2 In the indirect trust computation, proposedGATE
is robust against dishonest recommender.

Proof To prove Lemma 2, the following cases are consid-
ered:

Case 4 Honest recommendations about a benevolent assessed
node always yield the indirect trust ITx,y ≥ 5 , where x is
the assessing node and y is the assessed node.

Case 5 Honest recommendations about amalicious assessed
node always yield the indirect trust ITx,y < 5 , where x is
the assessing node and y is the assessed node.

Both case 4 and case 5 of Lemma 2 are proved in the worst
case, average case and best case.
According to Eq. (11), the indirect trust is:

ITx,y =
∑m

i=1

√(
TEx,HRSi ×avg(HRS)

)
|m|

Let n be the number of honest recommender, which gives the
honest recommendation about benevolent assessed node y,
so

ITx,y =
√
TEx,HRS1 × avg(HRS) + √

TEx,HRS2 × avg(HRS) + · · · + √
TEx,HRSHRSn × avg(HRS)

n
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Worst case: The recommendation given by all honest rec-
ommender is five. So, the term avg(HRS) = 5. Since all the
recommenders are honest, the trust of node x on each rec-
ommender is 5. Hence, the term TEx,HRSi = 5.

⇒ I Tx,y = (
√

(5×5)+√
(5×5)+···+√

(5×5))for n times
n

= n×√
25

n = 5, which proves the case 4 of Lemma 2 in the
worst case.
Average case: The recommendation given by all honest rec-
ommender is greater than five, but less than ten. The proof
of case 4 in average case is similar to the worst case.
Best case: The recommendation given by all honest recom-
menders is 10. So, the term avg (HRS) = 10. Since all the
recommenders are honest, the trust of node x on each rec-
ommender is 10. Hence, the term TEx,HRSi = 10.

⇒ ITx,y = (
√

(10×10)+√
(10×10)+···+√

(10×10))for n times
n

= n×√
100

n = 10, which proves the case 1 in the best case. �	
Similarly, case 5 of Lemma 2 is proved through the worst

case, average case and best case.

Proof Worst case: The recommendation given by all honest
recommenders is zero. So, the term avg (HRS) = 0.
⇒ ITx,y = 0
Average case: The recommendation given by all honest rec-
ommender is greater than zero, but less than four.
Proof of case 5 in average case is similar to the worst case.
Best case: The recommendation given by all honest recom-
menders is four. So, the term avg (HRS) = 4. Since all the
recommenders are honest, the trust of node x on each rec-
ommender is 4. Hence, the term TEx,HRSi = 4.

⇒ ITx,y = (
√

(4×4)+√
(4×4)+···+√

(4×4))forntimes
n

= n×√
16

n = 4, which proves the case 2 is the best case.
As all two cases are proved in the worst case, average case
and best case, Lemma 2 is proved. �	

7.3 Overhead Analysis

This section presents the memory overhead and communica-
tion overhead for the entire network. Both the overhead are
analyzed, simulated and compared with other two schemes
LDTS [11] andGTMS [12] under the following network sce-
nario.

Overhead is analyzed under varying number of nodes
N = {100, 150, 200, 250}. It is also assumed that the entire
network is divided into some clusters (M)=10 for LDTS
and GTMS (i.e., number of cluster head (CH) is also 10).
Therefore, the average number of node in a cluster δ =
{10, 15, 20, 25}, respectively. Further, the number of neigh-
bor node of any node is Na = {5, 10, 15, 20}, respectively,
which is also considered. Let the average number of hops
h = 3 be in between any sensor node and base station (BS).

We have assumed that every node in the network wants to
communicate with BS in h hops.

7.3.1 Communication Overhead

In this section, we evaluate the communication overhead of
our proposed GATEmechanism under a worst case scenario,
in which a node x wants to communicate with all of its neigh-
bor nodes. The communication overhead is influenced by the
total number of messages exchanged by the sensor node with
its neighbor to execute the GATE protocol.

When a node x wants to communicate with its neighbor
node y (which is an unknown for node x), node x seeks
recommendations from the neighbors of node y. Let Na be
the number of neighbors of node y. Therefore, in the worst
case, node x will send maximum Na number of recom-
mendations requests. In response, node x will receive Na

number of responses. So, the communication overhead will
be 2(Na). If node x wants to communicate with all other
nodes (N ) in the network, then the communication overhead
is 2(Na)(N − 1). Further, if node x wants to communicate
with BS in the h hop, then the number of acknowledgment
generated is 2(h−1).When all N nodeswant to communicate
with BS, the total number of acknowledgment is 2N (h − 1).
Therefore, the total communication overhead for GATE is
2(Na)(N − 1) + 2N (h − 1).

It is also worth mentioning that the number of neighbor
|Na | is always less than the number of node in a cluster |n|.

7.3.2 Comparison

In this section, we have compared the communication over-
head of our proposed scheme GATE with LDTS [11] and
GTMS [12].

In LDTS, when node x from a cluster wants to commu-
nicate with BS through its cluster head (CH), the node x
sends a maximum of one feedback request and also receives
a maximum of one response. So, the communication over-
head between a node and itsCH is (CLDTS(x−CH) = 2).When
a CH of one cluster wants to communicate with another CH,
it sends one feedback request and in turn receives one feed-
back response.Hence, communicationoverheadbetween any
two CH is (CLDTS(CH−CH) = 2). When CH of any cluster
wants to collect feedback from its cluster members CM, it
will send the maximum of the δ number of feedback request.
In reply, it will receive a δ number of feedback responses.
So, communication overhead between CH and its CM is
(CLDTS(CH−CM) = 2δ). When all the CHs collect feedback
from their CM, the communication overhead will be 2Mδ.
When BSwants to collect feedback from all the CHs, it sends
the maximum of the M number of request and in turn will
receive a M number of responses also. So, the communica-
tion overhead between BS and all CHs is (CLDTS(BS−CH) =
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Fig. 9 Communication overhead

2M). If a node x that presents in a cluster wants to communi-
catewithBS in h hops, then the communication overheadwill
be (CLDTS(x−CH)+CLDTS(CH−CH)(h−2)) = 2+2(h−2) =
2+2h−4 = 2(h−1). If all N number of node want to com-
municate with BS, then the total communication overhead of
LDTS is 2N (h − 1) + 2Mδ + 2M .

In GTMS, the total communication overhead is 2N (δ +
h−4) (for details about communication overhead of GTMS,
please see [27]).

Figure 9 shows that the communicationoverhead increases
with increase in the number of communicating node (N ) in
all three schemes. The communication overhead in GATE is
less as compared to GTMS, but more as compared to LDTS.
In GATE, when a node x wants to collect the feedback about
another node y, the node x collects the feedback from all
its trusted neighbors, but in LDTS node x collects feedback
from its CH.

7.3.3 Memory Overhead Analysis

In GATE, each node maintains a transaction table to moni-
tor and store the trust value of its neighbor nodes only. The
different parameters on memory consumption and their cor-
responding memory requirements are shown in Table 2. The
node id consumes 2 bytes of memory space. Each successful
and unsuccessful interaction within a time unit(tk) consumes
1 byte of memory space each, present in the sliding timing
window (W ). To store the direct trust, 0.5 bytes is required.
Therefore, total memory space required to store a trust record
in the transaction table is 2.5+2k bytes, where k is the num-
ber of time units in a sliding window (W ).

Since in the worst case a node can have a maximum of
the Na − 1 number of neighbors, node can consume at most
(2.5 + 2k)(Na − 1) bytes of memory space. Assuming that

the minimum possible value of time unit k is one, the total
memory overhead for GATE is 4.5(Na − 1).

7.3.4 Comparison

This section presents the memory overhead comparison of
GATE with LDTS and GTMS. In LDTS, the size of each
trust record is 7 (refer [11]). As there are δ number of nodes
presents in a cluster in average, the memory requirement at
CM is 7(δ − 1). Further, each CH in LDTS maintains two
tables, one table(matrix) stores the feedback matrix, so the
memory overhead is 0.5(δ − 1)2. In another table, each CH
maintains a trust record of 7 bytes. As there are M number of
CHs in the network, therefore memory overhead for second
table is 7(M − 1). In total memory overhead at CH level
is 7(M − 1) + 0.5(δ − 1)2. Hence, the maximum memory
overhead for the entire network that consists of N number
of nodes and M number of CH is MLDTS = 7N (δ − 1) +
M(7(M − 1) + 0.5(δ − 1)2).

In GTMS ([12]), the maximum memory overhead for the
entire network that consists of N number of nodes and M
number of CH is MGTMS = 8N (δ − 1) + 8M(M + δ − 2)
(please see [27]).

Figure 10 shows the memory overhead of GATE, LDTS
andGTMSwith varying number of communicating node(N ).
It is evident from Fig. 10 that the memory overhead in GATE
is comparatively very less than the both LDTS and GTMS.

8 Simulation-Based Analysis and Performance
Evaluations of GATE

In this section,we evaluate the performance ofGATE through
simulation using MATLAB 2016b because our entire trust
computation is started after gathering the data about number
of data packet send, number of data packet received success-
fully, total number of communication happens between two
nodes in a specified period, and number of control packet
send successfully, etc. In Sect. 8.1, we have shown the effect
of misbehavior on direct trust, and also we have compared
our scheme with another related scheme like GTMS, LDTS
and Ishmonav et al. [13] schemes. Further, in Sect. 8.5, we
have shown the effect of dishonest recommendation on indi-
rect trust computation and the comparison with other related
schemes like GTMS and Ishmonav et al. [13]. In Sect 8.5,
we have not compared our scheme with LDTS because in
LDTS the indirect trust computation is based on the counting
of some positive and negative feedback about the accessed
node instead of actual feedback value by the honest recom-
mender. The parameters used in the simulations are shown
in Table 3.
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Table 2 Memory overhead of
each node

Memory consuming parameters Memory size required

Node id 2 bytes

Number of successful transactions
in each time unit (tk ) of sliding window (w)

t1
.
.
tk

1 byte
.
.
1 byte

Number of unsuccessful transactions
in each time unit (tk ) of sliding window (w)

t1
.
.
tk

1 byte
.
.
1 byte

Direct trust value 0.5 byte

Indirect trust value Nil
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Fig. 10 Memory overhead

Table 3 Simulation parameters

Parameters Value

Testbed dimension 500×500 m2

Node deployment Random

Number of node 600

Radio range 40 m

Trust value range 0–10

Initial trust value of node 5

Packet size 50 bytes

Packet interval 10 s

Initial node energy 30 J

Transmitter/receiver circuitry dissipation 0.5 nJ/bit

Data aggregation energy (EDA) 0.5 nJ/bit

TTL 4

Table 4 Simulation parameters to show the effect of misbehavior on
direct trust

Parameter Parameter value

Number of behavior in each time
unit (tk )

10

Sliding window length (WL ) Minimum:3, maximum:7

Trust threshold 5

Trust aging factor (TF) 0.8 (for all types of trust scheme)

8.1 Effect of Misbehavior on Direct Trust in GATE and
Other Related Schemes

To show the effect of misbehaviors (unsuccessful transac-
tions) on direct trust, we generate 10 number of random
behaviors in each time unit tk . For each of the behavior, a ran-
dom number is generated between 0 and 10 in each time unit
tk . If the generated random number is greater than or equal to
5, then the behavior is a good/ successful transaction. If the
generated random number is less than or equal to 4, then the
generatedbehavior is considered as amalicious/ unsuccessful
transaction. By considering the following parameters shown
in Table 4, we simulate the effect of misbehavior on direct
trust in time windowW . To compare with other schemes, we
modified the trust domain 0 to 10 in GTMS and Ishmonav et
al. [13]. In LDTS, the trust domain remains same.

Figure 11 shows the effect of malicious behavior on direct
trust estimation. It is evident from the result that the direct
trust value in our proposed direct trust computation scheme
lies between GTMS and LDTS. Further, the direct trust value
also lies below the Ishmonav et al. [13], i.e., in GATE, the
resulted trust values are stricter because our schemeconsiders
both the reward and penalty policies.

8.2 ON–OFF Attack Detection in GATE

As the ON–OFF attack manifested in data forwarding plane,
in this section, we evaluate and compare our proposed direct
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Fig. 11 Effect of malicious behavior on direct trust

trust scheme under the ON–OFF attacks behavior of mali-
cious nodes. To make the simulation more reasonable, we
use the following two different types of ON–OFF attacks:

– Type 1 ON–OFF attack: A malicious node exhibits
more ON–OFF attack in a dynamic sliding window, i.e.,
the periodicity of attack (misbehavior) is more.

– Type 2 ON–OFF attack: A malicious node exhibits
less ON–OFF attack in a dynamic sliding window as
compared to type 1, i.e., the periodicity of attack (misbe-
havior) is less as compared to type 1.

Further, to simulate the ON–OFF attack detection under
above discussed two scenarios, we use parameters in Table 5.

Figure 12 shows the ON–OFF attack detection rate in dif-
ferent trust scheme under two different types of ON–OFF
attack. This simulation is evaluated under (90, 80, 70, 60%)
and (40, 30, 20, 10%) periodicity of misbehavior (PM) when
the sliding window length varies from 3 to 7 for both of type
1 and type 2 ON–OFF attack, respectively.

Subplot 1 of Fig. 12 shows that there is 100, 98, 95 and
95% detection rate whenever the periodicity of misbehavior
is 90% (Type 1 ON–OFF attack) for GATE, Ishmonav et
al. [13], LDTS and GTMS, respectively. The detection rate
is 80, 70, 67 and 68% whenever the PM is 40% (Type 2
ON–OFF attack) for GATE, Ishmonav et al. [13], LDTS and
GTMS, respectively.

Subplot 2 of Fig. 12 shows that there is 95, 87, 75 and
73% detection rate whenever the periodicity of misbehavior
is 80% (Type 1 ON–OFF attack) for GATE, Ishmonav et
al. [13], LDTS and GTMS, respectively. The detection rate
is 48, 30, 25 and 20% whenever the PM is 30% (Type 2
ON–OFF attack) for GATE, Ishmonav et al. [13], LDTS and
GTMS, respectively.

Similarly, subplot 4 of Fig. 12 shows that there is 89,
75, 73 and 71% detection rate whenever the periodicity of
misbehavior is 60% (Type 1 ON–OFF attack) for GATE,
Ishmonav et al. [13], LDTS and GTMS, respectively. The
detection rate is 10, 5, 3 and 3% whenever the PM is 10%
(Type 2 ON–OFF attack) for GATE, Ishmonav et al. [13],
LDTS and GTMS, respectively.

Further, it is evident from the simulation results that the
detection rate is very high in all three schemes whenever the
periodicity of misbehavior is more, and the detection rate is
comparatively less when the periodicity of misbehavior is
less. However, the detection rate under two different types of
ON–OFF attack is more in GATE as compared to Ishmonav
et al. [13], LDTS and GTMS.

8.3 Effect of Dishonest Recommendation on Indirect
Trust Computation in GATE

To show the effect of dishonest trust recommendations, we
conducted an experimentwith andwithout using any filtering
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Table 5 Simulation parameters
for ON–OFF detection

Parameter used Parameter value

Sliding Window Length (WL) Minimum: 3 and maximum: 7. Changes dynam-
ically for one more unit based on the periodicity
of attack (i.e., number of good and number of mi-
sbehavior) in W

Trust threshold 5

Trust aging factor (TF) 0.8 (for all types of trust scheme)

Periodicity of off (i.e., number of off/
good behavior) in window (W)

Randomly generated: 3–8, depending on WL

Periodicity of on (i.e., number of on/
bad behavior) in window (W)

Randomly generated: 3–8, depending on WL

Threshold of periodicity of misbehavior (θ ) 0.3
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Fig. 12 ON–OFF detection rate

mechanism. In this experiment, we consider the following
four scenarios as shown in Table 6.

Further, in this experiment whenever proposed filtering
mechanism is used, Eq. (11) is considered to examine the
indirect trust of the assessed node. On the other hand, the
indirect trust of the assessed node is computed using Eq. (12)
whenever no filteringmechanism is used, i.e., in the presence
of dishonest recommender.

ITx,y =
∑m

i=1

√(
TEx,RTi × RTi,y

)
|m| (12)

where x is the accessing node; y is the accessed node. TEx,RTi
is the trust of assessing node x on each recommender RT; |m|
is the number of recommender.

Figure 13 shows the estimated indirect trust values over
100 simulation rounds under scenario 1 and scenario 2 with
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Table 6 Evaluation of
dishonest recommendation on
indirect trust computation

Filter use Scenario Type of recommender Type of accessed node

Scenario 1 Honest Benevolent

Scenario 2 Honest Malicious

Scenario 3
Dishonest,
without
recommendation deviation

−

Scenario 4 (i)
Dishonest,
with recommendation
deviation

Benevolent

Scenario 4 (ii)
Dishonest,
with recommendation
deviation

Malicious
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Fig. 13 Indirect trust value in the presence of honest recommender

filtering mechanism. For each indirect trust estimation, the
direct trust value of the honest neighbor recommender on
benevolent assessed node randomly generated between 5 and
10, whereas the direct trust value of the honest neighbor rec-
ommender on malicious assessed node randomly generated
between 0 and 4. As Fig. 13 depicts, in our indirect trust
computation model the estimated value of indirect trust of
the benevolent assessed node is always above the trust thresh-
old, whereas the indirect trust value of themalicious assessed
node is always below the trust threshold.

Figure 14 illustrates the estimated indirect trust values
under scenario 3 without employing any filtering mechanism
and recommendation deviation. As Fig. 14 shows, with 10,
20 and 30% dishonest recommender (DR) the indirect trust
of the node is not distorted. However, the resilience of our
proposed model degraded when the dishonest recommender
percentage increases to 40–50%.

8.4 Detection Ratio of GATE and Related Scheme

To determine the percentage of the dishonest recommender,
we evaluate our proposed GATE scheme with different per-
centage of dishonest recommendations and the different
threshold value of variation factor C (as per Eq. (10)). Fig-
ure 15 depicts that,with the threshold value of variation factor
C = 1, the dishonest recommender detection rate is 100 and
9% in the best case and worst case, respectively. Similarly,
when the threshold C = 2, the detection rate is 82% in the
best case and 2% in worst case. Moreover, the results that are
shown in Fig. 15 are correlated with Fig. 14, i.e., when the
percentage of dishonest recommender increases to 40 and
50%, the rate detection is very poor.

8.5 Comparative Analysis of GATE with Related
Scheme

Figures 16, 17, 18 and 19 demonstrate the estimated indirect
trust (IT) value in the presence of 10, 20, 30 and 40% dishon-
est recommender, respectively. As shown in Figs. 16 and 17,
with 10 and20%dishonest recommender, the estimated value
of the indirect trust is remained undistorted in our proposed
GATE model, in GTMS and Ishmonav et al. [13], i.e., in
all three models the computed indirect trust value in each
round is on above trust threshold. However, Fig. 18 depicts
that the value of computed indirect trust in each round is
distorted less with 30% dishonest recommender in GATE as
compared to GTMS and Ishmonav et al. [13], i.e., the com-
puted indirect trust value in GATE lays less below the trust
threshold as compared to GTMS and Ishmonav et al., and
Fig. 19 also gives the same conclusion as that of Fig. 18 with
40% dishonest recommender.
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Fig. 14 Indirect trust values in the presence of dishonest recommender

10% 20% 30% 40% 50%

Dishonest Recommendation

0

20

40

60

80

100

D
et

ec
ti

o
n

 R
at

e(
%

)

c=1
c=2

Fig. 15 Detection rate of dishonest recommender

8.6 Impact of Dishonest Recommender Launches Bad
Mouthing and Ballot Stuffing Attack

In order to evaluate the performance of GATE under sce-
nario 4(i) (i.e., badmouthing attack) and scenario 4(ii) (i.e.,
ballot stuffing attack), we use the following two factors:

1. Percentage of dishonest recommender
2. Recommendation deviation (α%): defined as the per-

centage of deviation in recommendation value given
by recommender from actual indirect trust value of the
assessed node.

In the case of bad mouthing attack, the recommender always
gives less trust value than the actual trust value of the accessed
node. Therefore, if T is the actual trust value of the assessed
node and α% is the recommendation deviation, then the rec-
ommendation given by the bad mouthing attacker and ballot
stuffing attacker is given by Eqs. (13) and (14), respectively.

RT = T − (T ∗ α%) (13)

RT = T + (T ∗ α%) (14)

Let us assume that an accessed node x is benevolent with
T = 7 and accessed node y is malicious with T = 4. Node
x suffers in bad mouthing attack and node y suffers in ballot
stuffing attack. Figures. 20 and 21 illustrate the effect of bad
mouthing and ballot stuffing attacking nodes on the accessed
node x and node y, respectively. The indirect trust of node x
and node y is computed by using Eq. (12) with varying per-
centage of dishonest recommendations (DR) 10 and 40% and
recommendation deviations varying between 20 and 80%.As
Fig. 20 shows, with a low percentage (i.e., 10%) of DR and
recommendation deviation (i.e., 20%) the estimated indirect
trust value of accessed node x is not distorted much (i.e., the
estimated indirect trust value conferred the accessed node x
as benevolent). However, with a high percentage (i.e., 40%)
of DR and recommendation deviation (i.e., 80%) the esti-
mated indirect trust value of assessed node x conferred the
node x as malicious, which is grimly disagree with the actual
trust value of node x .
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Fig. 16 IT with 10% DR in GATE, GTMS and Ishmonav et al. [13]
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Fig. 17 IT with 20% DR in GATE, GTMS and Ishmonav et al. [13]
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Fig. 18 IT with 30% DR in GATE, GTMS and Ishmonav et al. [13]
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Fig. 19 IT with 40% DR in GATE, GTMS and Ishmonav et al. [13]

123



Arab J Sci Eng (2018) 43:7229–7251 7249

10 20 30 40 50 60 70 80 90 100

No. of Rounds

1

2

3

4

5

6

7

8

9

10

In
d

ir
ec

t 
T

ru
st

 V
al

u
e

10% DR, 20% recomendation Deviation
40% DR, 20% recomendation Deviation
10% DR, 80% recomendation Deviation
40% DR, 80% recomendation Deviation
Trust of Benevolent Accessed node
Trust Theshold

Fig. 20 Effect of bad mouthing attack
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Fig. 21 Effect of ballot stuffing attack
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Figure 21 shows with a low percentage (i.e., 10%) of DR
and recommendation deviation (i.e., 20%) the assessed node
y is conferred as samewith its actual behavior. However, with
40% DR and 80% recommendation deviation the estimated
indirect trust value is inferior, i.e., the estimated indirect trust
of assessed node y, has completely digressed from its actual
trust value.

An imperative observation from Figs. 20 and 21 is that
with a high percentage of dishonest recommender (i.e., bad
mouthing and ballot stuffing attackers) and high recommen-
dation deviations in the absence of a filtering mechanism
the trust management system is more vulnerable. Another
important affirmation is that low percentage of DR with high
recommendation deviation has almost same effect as that of a
high percentage of DR with low recommendation deviation,
which is evident from 10% DR with 80% recommendation
deviation and 40%DRwith 20% recommendation deviation.

9 Conclusion and Future Work

In this paper, the proposed a trust-based defense mech-
anism GATE provides a guard to the trust management
system from various kinds of internal attacks. The proposed
lightweight direct trust estimation method includes both the
weight to past behavior and periodicity of misbehavior to
improve the defense of trust management system itself. Fur-
thermore, direct trust establishment scheme uses both reward
and penalty policies for each good and malicious behavior
of a node, respectively, to make the trust computation more
realistic. The consideration of positive integer based trust
domain and dynamic timing window demands fewer system
resources. It also helps the system to segregate between ON
andOFF attack nodes and transient malicious nodes by using
trust regain scheme. However, finding the optimal value of
sliding window length is one of the challenges in GATE,
which we shall consider in our future work.

In indirect trust computation, the selection of appropriate
recommender is based on variation factor to guard the trust
management system against badmouthing and ballot stuffing
attackers. Furthermore, to filter out the dishonest recommen-
dation, the proposed scheme use both own experiences of
accessing node andmajority view of the recommender, based
on MADAM. Variation factor is used to filter out honest rec-
ommendations from dishonest one. It is also evident from the
theoretical and simulation-based analysis that the effective-
ness of the proposed scheme is resilient against badmouthing
and ballot stuffing attackers. Further, it is ascertained that our
proposed scheme has better performance to detect dishonest
recommendation than GTMS, and resilience of our scheme
degrades when the dishonest recommendation increases to
50%.
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