
Arabian Journal for Science and Engineering (2018) 43:2971–2993
https://doi.org/10.1007/s13369-017-3034-9

RESEARCH ART ICLE - ELECTR ICAL ENGINEER ING

Comparative Study of Neural Networks for Control of Nonlinear
Dynamical Systems with Lyapunov Stability-Based Adaptive Learning
Rates

Rajesh Kumar1 · Smriti Srivastava1 · J. R. P. Gupta1

Received: 31 May 2017 / Accepted: 21 December 2017 / Published online: 9 January 2018
© King Fahd University of Petroleum &Minerals 2018

Abstract
This paper performs the comparative study of two feed-forward neural networks: radial basis function network (RBFN),
multilayer feed-forward neural network (MLFFNN) and a recurrent neural network: nonlinear auto-regressive with exogenous
inputs (NARX) neural network for their ability to provide an adaptive control of nonlinear systems. Dynamic back-propagation
algorithm is used to derive parameter update equations. To ensure stability and faster convergence, an adaptive learning rate
is developed in the sense of discrete Lyapunov stability method. Both parameter variation and disturbance signal cases are
considered for checking and comparing the robustness of controller. Three simulation examples are considered for carrying
out this study. The results so obtained reveal that RBFN-based controller is performing better than that of NARX- and
MLFFNN-based controllers.

Keywords Radial basis function network · Nonlinear adaptive control · NARX · Multilayer feed-forward neural network ·
Robustness · Lyapunov stability-based adaptive learning rate

1 Introduction

1.1 Background

The advancement in the mathematical theory has led to
the development of some powerful techniques to handle
the dynamical systems. It uses well-established techniques,
which are based on linear algebra, complex variable theory,
and the theory of ordinary linear differential equations for
analysing the dynamical systems. The procedure available
to design the controller is closely related to the stability
properties of the system. For LTI systems, necessary and
sufficient conditions for stability are available and hence
designing a controller for them is not a difficult task. In

B Rajesh Kumar
rajeshmahindru23@gmail.com

Smriti Srivastava
smriti.nsit@gmail.com

J. R. P. Gupta
jairamprasadgupta@gmail.com

1 Division of Instrumentation and Control Engineering,
Netaji Subhas Institute of Technology, Sector 3, Dwarka,
New Delhi, India

contrast to this, the stability of the nonlinear system can
be established on a system-by-system basis, and hence, it
is not surprising that the general design procedure which
fulfils the requirement of desired dynamical response and
stability is not available for the large class of nonlinear
systems [1]. In reality,most of the systems are inherently non-
linear, and hence, designing a suitable controller for them is
a challenging task. Further, the linearization of these systems
around an equilibrium point may yield the linearly tractable
mathematical models. However, it has been found that the
conventionally designed linear controller may not able to
achieve some stringent specifications. Also, it may not be
able to provide the required performance over the variety
of operating regimes, especially in the case of highly non-
linear system [2–4]. Another limitation of the conventional
control methods is their dependency on the availability of
systems model in designing the controller. Also, the conven-
tional methods are not useful in deriving the control laws for
the nonlinear systems since a large amount of approxima-
tions, assumptions and simplifications have to be performed
which ultimately affect the desired accuracy [5,6]. Various
advanced methods have been developed to control the non-
linear systems. These include sliding mode control [7,8],
back-stepping control [9,10], decentralized control [11,12].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-017-3034-9&domain=pdf
http://orcid.org/0000-0001-7172-1081

2972 Arabian Journal for Science and Engineering (2018) 43:2971–2993

But it is now well known that nonlinear systems have the
tendency to show extremely complex dynamic behaviour,
and hence, these advanced methods may not give the desired
performance [13]. All these factors among others have con-
tributed in the development of more sophisticated nonlinear
intelligent techniques which can handle nonlinear complex
processes [14]. Artificial neural network (ANN) is one such
tool. ANN is the distributed processing systems, which are
inspired by the biological nerve system. They contain neu-
rons which approximates the behaviour of nerve neurons.
These neurons in ANN are connected to each other with the
weights. It is one of the popular computational intelligent
approach which is capable of approximating any unknown
nonlinear function to any degree of accuracy [13], and it can
provide accurate control without requiring any a priori infor-
mation regarding the dynamics of the nonlinear system [6].
There are number of books written on ANNwhich details its
applications in identification and control of nonlinear sys-
tems. Haykin [15] presented a nice and solid foundation
in ANN. Norgaard [16] discussed various approaches by
which ANN can be used to identify and control the dynam-
ical systems. Liu [17] discussed various structures of ANN
and provided various applications of ANN in nonlinear sys-
tem identification and control. Zilouchin with Jamshidi [18]
in their book included number of articles related to appli-
cations of intelligent controllers. In structure, ANN can be
classified into two types: multilayer feed-forward neural net-
work (MLFFNN) and recurrent neural network (RNN). Both
these structures have common characteristics like parallelism
in their operation and nonlinear transformation which makes
them an effective tool for control of nonlinear systems [3,19].
To useANNas a controller, its parameters need to be tuned by
using some parameter adjustment methods. There exists the
number of methods which are available in the literature that
can be used for this purpose. The most basic one is based
on back-propagation method which is based on gradient
descent method. Although gradient descent-based learning
algorithms have been employed successfully in various con-
trol applications, they usually suffer from the problemof slow
convergence [13,20]. Another approach to derive the param-
eter adjustment equations is by using the Lyapunov stability
method [14]. The advantage of using this method is that it
guarantees the overall stability of the system. In this paper,
our attempt is to combine both these popular approaches
so as to utilize the merits of each of them. The parame-
ter update equations are derived using the back-propagation
algorithm. Further, to speed up the convergence rate and to
ensure the stability of the system, a novel adaptive learning
rate is developed based on the Lyapunov stability method.
In the simulation section, the performance of the controller
with fixed as well as with the adaptive learning rate is shown
and compared.

The main issues in the field of ANN-based control are
the choice of neural network to be used as a controller, and
which parameter learning algorithm is to be employed for
tuning its parameters. In our paper, an attempt has been
made to compare three types of neural networks: two feed-
forward (MLFFNN and RBFN) and one recurrent type of
neural network (NARX) as a controller. The control system
configuration employed in our paper consists of ANN-based
controller in cascade with the plant and the training is per-
formed online.

2 RelatedWork

In [1], the authors have used ANN as an identification
and control tool. They have derived the weight updating
algorithm based on back-propagation with constant learn-
ing rate. In [21], the authors have used neural networks
for the control of nonlinear systems. They have provided
the method that ensures the stability of the plant around
an equilibrium point. In [22], the authors have used recur-
rent neural network for the control of nonlinear systems.
They have used back-propagation method to derive the
weight update equations with fixed learning rate. In [23], the
plant is described as NARMA model, and neural network-
based control is implemented in order to accomplish the
set-point control. In [24], recurrent neural networks have
been used for providing the speed control to the nonlin-
ear motor-drive system using a model-following control
scheme. In [25], the main focus of the authors is to have
the stabilized control of dynamical systems based on neu-
ral networks. The weight adjustment algorithm is derived
using back-propagation algorithm. In [26], neural network-
based adaptive dynamic programming scheme is used to
achieve optimal control of nonlinear discrete-time affine sys-
tems. In [27], the objective is to provide adaptive control to
nonlinear switched type nonlinear system using multilayer
neural network. The weight update equations are derived
using the Lyapunov stability method. In [28], the authors
have presented a scheme based on recurrent neural network
for nonlinear control of pH. In [29], the authors have pro-
posed a fast sliding mode method, and they have used ANN
to provide control to dual-motor servo system. They have
also shown that their method works well in the presence of
external disturbance. In [30], the authors have used ANN to
control the conical tank. The weight update equations are
derived using back-propagation method. In [31], the author
has derived the sufficient conditions for the existence of
the solution for impulsive neutral high-order Hopfield neu-
ral networks with mixed time-varying delays and leakage
delays. He has also discussed about the exponential stabil-
ity of the derived solution. An example is also presented
to show the effectiveness of the derived results. In [32],

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2973

the authors have established some sufficient conditions for
the existence and global exponential stability of the pseudo
almost automorphic solutions for the class of recurrent type
of neural networks with time-varying coefficients and con-
tinuously distributed delays. For deriving these conditions,
the authors have used the fixed point theorem and differen-
tial inequality method. In [33], the authors have considered
a class of impulsive high-order neural networks with mixed
delays and derived a criteria by using the fixed point theo-
rem, Lyapunov functional method and differential inequality
techniques on the existence and global exponential stability
of piecewise differentiable pseudo almost periodic solution.
In [34], the author has discussed in detail the special class
of neural networks known as neutral impulsive shunting
inhibitory cellular neural networks with time-varying coef-
ficients and leakage delays. A detailed description about the
existence, uniqueness and exponential stability of piecewise
differentiable pseudo almost periodic solutions is given. The
results are derived using the fixed point theorem, Lyapunov
functional method and differential inequality techniques. An
example is also given to show the effectiveness of the pro-
posed method. In [35], the authors have used generalized
predictive control scheme based on recurrent type of wavelet
neural network and used it for identification and control
of mobile robots. Further, the authors have used gradient
descent method to derive the parameter update equations.
In [36], the authors have used self-recurrent wavelet neural
network for the identification and control of nonlinear sys-
tems and compared its performance with that of the wavelet
neural network. Gradient descent and Lyapunov stability
methods are used to derive the parameter update equations.
In [37], the authors have proposed a control scheme for trajec-
tory tracking control of 3-degree-of-freedomfour-rotor hover
vehicle. They have used RBFN as a controller. Further, Lya-
punov stabilitymethod is used to derive the update equations.
In [38], the authors have used the back-stepping technique
with the neural networks approximation ability for track-
ing control for a class of high-order nonlinear systems with
completely unknown nonlinearities. They have used RBFN
for this purpose. In [39], the authors have used model refer-
ence adaptive controller (MRAC) schemebased onRBFN for
controlling the fixed-wing unmanned aerial vehicle (UAV).
In [40], the authors have used ANN for controlling the mag-
netic levitation system. They have used Lyapunov method to
prove the stability of the overall system. In [41], the authors
have used recurrent neural network for identification, mod-
elling and control of nonlinear systems. They have used
Lyapunov stability method to prove the convergence of their
proposed algorithm. In [42], the authors have proposed a neu-
ral network-based adaptive dynamic programming scheme
for online identification and control of nonlinear systems.
They have used Lyapunov stability method to derive the
weight update equations. In [43], the authors have used

recurrent neural network coupled with Kalman filter for
identifying the dynamic terms of the robotic manipulator.
The parameter update equations are derived using gradient
descent and Lyapunov stability method. In [44], the authors
have used the neural network to obtain an approximate solu-
tion to the value function of the Hamilton–Jacobi–Bellman
(HJB) equation. For deriving the update equations, they have
used steepest descent method. In [45], the authors have
proposed a model-free discrete-time neural network control
scheme for doing the trajectory tracking control of nonlin-
ear processes. The Lyapunov method is used to ensure the
stability of the system. In [46], the authors have proposed
a Lyapunov function-based neural network tracking strategy
for single-input, single-output (SISO) discrete-time nonlin-
ear dynamic systems. The estimator error convergence and
closed-loop system stability analysis are performed by using
the Lyapunov stability method.

1. Remark 1Most of the papers have focused on designing
an ANN-based controller but have not compared its per-
formance by using different neural networks. The other
missing part is the robustness analysis.Many papers have
not tested the performance of their controllers under var-
ious system uncertainties.

2. Remark 2 Many papers have shown the final simulation
results which are obtained after the training. What could
have been better if the output of the plant is shown during
all the phases of the training. In such case, the detailed
analysis of the performance of the controller can be done.

2.1 Motivation

The main motivation of writing this paper is to show in detail
the performance comparison of feed-forward and recurrent
type of neural networks. Most of the papers in the literature
have used only one type of neural network, and the com-
parative analysis part is missing. Further, to the best of our
knowledge there exists no paper in the literature which has
done in detail the robustness comparison of feed-forward and
recurrent type of neural networks. Also, to the best of our
knowledge no paper has shown responses of the plant during
all the phases of training.This has beendone inour paper.One
can get an idea from these responses how the various con-
trollers are performing. Further, many papers have employed
new powerful algorithms for designing their controllers or
for obtaining the parameters update equations, but many of
these algorithms are quite complex which makes the analy-
sis quite difficult and are also quite difficult to implement. In
our paper, dynamic back-propagation algorithm is used for
obtaining the parameter update equations, and to make these
update equationsmore effective they are equippedwith adap-
tive learning rates that has been derived using the Lyapunov
stability method.

123

2974 Arabian Journal for Science and Engineering (2018) 43:2971–2993

2.2 Contributions of the Paper

1. To thoroughly analyse and compare the performances
of the feed-forward and recurrent type neural network
controllers with fixed as well as with adaptive learning
rate.

2. To test the performances of these controllers under the
system’s uncertainties like parameter variation and dis-
turbance signals.

3. To discuss and compare the computational complexity
of these controllers.

4. Anovel adaptive learning rate is developedusing theLya-
punov stability method. The advantage of using adaptive
learning rate is twofold. Firstly, faster convergence of
parameters is ensured. Secondly, stability of the overall
system is guaranteed.

The main outline of the paper is as follows: in Sect. 3,
problem statement is given. Section 4 includes the brief
introduction about RBFN, MLFFNN and NARX models
and their mathematical formulation. In Sect. 5, these ANNs
are compared in terms of their structural complexities and
the computational time. Section 6 contains the derivation of
parameter adjustment equations. In Sect. 7, Lyapunov sta-
bility method is used to develop the adaptive learning rate.
Section 8 includes the discussion on the adaptive control
of nonlinear systems and also includes the discussion on the
selection of controller’s inputs. Section 9 contains the simula-
tion study.Threedynamical systemsof different complexities
are considered for evaluation of the performances of the con-
trollers. The controllers are also tested against the effects
of parameter variations and disturbance signals. Section 10
includes the discussion section. In Sect. 11, conclusion of the
paper is given.

3 Problem Statement

Let the given plant is described by following dynamical dif-
ference equation

Yp(k + 1) = F
[
Yp(k),Yp(k − 1) . . . Yp(k − n + 1)

]

+ G [uc(k), uc(k − 1), . . . uc(k − m + 1)]

(1)

where Yp(k+1) is the one step ahead output of the plant and
uc(k) represents the control input to the plant. Further, F →
�, G → � are linear or nonlinear functions and are assumed
to be differentiable. The term n represents the order of the
plant. Let the stable reference model dynamics is described
by the following difference equation

Yd(k + 1) = M [Yd(k),Yd(k − 1)...Yd(k − a + 1)]

+ N [r(k), r(k − 1), . . . r(k − b + 1)]
(2)

where Yd(k + 1) denotes the one step ahead output signal
of the reference model, r(k) denotes the externally applied
reference input signal and a > 0, b > 0. Further, M → �,
N → � are known linear or nonlinear differentiable func-
tions.

The objective of the adaptive control can be stated as fol-
lows: it is desired to obtain controller’s parameter update
equations so that output of the controller uc(k) forces the
plant output to track the reference model output. Mathemat-
ically, it can be stated as: the plant with an input–output
pair Yp(k), uc(k) is given as in Eq. 1, and the stable refer-
ence model specified with its input–output pair Yd(k), r(k)
is given as in Eq. 2 with reference input signal of the sys-
tem r(k). Then, the requirement is to update the parameters
of the ANN-based controller so that it generates a control
signal sequence uc(k) such that

lim
k→∞ |Yd(k + 1) − Yp(k + 1)| ≤ ε (3)

where ε → 0. The error between plant output and reference
model output will be used in the update equations for updat-
ing the parameters of the ANN-based controller. The mode
of training will be performed online. Further, the value of
learning ratewill be governed by the equation that is obtained
using the Lyapunov stability method. The other requirement
from the control system is to compensate the effects of param-
eter variation and disturbance signal. The control scheme
used in this paper is able to adjust the parameters of con-
trollers in such a way so as to compensate the effects of
system’s uncertainties.

4 Preliminaries, Basic Concepts and
Mathematical Formulation of ANNs

Since a lot of literature exists on NARX, RBFN and
MLFFNN so in this section a brief introduction regarding
their mathematical formulation is given. The structures of
RBFN, MLFFNN and NARX models are shown in Figs. 1,
2 and 3, respectively.

4.1 RBFNModel

The input vector of RBFN at any kth time instant is denoted
by X(k) = {

x1(k), x2(k), . . . xp(k)
}
. Thus, there are p num-

ber of inputs. The input weight vector is denoted by WI (k),
and its each element is of unity value. The adjustable out-
put weight vector,Wo(k), consists of q number of adjustable
weights,wo1(k), wo2(k), . . . woq(k),which connects the out-
put of hidden neurons to the output neuron(s). The activation

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2975

Fig. 1 RBFN structure

Fig. 2 MLFFNN structure

function for output neuron(s) is/are taken to be linear so as
not to restrict the output range of RBFN values. The hid-
den neurons of RBFN are also known as radial centres, and
their functioning is quite different from that of the normal
neuron (like neuron of NARX and MLFFNN). Each radial
centre is assigned a coordinate having the same dimension
as that of the input vector, thus, p number of elements would
be there in each radial centre. There are q number of radial
centres which are denoted by M1(k), M2(k) . . . Mq(k). The
mathematical formulation of RBFN is as follows [47]:

Yr (k) =
q∑

i=1

φi (k)Woi (k) (4)

Fig. 3 NARX structure

Here, φi (k) represents the Gaussian radial basis function. It
can be seen from Eq. 4 that linear activation function of unity
gain is used for the output neuron. Here, Yr (k) is the RBFN
output at any kth time instant. Also, for any i th radial centre,
its output can be found as:

123

2976 Arabian Journal for Science and Engineering (2018) 43:2971–2993

φi (vi (k)) = exp

(
−v2i (k)

2σ 2
i (k)

)

(5)

where vi (k) = ‖X(k) − Mi (k)‖ is the Euclidean distance
present between X(k) andMi (k). The widths are represented
by σ(k) = {

σ1(k), σ2(k) . . . σq(k)
}
.

4.1.1 Choice of Radial Basis Function

There exists the number of choices for the radial basis func-
tions such as quadratic, inverse quadratic and thin plate of
spline. However, Gaussian radial basis function is more intu-
itive than others as it produces significant output when the
training data happen to be in the neighbourhood of the radial
centre and vice versa [47]. This property of Gaussian radial
basis function gives it an edge over other available choices
of radial functions.

4.2 MLFFNNModel

Dashed red line square box in Fig. 2 shows the expanded
view of hidden layer of MLFFNN. The induced field
vector (sum of weighted inputs) of hidden neurons in
MLFFNN is denoted by the vector V (k) where V (k) ={
V1(k), V2(k), . . . Vq(k)

}
. The output of hidden neurons is

denoted by a vector, S(k) = {
S1(k), S2(k), . . . Sq(k)

}
. Fur-

ther, tangent hyperbolic function is used as an activation
function for hidden neurons (as it can have both the positive
and the negative values as its output) and linear activation
function (so that output of output neuron can have any range
of the values) for output neuron. The input weight vector
(which connects external applied inputs to the neurons of
hidden layer) is denoted by vector W I (k), and the output
weight vector (which connects hidden neurons outputs to the
neuron present in the output layer) in MLFFNN structure

is denoted by WO(k) =
{
wO
1 (k), wO

2 (k), . . . wO
q (k)

}
. The

mathematical model of MLFFNN is given by [1]

YMLFFNN(k + 1) =
∑

q

W O
r f

[
Vq(k)

]

=
∑

q

W O
q f

[
∑

p

W I
pq(k)xp(k)

] (6)

where YMLFFNN(k+1) represents theMLFFNN output. Fur-
ther, the externally applied p-input signal vector is denoted
by I p = {

x1(k), x2(k) . . . xp(k)
}
.

4.3 NARXModel

The NARX model represents a generic recurrent neural
network having its one step ahead output, YNARX(k +
1), depends upon the present input value along with its

past values (called exogenous inputs) which are repre-
sented by: {x(k), x(k − 1), . . . x(k − n + 1)} as well as
on its own present as well as the past values, that is,
{YNARX(k),YNARX(k − 1) . . . YNARX(k − n + 1)} [15].

The term n is decided by the operator, and in this paper it is
taken equal to the order of the given plant. The induced field
of any r th hidden neuron of NARX model is given by [15]

Vr (k) =
n∑

j=1

W I
j1(k)x(k − j + 1)

+
n∑

j=1

W I
(j+2)1(k)YNARX(k − j + 1)

(7)

The output of any r th hidden neuron at any kth instant is

Sr (k) = f [Vr (k)] (8)

where f is a hyperbolic tangent activation function. The out-
put of the NARX model is then given by

YNARX(k) =
∑

q

W O
q Sq(k). (9)

5 Structural Comparison of NARX, MLFFNN
and RBFN

In this section, these ANNs are compared in terms of their
structural characteristics.

Definition 1 [48] Any neural network can be denoted by an
ordered tuple {N }T which is given by {N }T ={X p, Hq , Om}
with p, q and m denoting the number of externally applied
inputs in the input vector {X p}, number of hidden neurons
(or nodes) present in the hidden layer {Hq} and number of
output neurons present in the output layer {Om} inMLFFNN,
NARX and RBFN.

Definition 2 [48] Let {N }MLFFNN , {N }NARX, {N }RBFN
denote the total number of parameters, to be tuned present, in
the MLFFNN, NARX and RBFN including the weights con-
necting the external bias signals which are applied to hidden
neurons (or nodes) and output-layer neuron(s), respectively.

Lemma The total count of parameters to be tuned in all these
three NNs can be calculated using the below simple mathe-
matical expressions [48]:

{N }MLFFNN = (p + m + 1) q + m (10)

{N }NARX = (2n + m + 1) q + m (11)

{N }RBFN = (m + 3)q + m. (12)

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2977

Table 1 Comparative analysis of computational complexity of ANNs

No. of external
inputs=2 no. of
hidden neurons=4

No. of
calculations for
input multiplied
with input
weights

No. of operations
for calculation of
induced fields of
hidden neurons

No. of
Euclidean
distance
calculation

No. of output
calculation of
hidden neurons

No. of
calculations of
weighted output
of hidden- layer
neurons

Induced field
calculation at
output neuron

Total number of
operation in one
iteration

RBFN 0 0 4 4 4 1 13

MLFFNN 8 4 0 4 4 1 21

NARX 8 4 0 4 4 1 21

The derivations of Eqs. 10–12 are as follows [48]: the
total number of weights which connects hidden neurons
present in the MLFFNN, NARX to these inputs will be
p×q = 6 (where in the case of NARX, p = 2n). Further, the
total number of weights connecting hidden neurons/nodes to
output-layer neurons will be q × m. Also, the total number
of weights connecting the bias signals applied to the hid-
den neurons (equals to q) and output neurons (equals to m)
will be equal to q + m. So, in the case of MLFFNN and
NARX models, the count of total number of weights will be
p × q + q × m + q + m = (p + m + 1) q + m. In the case
of RBFN, since weights connecting external inputs to hid-
den neurons are of unity value (and are not updated during
the learning process) so they will not be considered in total
weight count. So, the total number of parameters to be tuned
in RBFN would be=number of weights connecting the hid-
den neurons to the output neurons (= q × m)+number of
radial centres (= q)+number of widths (= q)+number
of weights connecting the bias signals applied to the hidden
neurons (= q)+ the number of weights connecting the bias
signals applied to the output neurons (= m) which leads to
a total count of q × m + q + q + q + m = (m + 3)q + m.

5.1 Computational Complexity of ANN’s Structures

Now these ANNs are compared in terms of the number of
mathematical operations which are required to be performed
for calculating the outputs. Consider x1(k) and x2(k) are
the two inputs which are applied to the ANNs. Let hidden
layer and output layer contain 4 and 1 neurons, respectively.
The various mathematical operations which are performed
in order to calculate the ANN’s output are listed in Table 1.
It can be seen from the table that in each iteration RBFN
requires 8 less mathematical operations as compared to
MLFFNN and NARX models. So, for instance, if training
is continued for 1000 iterations, then RBFN will require
8 × 1000 less mathematical operations. This makes RBFN
more computationally efficient than MLFFNN and NARX
models.

6 Parameters Adjustment Rules for
ANN-Based Controller

To provide an incremental type of learning, dynamic back-
propagation algorithmbased on gradient descent principle [1,
49,50] is used for tuning the various parameters of ANN-
based controller. For doing this, mean square error (MSE) is
used as the performance function. It is defined as follows:

Ec(k) = 1

2

[
Yd(k) − Yp(k)

]2 (13)

where Yd(k) and Yp(k) denote desired and actual plant’s out-
put and Yd(k) − Yp(k) = −ec(k) is the control error. The
aim is to reduce the MSE value so that output of plant starts
following the desired output. This will be achieved when all
the parameters of ANN-based controller are adjusted using
the update equations which are derived in the subsequent
sections.

6.1 Case I: RBFN Controller

In the case of RBFN, radial centres, widths and the output
weight vector are the parameters which are required to be
tuned [47].

6.1.1 Update Equations for Radial Centres

The update equation for radial centres is obtained by taking
the partial derivative of Ec(k) with respect to radial centre
Mi j (k) where i = 1, . . . , p and j = 1, . . . , q. Thus,

∂Ec(k)

∂Mi j (k)
= ∂E(k)

∂Yp(k)
× ∂Yp(k)

∂uc(k)
× ∂uc(k)

∂φ j (k)
× ∂φ j (k)

∂Mi j (k)
.

(14)

The term ∂Yp(k)
∂uc(k)

is called as sensitivity/Jacobian of the
plant, and its value can be calculated if the mathematical
expression (model) of Yp(k) is known. The model of plant is
usually unknown or partially known. In such cases, we use
ANN-based identifier in parallel to the plant and during the

123

2978 Arabian Journal for Science and Engineering (2018) 43:2971–2993

online training its parameters along with the parameters of
controller will be adjusted. As the training progresses, value
of ∂Yp(k)

∂uc(k)
≈ ∂YNN(k)

∂uc(k)
(where YNN(k) represents ANN-based

identifier output). Thus,mathematicalmodel of identification
model (with tuned parameters) can approximate the dynam-
ics of the plant [51]. The other method is the perturbation
method [52]. In this method, a slight change in the controller
output leads to a change in the plant output. The ratio of
change occurred in plant output to the small change occurred
in controller output signal approximates the Jacobian value.

Further,

∂φ j (k)

∂v j (k)
= −v j (k) × φ j (k)

σ 2
j (k)

(15)

and

∂v j (k)

∂Mi j (k)
=
⎛

⎝
∂
∑

j ((x j (k) − Mi j (k))2)
1
2

∂Mi j (k)

⎞

⎠ . (16)

The following expression is obtained after doing some
simplification:

∂v j (k)

∂Mi j (k)
= −

(
x j (k) − Mi j (k)

v j (k)

)
(17)

Thus, the update equation for radial centres is

Mi j (k + 1) = Mi j (k) + �Mi j (k) (18)

where

�Mi j = ηcec(k)
∂Yp(k)

∂uc(k)
Wj (k)

φ j (k)

σ 2
j (k)

(
x j (k) − Mi j (k)

)

(19)

and ηc is a learning rate with its value set between 0 and 1.

6.1.2 Update Equations for Output Weight Vector

Now the adjustment of the output weight vector of RBFN is
done as follows:

∂Ec(k)

∂Woj (k)
= ∂Ec(k)

∂Yp(k)
× ∂Yp(k)

∂uc(k)
× ∂uc(k)

∂Woj (k)
(20)

where ∂uc(k)
∂Woj (k)

= φ j (k). Thus, each element in Wo(k) =
[wo1(k), wo2(k), . . . woq(k)] is updated as

Woj (k + 1) = Woj (k) + �Woj (k) (21)

where �Woj (k) = ηcec(k)
∂Yp(k)
∂uc(k)

φ j (k).

6.1.3 Update Equations for the Radial Centre’s Width

∂Ec(k)

∂σ j (k)
= ∂Ec(k)

∂Yp(k)
× ∂Yp(k)

∂uc(k)
× ∂uc(k)

∂φ j (k)
× ∂φ j (k)

∂σ j (k)
(22)

where ∂uc(k)
∂φ j (k)

= Woj (k) and
∂φ j (k)
∂σ j (k)

= φ j (k)(v j (k))2

σ 3
j (k)

. So, each

element in σ(k) = (σ1(k), σ2(k) . . . σq(k)) is updated as

σ j (k + 1) = σ j (k) + �σ j (k) (23)

where

�σ(k) = ηcec(k)
∂Yp(k)

∂uc(k)
Woj (k)

φ j (k)(v j (k))2

σ 3
j (k)

(24)

It is to be noted that effect of σ(k) values is not much on the
overall output of the RBFN [47].

6.2 Case II: MLFFNN Controller Model

The input and output weight vectors are required to be tuned
in case of MLFFNN-based controller [1]. They are updated
as follows:

6.2.1 Adjustment of Output Weight Vector

The procedure of updating the weights of the output weight
vector is as follows:

∂Ec(k)

∂Wo
j (k)

= ∂Ec(k)

∂Yp(k)
× ∂Yp(k)

∂uc(k)
× ∂uc(k)

∂Wo
j (k)

(25)

where ∂uc(k)
∂Wo

j (k)
= S j (k). Thus, each element in WO(k) =

{
wO
1 (k), wO

2 (k), . . . wO
q (k)

}
will be updated as

Wo
j (k + 1) = Wo

j (k) + �Wo
j (k) (26)

where �Wo
j (k) = ηcec(k)

∂Yp(k)
∂uc(k)

S j (k).

6.2.2 Adjustment of Input Weight Vector

For updating the input weight vector, the update equation is
obtained as:

∂Ec(k)

∂W I
j (k)

= ∂Ec(k)

∂Yp(k)
× ∂Yp(k)

∂uc(k)
× ∂uc(k)

∂S j (k)

× ∂S j (k)

∂Vj (k)
× ∂Vj (k)

∂W I
j (k)

(27)

where ∂uc(k)
∂S j (k)

= Wo
j (k) since linear activation function of

unity gain is used for output- layer neuron in MLFFNN and

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2979

NARX models,
∂S j (k)
∂Vj (k)

= 1 − S2j (k) as tangent hyperbolic
function is used for hidden neurons in MLFFNN and NARX
models,

∂Vj (k)

∂W I
j (k)

= x j (k). For NARX controller model, the

procedure of obtaining its update equations is same as that
of the MLFFNN. The only difference is in the selection of
input vector for NARX model [15].

7 Lyapunov Stability-Based Adaptive
Learning Rate

The learning rate, ηc, in the update equations of ANN con-
trollers plays a crucial role in the convergence speed and
stability of the system. If its value is chosen to be very small,
then convergence is guaranteed but the tuning of parameters
will take more time. On the other hand, if its value is chosen
to be large, then speed by which parameters undergo updat-
ing will be fast but there can be a chance of instability. So,
this requires a judicious selection of the learning rate value.
In this section, discrete Lyapunov stability method is used
which will dictate how the learning rate value is to be cho-
sen. It eventually leads to the development of an adaptive
learning rate.

Theorem In order to ensure the stability and convergence,
the following condition on the learning rate, ηc, must be
satisfied

0 < ηc ≤ 2
[

∂Yp(k)
∂uc(k)

× ∂uc(k)
∂W (k)

]2 . (28)

Proof Let the positive definite discrete Lyapunov function is
given by:

Vl(k) = 1

2
e2c (k) (29)

Now, Vl(k) is nonzero and positive as long as ec(k) is
nonzero. For the discrete-time system, stability is guaranteed
if

�Vl(k) = Vl(k + 1) − Vl(k) < 0, in D − {0} (30)

where D(domain) → �. Further, Eq. 30 can be written as

�Vl(k) = Vl(k+1)−Vl(k) = 1

2

{
e2c (k + 1) − e2c (k)

}
(31)

or

�Vl(k) = 1

2
[ec(k + 1) + ec(k)] [ec(k + 1) − ec(k)] . (32)

Now,�ec(k) = ec(k+1)−ec(k) so Eq. 32 can be written
as

�Vl(k) = 1

2
[�ec(k) + 2ec(k)] [�ec(k)] (33)

or

�Vl(k) = �ec(k)

[
1

2
[�ec(k)] + ec(k)

]
(34)

Now in order to introduce any parameter of ANN con-
troller into consideration, the fact that change in output error,
ec(k), depends upon the amount of change in the parameter
occurred. Let weight parameter W is selected for derivation
purpose. The procedure will remain same if any other param-
eter is considered. So, �ec(k) can be written as

�ec(k) = ∂ec(k)

∂W (k)
�W (k) (35)

where �W (k) → 0. Now on putting Eq. 35 in Eq. 34 results
in

�Vl(k) =
[

∂ec(k)

∂W (k)
�W (k)

] [
1

2

[
∂ec(k)

∂W (k)
�W (k)

]
+ ec(k)

]

(36)

Now, from the update equations derived earlier, the change
in W is given by

�W (k) = −ηcec(k)
∂ec(k)

∂W (k)
(37)

and

∂ec(k)

∂W (k)
= −∂Yp(k)

∂uc(k)

∂uc(k)

∂W (k)
(38)

Now substituting Eqs. 37 and 38 into Eq. 36 results in

�Vl(k) = 1

2

[
∂Yp(k)

∂uc(k)

]4 [
∂uc(k)

∂W (k)

]4
η2ce

2
c (k)

−
[
∂Yp(k)

∂uc(k)

]2 [
∂uc(k)

∂W (k)

]2
ηce

2
c (k)

(39)

or

�Vl(k) = −ηce
2
c (k)

[
∂Yp(k)

∂uc(k)

]2 [
∂uc(k)

∂W (k)

]2

×
{

1 − ηc

2

[
∂Yp(k)

∂uc(k)

]2 [
∂uc(k)

∂W (k)

]2}

.

(40)

For implementation purpose, Eq. 30 can be written as
�V ≤ 0 so

123

2980 Arabian Journal for Science and Engineering (2018) 43:2971–2993

− ηce
2
c (k)

[
∂Yp(k)

∂uc(k)

]2 [
∂uc(k)

∂W (k)

]2

×
{

1 − ηc

2

[
∂Yp(k)

∂uc(k)
× ∂uc(k)

∂W (k)

]2}

≤ 0.

(41)

Multiplying both sides by negative sign results in

ηce
2
c (k)

[
∂Yp(k)

∂uc(k)

]2 [
∂uc(k)

∂W (k)

]2

×
{

1 − ηc

2

[
∂Yp(k)

∂uc(k)
× ∂uc(k)

∂W (k)

]2}

≥ 0

(42)

Now Eq. 42 is true if certain conditions imposed on
various terms present in it gets satisfied. In the term

ηce2c (k)
[

∂Yp(k)
∂uc(k)

]2 [
∂uc(k)
∂W (k)

]2
, terms e2c (k),

[
∂Yp(k)
∂uc(k)

]2
and

[
∂uc(k)
∂W (k)

]2
can be either positive or zero so ηc must have to be

≥ 0 for Eq. 42 to hold true. Thus,

ηc ≥ 0 (43)

Since ηc cannot be set to equal to zero (as there will not be
any learning in such a case), the first condition on the value
of ηc can be written as:

ηc > 0. (44)

If Eq. 44 holds true, then �V (k) ≤ 0 hold true only if
the remaining terms present in Eq. 42 also satisfy the below
condition

{

1 − ηc

2

[
∂Yp(k)

∂uc(k)
× ∂uc(k)

∂W (k)

]2}

≥ 0 (45)

or

{

2 − ηc

[
∂Yp(k)

∂uc(k)
× ∂uc(k)

∂W (k)

]2}

≥ 0 (46)

Now
[

∂Yp(k)
∂uc(k)

× ∂uc(k)
∂W (k)

]2
will be either positive or zero. So,

Eq. 46 equals to zero if

ηc = 2
[

∂Yp(k)
∂uc(k)

× ∂uc(k)
∂W (k)

]2 (47)

Hence, Eq. 46 holds true if

ηc ≤ 2
[

∂Yp(k)
∂uc(k)

× ∂uc(k)
∂W (k)

]2 (48)

Fig. 4 General sequence of steps in the parameter iteration algorithm

Thus, from Eqs. 44 and 48 we have the lower and upper
bounds for the ηc which leads to the following condition on
ηc that must hold true for the given system to be stable.

0 < ηc ≤ 2
[

∂Yp(k)
∂uc(k)

× ∂uc(k)
∂W (k)

]2 (49)

Hence, Eq. 28 is proved. Now by using Eq. 49 the learning
rate can be made adaptive as:

ηc(k) = 2
[

∂Yp(k)
∂uc(k)

× ∂uc(k)
∂W (k)

]2 (50)

In the same manner, adaptive equations for the learning rates
associated with remaining parameters of the ANN can be
obtained. The basic steps involved in the online training of
ANNcontroller are shown in Fig. 4 in the formof a flowchart.

	

8 Adaptive Control of Nonlinear Systems

The main aim of control is to have the desired output values
from theplant. Theplant could be required either to follow the
output of reference model (this is called as model reference

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2981

Fig. 5 Indirect adaptive control scheme based on artificial neural networks

adaptive control) or to follow the externally applied input
signal (this is known as reference input tracking control). If
the parameters of plant undergo change and/or disturbance
signal affects the system and even then if plant is able to give
the desired values under the controller action, then such type
of control is called as adaptive control. There exist two types
of adaptive control

1. Direct control
2. Indirect control

In direct control, parameters of the controller are tuned
(or adjusted) at every time instant using the error between
the plant output and desired output. This approach has
been successfully applied to the linear case. For nonlinear
plants, direct methods are not developed, and hence, indirect
adaptive control is required. In indirect control, parameter
adjustment algorithm requires the knowledge regarding the
mathematical model of the plant along with the value of
error at each instant. This indirect adaptive control scheme
is shown in Fig. 5.

From the figure, it can be seen that inputs of ANN-based
controller include externally applied input along with its own
delayed values as well as the delayed values of the plant’s
output. How many delayed values will be used is explained
latter. Also, for the case of tracking type of control, the ref-
erence model dynamics would be equal to unity and in such
case Yd(k) = r(k). The TDL block denotes tapped delay line

and is modelled as z−1; thus, its output is one unit time delay
of its input. For example, if the input of TDL is Yp(k), then
its output will be Yp(k − 1).

8.1 Selection of Controller Inputs

To provide the sufficient information to the MLFFNN-,
NARX-andRBFN-based controllers, the following approach
is used: the total count of inputs presented to the RBFN-
and MLFFNN-based controllers is considered equal to 2n
(where n is equal to the order of the plant) and it includes:
r(k),Yp(k), . . . Yp(k−n+1) and past n−1 values of uc(k),
whereas in the NARX-based controller, the control inputs
are [15]: Yp(k), . . . Yp(k −n+1) and r(k), . . . r(k −n+1).

9 Simulation Study

Three simulation examples are used for comparing the
performances of RBFN-, MLFFNN- and NARX-based con-
trollers. In each controller, only one hidden layer containing
20 neurons/nodes is considered.

9.1 Example 1 Dynamical System of Relative
Degree 3

Let the dynamics of the plant is given by the difference equa-
tion as given in [1]:

123

2982 Arabian Journal for Science and Engineering (2018) 43:2971–2993

0 50 100 150
−6

−4

−2

0

2

4

6

8

Simulation time

Y
d(k

) a
nd

 Y
p(k

)
Response of a plant
Reference model output

Fig. 6 Open-loop response of plant without controller action (Example
1)

Yp(k + 1) = F
[
Yp(k),Yp(k − 1),Yp(k − 2)

]+ uc(k)

+ 0.8uc(k − 1) (51)

The nonlinear function F is given by:

F [x1, x2, x3] = 5x1x2
1 + x21 + x22 + x23

(52)

where x1 = Yp(k), x2 = Yp(k − 1), x3 = Yp(k − 2). The
desired reference model difference equation is given by

Yd(k+1) = 0.72Yd(k)+0.64Yd(k−1)−0.5Yd(k−2)+r(k)

(53)

The externally applied input signal in this example is taken
to be r(k) = sin

(2πk
25

)
. From Eq. 52, it can be seen that

the order n of the given plant is 3 so total 6 inputs will be
given to the controllers. The open-loop response (without
controller action) of the plant and that of the reference model
with respect to externally applied input r(k) signal are shown
in Fig. 6.

From the figure it can be seen that response given by the
plant (dashed black curve) is not following the reference
model output (continuous green curve); hence, controller
action is needed. For this, control scheme as shown in Fig. 5
is set up. The response of the plant is recorded by consider-
ing both fixed (ηc = 0.005) and adaptive learning rate (with
initial value set to ηc(0) = 0.005). During the initial stage of
training, output of the controllerwill not be equal to as desired
but it will keep on getting improved since its parameters are
getting tuned as the training progresses, its output will serve
as an input to the plant and hence forces the plant to give the
desired output. The plant response during the initial and final
stages of training under the MLFFNN-, NARX- and RBFN-
based controller actions is shown in Figs. 7, 8, 9, 10, 11 and

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

8

10

Simulation time

Y
d
(k

)
an

d
 Y

p
(k

)

Response of a plant under MLFFNN controller with adaptive learning rate
Reference model output
Response of a plant under MLFFNN controller with fixed learning rate

Fig. 7 Response of plant under MLFFNN controller during the initial
stage of training (Example 1)

1.19 1.191 1.192 1.193 1.194 1.195 1.196 1.197 1.198 1.199 1.2
x 104

−8

−6

−4

−2

0

2

4

6

8

Simulation time

Y
p
(k

)
an

d
Y M

L
F

F
N

N
(k

)

Response of a plant under MLFFNN controller
Plant output

Fig. 8 Response of plant under MLFFNN controller after sufficient
amount of training (Example 1)

0 20 40 60 80 100 120 140 160 180 200
−8

−6

−4

−2

0

2

4

6

8

10

Simulation time

Y
p
(k

)
an

d
 Y

d
(k

)

Response of a plant with NARX controller with adaptive learning rate
Reference model output
Response of a plant with NARX controller with constant learning rate

Fig. 9 Response of plant under NARX controller during the initial
stages of training (Example 1)

12, respectively. Further, the MSE plots obtained during the
online training are shown in Figs. 13 and 14.

The terms ηO
cRBFN , ηW

cRBFN andηCcRBFN denote adaptive learn-
ing rates associated with output-layer weight vector, widths
and radial centres of RBFNcontroller, respectively, and at the

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2983

4300 4310 4320 4330 4340 4350 4360 4370 4380
−6

−4

−2

0

2

4

6

8

Simulation time

Y
p
(k

)
an

d
 Y

N
A

R
X
(k

)
Response of a plant under NARX controller
Reference model output

Fig. 10 Response of plant under NARX controller after sufficient
amount of training (Example 1)

0 50 100 150 200 250
−8

−6

−4

−2

0

2

4

6

8

10

12

Simulation time

Y
p
(k

)
an

d
 Y

d
(k

)

Response of a plant under RBFN controller with fixed learning rate
Reference model output
Response of a plant under RBFN controller action with adaptive learning rate

Fig. 11 Response of plant under RBFN controller during the initial
stages of training (Example 1)

4300 4310 4320 4330 4340 4350 4360 4370 4380
−6

−4

−2

0

2

4

6

8

Simulation time

Y
d
(k

)
an

d
 Y

p
(k

)

Response of a plant under RBFN action
Reference model output

Fig. 12 Responseof plant underRBFNcontroller during thefinal stages
of training (Example 1)

end of the online training they converged to the following
values: 0.0000101, 0.000251 and 0.0000374, respectively.
During the initial stage of training, when the error was large
and the parameters of controllers are still in the early stage
of tuning, the learning rate values ηO

cRBFN , ηW
cRBFN and ηCcRBFN

shoot to a maximum value of 2.12, 2.35 and 1.61, respec-
tively. As the training continued they finally settled down to
a small value as mentioned above. Similarly in the case of

10 20 30 40 50 60
0

5

10

15

20

25

Simulation Time

In
st

an
ta

n
eo

u
s

M
S

E

MSE of plant with RBFN controller with fixed learning rate
MSE of plant with RBFN controller with adaptive learning rate

Fig. 13 MSE of plant under RBFN controller during the online training
(Example 1)

20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

30

35

40

45

Simulation time

In
st

an
ta

n
eo

u
s

M
S

E

MSE of plant with NARX controller with fixed learning rate
MSE of plant with NARX controller with adaptive learning rate

Fig. 14 MSEof plant underNARXcontroller during the online training
(Example 1)

NARX controller, the final values obtained of adaptive learn-
ing rates associated with the output and input weight vectors
are ηO

cNARX = 0.000041 and ηI
cNARX = 0.0000727. The upper

bounds found in the learning rates associatedwith the output-
and input-layer weight vectors of NARX-based controller
during the online training are 2.44 and 2.56, respectively.
Lastly, the adaptive rate values associated with the output-
and input-layer weight vectors of MLFFNN controller con-
verged to 0.000213 and 0.0004 at the end of the training
with upper bounds found equal to 3.1 and 2.55, respectively,
during the training.

9.1.1 Robustness Testing

A system is said to be robust if it is able to compensate the
effects of system’s uncertainties like disturbance signal and
parameter variations. In this section, robustness of all these
three controllers is tested and compared. The learning rate
remains adaptive in the analysis.

123

2984 Arabian Journal for Science and Engineering (2018) 43:2971–2993

7995 8000 8005 8010 8015
0

0.1

0.2

0.3

0.4

0.5

0.6

Simulation time

In
st

an
ta

n
eo

u
s

M
S

E
 o

f
 C

o
n

tr
o

lle
rs

 Mean square error for NARX controller
Mean square error for MLFFNN controller
Mean square error of plant under RBFN controller action

7997 7998 7999 8000

−0.04

−0.02

0

0.02

0.04

Fig. 15 InstantaneousMSEwhen disturbance signal affects the system
(Example 1)

9.1.2 Case I: Disturbance Signal

Let the disturbance signal of magnitude 0.9 units be added
in the output of the controller at k = 8000th time instant.
Naturally, the error would increase at this instant, but if the
controller is robust, then this error must be compensated and
reduced down to zero in a short period of time. This instanta-
neous MSE plots corresponding to RBFN-, MLFFNN- and
NARX-based controller are shown in Fig. 15.

From the figure it can be seen that MSE drops again very
quickly to zero when RBFN controller is used followed by
NARX- and MLFFNN-based controllers. This shows that
RBFN is much better in compensating the effects of external
disturbance signal as compared to NARX and MLFFNN.

9.1.3 Case II: Parameter Variation

Now at k = 12000th time instant, the output weight vector of
all the three controllers was perturbed by deliberately adding
a signal of 0.8 units. This should cause a rise in MSE which
should reduce again to zero if the parameter update equations
are correct. The instantaneous MSE of plant under RBFN,
MLFFNN and NARX controller actions in the presence of
parameter variation is shown in Fig. 16.

From thefigure it canbe easily seen that the rise in theMSE
is very small at the time of parameter variation when RBFN
is used as a controller (shown by red curve) as compared to
when NARX (shown by green curve) and MLFFNN (shown
by black curve) are used as the controllers. Also, this rise in
theMSE is compensated and reducedmuch quickly to zero in
the RBFN case as compared to error compensation obtained
with NARX- and MLFFNN-based controllers. The corre-
sponding changes which occurred in the RBFN, MLFFNN
and NARX controller outputs are shown in Figs. 17, 18 and
19, respectively.

1.2 1.205 1.21 1.215 1.22 1.225 1.23 1.235 1.24

x 104

0

10

20

30

40

50

60

70

80

Simulation time

M
S

E
 o

f
p

la
n

t
u

n
d

er
 c

o
n

tr
o

lle
r

ac
ti

o
n Mean square error with MLFFNN controller

Mean square error for NARX controller
Mean square error of plant under RBFN controller action

Fig. 16 Instantaneous MSE when parameter variation affects the sys-
tem (Example 1)

1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29
x 104

−5

−4

−3

−2

−1

0

1

2

3

4

Simulation time

u
c(k

)

 RBFN controller outputinstant of parameter variation

Fig. 17 RBFN controller output when parameter variation affects the
system (Example 1)

1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29

x 104

−10

−5

0

5

10

15

Simulation time

u
c(k

)

 MLFFNN controller output

instant of parameter variation

Fig. 18 MLFFNN controller output when parameter variation affects
the system (Example 1)

From the figures it can be seen that the RBFN controller
output gets least affected and recovered at a much faster rate
as compared toNARXandMLFFNNcontroller outputs. This

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2985

1.19 1.2 1.21 1.22 1.23 1.24 1.25 1.26 1.27 1.28 1.29
x 104

−10

−8

−6

−4

−2

0

2

4

6

8

10

Simulation time

u
c(k

)
 NARX controller output

instant of parameter variation

Fig. 19 NARX controller output when parameter variation affects the
system (Example 1)

Table 2 Time elapsed for the ANN’s control program during the train-
ing (Example 1)

Type of neural network Simulation time (s)

RBFN 0.533788

MLFFNN 8.929530

NARX 9.328220

again shows that the RBFN is more robust than NARX- and
MLFFNN-based controllers.

9.1.4 Analysis of the Results: Example 1

Now from the initial responses of the plant, it can be seen that
when adaptive learning rate is used the output of the plant
is seen to improve at a faster rate as compared to the output
obtained with the fixed learning rate. Now, considering the
performances of the individual controllers, it can be easily
seen that initial response of the plant got improved at a much
faster rate when RBFN is used as a controller, whereas with
NARX- or MLFFNN-based controllers, the improvement in
the response is comparatively less. Further, the instantaneous
MSE plots are obtained with fixed as well as with the adap-
tive learning rate. These are shown in Figs. 13 and 14. From
the plots, it can be concluded that the error tends to decrease
at a much faster rate when adaptive learning rate is used
as compared to when fixed learning rate is used. Also, the
time elapsed for which the control program run in this exam-
ple for each RBFN-, MLFFNN- and NARX-based control
configuration is shown in Table 2 [using MATLAB version
7.12.0.635(R2011a), 4 GB RAM, Windows 8, Intel core 2
duo processor].

It can be seen from Table 2 that the control program took
very less time to execute when RBFN is used as a controller,
whereas the program took more time to finish when NARX

Table 3 Average MSE obtained during the online control (Example 1)

Type of neural network Average MSE (after 20,000 iterations)

RBFN 0.012

MLFFNN 0.17

NARX 0.08

and MLFFNN are used in the loop as the controller. This
makesRBFNan efficient tool for doing the control operation.
Further, the averageMSEs obtainedwith different controllers
(when the control program is run for 2000 iterations) are
listed in Table 3.

From the table it can be seen that average MSE obtained
with RBFN controller is minimum as compared to the MSE
obtained with NARX- or MLFFNN-based controllers. Fur-
ther, the RBFN-based controller is found to bemore robust in
comparison with NARX and MLFFNN controllers in com-
pensating the effects of parameter variations and disturbance
signals.

9.2 Example 2 Dynamical System of Relative
Degree 4

Consider a nonlinear system whose dynamics are given as
in [53]

Yp(k + 1) = 0.8Yp(k) + 0.15Yp(k − 1)

+ 0.15sin
[
Yp(k − 2) − e−Yp(k−3)

]

+ 0.2uc(k) + 0.16uc(k − 1)

(54)

The order of the plant is n = 4, and the inputs for RBFN and
MLFFNN controllers are: r(k),Yp(k),Yp(k − 1),Yp(k −
2),Yp(k − 3), uc(k − 1), uc(k − 2) and uc(k − 3) and inputs
for NARX-based controller are: Yp(k),Yp(k − 1),Yp(k −
2),Yp(k−3), r(k), r(k−1), r(k−2), r(k−3). The desired
reference model difference equation is given as:

Yd(k) = 0.6Yd(k) + 0.2Yd(k − 1) + r(k) (55)

The externally applied input signal is given by r(k) =
sin(2πk250)+cos(2k

123). The initial value of fixed and adaptive η

is set to 0.0052. The response of plant and desired reference
model when no controller is used is shown in Fig. 20.

It is clear from the figure that the output of the plant is
not following the desired response. Now the control config-
uration as shown in Fig. 5 is set up and the control action
is initiated. The parameters of the controller undergo change
(as guided by the learning algorithm) and eventually reach
to their corresponding desired values. The response of plant

123

2986 Arabian Journal for Science and Engineering (2018) 43:2971–2993

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−15

−10

−5

0

5

10

15

Simulation time

Y
d
(k

)
an

d
 Y

p
(k

)
Response of a plant
Reference model output

Fig. 20 Response of plant without controller action (Example 2)

0 500 1000 1500 2000 2500 3000 3500
−15

−10

−5

0

5

10

15

Simulation Time

Y
p
(k

)
an

d
 Y

d
(k

)

Response of a plant with fixed learning rate
Reference model output
Response of a plant with adaptive rate

Fig. 21 Response of plant under RBFN controller action (Example 2)

0 500 1000 1500 2000 2500 3000 3500 4000
−15

−10

−5

0

5

10

15

Simulation time

Y
p
(k

)
an

d
 Y

d
(k

)

Response of a plant with fixed rate
Reference model output
Response of a plant with adaptive rate

Fig. 22 Response of plant under MLFFNN controller action (Example
2)

obtained under RBFN-, MLFFNN- and NARX-based con-
trollers is shown in Figs. 21, 22 and 23, respectively.

The corresponding instantaneous MSE obtained is shown
in Figs. 24, 25 and 26, respectively.

From the figures it can be seen that response of plant is
reaching the desired response quickly when adaptive learn-
ing rate is employed. Among the controllers, RBFN is seen

0 500 1000 1500 2000 2500 3000 3500 4000
−15

−10

−5

0

5

10

15

Simulation Time

Y
d
(k

)
an

d
 Y

p
(k

)

Response of a plant with fixed rate
Reference model output
Response of a plant with adaptive rate

Fig. 23 Response of plant under NARX controller action (Example 2)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

Time(in seconds)

M
S

E
 o

f
p

la
n

t
u

n
d

er
 R

B
F

N
 C

o
n

tr
o

lle
r

Mean square error with fixed learning rate
Mean square error with adaptive rate

Fig. 24 MSEof plant obtained under RBFNcontroller action (Example
2)

0 500 1000 1500 2000 2500
0

5

10

15

20

25

30

35

40

45

Simulation Time

M
S

E
 o

f
p

la
n

t
u

n
d

er
 M

L
F

F
N

N
 C

o
n

tr
o

lle
r

Mean square error with fixed rate
Mean square error with adaptive rate

Fig. 25 MSE of plant under MLFFNN controller action (Example 2)

to be performing better than NARX- and MLFFNN-based
controllers (with both fixed and adaptive learning rate). This
is also evident from theMSE obtained during the online con-
trol. Further, the average MSE obtained and the amount of
time taken by control algorithm to run are listed in Table 4.

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2987

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

45

Simulation TimeM
S

E
 o

f
p

la
n

t
u

n
d

er
 N

A
R

X
 C

o
n

tr
o

lle
r

ac
ti

o
n

Mean square error with fixed rate
Mean square error with adaptive rate

Fig. 26 MSE of plant under NARX controller action (Example 2)

Table 4 Average MSE and run-time comparison (Example 2)

Type of controller Average MSE
(10,000 iterations)

Simulation time (s)

MLFFNN 0.0913 4.722920

RBFN 0.0228 0.335487

NARX 0.0491 4.738064

It is clear that the RBFN-based control configuration
took least time to run and produced least average MSE as
compared to the values obtainedwithNARX- andMLFFNN-
based controllers. This shows that RBFN is more computa-
tionally efficient as well as more capable of controlling the
nonlinear systems. Further, the adaptive learning rate values
associated with the output- and input-layer weight vectors
of MLFFNN controller converge to 0.00050 and 0.00061;
in the case of NARX-based controller they converged to
0.000088 and 0.000059; and in theRBFNcase the final learn-
ing rate values associatedwith the output-layerweight vector,
widths and radial centres converge to 0.000033, 0.00031
and 0.000019, respectively. The upper bounds of adaptive
learning rate found in case of MLFFNN controller are 2.81
and 2.41 for output- and input-layer weights, respectively.
In case of NARX-based controller, the upper bound is equal
to 2.1 and 1.96. Finally, for the RBFN-based controller the
upper bounds found for output-layer weight vector, widths
and radial centres are 1.7, 2.34 and 1.41, respectively.

9.2.1 Robustness Testing

9.2.2 Case I: Disturbance Signal

Let the disturbance signal of magnitude 2.9 units be added in
the controller output at the 7000th time instant. The recovery
ability of controllers against this disturbance signal is shown
in Fig. 27.

7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050
0

1

2

3

4

5

6

Simulation Time

M
S

E
 o

f
p

la
n

t
at

 t
h

e
in

st
an

t
o

f
 d

is
tu

rb
an

ce
 s

ig
n

al

with MLFFNN controller
with RBFN controller
with NARX controller

Fig. 27 MSE of plant at the instant of disturbance signal (Example 2)

8000 8010 8020 8030 8040 8050 8060 8070 8080 8090 8100
0

20

40

60

80

100

120

Simulation Time

M
S

E

With MLFFNN controller
With NARX controller
With RBFN controller

Fig. 28 MSE of plant at the instant of parameter variation (Example 2)

It can be seen that rise in MSE caused by the distur-
bance signal is much quickly reduced down to zero when
RBFNcontroller is used as compared to other twocontrollers.
This again shows the effectiveness of RBFN controller over
NARX- and MLFFNN-based controllers.

9.2.3 Case II: Parameter Variation

In order to test the robustness of controllers against the
effects of parameter variations, a signal of 1.8 unit magni-
tude is added in the output-layer weights of these controllers.
This causes an increase in the MSE value. Figure 28 shows
the recovery ability of the controllers against the effects of
parameter variations. It can be seen that RBFN is performing
better than NARX- and MLFFNN-based controllers.

9.2.4 Analysis of the Results: Example 2

From the simulation results, it can be easily seen that the
performance of RBFN-based controller is much better than
that of NARX- and MLFFNN-based controller with fixed
as well as with adaptive learning rate. The other important

123

2988 Arabian Journal for Science and Engineering (2018) 43:2971–2993

observation that can be deduced from the simulation results
is that the RBFN-based controller has shown more robust-
ness as compared toNARX- andMLFFNN-based controllers
towards parameter variations and disturbance signals. This
makes RBFN an ideal control tool for nonlinear systems.

9.3 Example 3 Robotic Manipulator Control

The mathematical model of an n serial links robotic manip-
ulator is given by:

M(Yp)Ÿp + C(Yp, Ẏp)Ẏp + DẎp + G(Yp) = τ (56)

In the above equation, Yp, Ẏp and Ÿp ∈ Rn denote the posi-
tion of the joint, velocity and the accelerations, respectively.
The n × n real matrices: M,C, D are the symmetric pos-
itive definite inertia matrix, centrifugal Coriolis matrix and
positive definite diagonal matrix for damping friction coeffi-
cients of each joint, respectively. The gravity term is denoted
by n × n matrix G(yp). Also, τ ∈ Rn represents the input
vector of torques exerted on the joints. In this paper, the con-
trol of one-link robotic manipulator is performed. For more
details regarding the kinematics of roboticmanipulator, read-
ers are encouraged to read these reference materials [54–56].
The second-order differential equation which describes the
dynamics of one-link robotic manipulator is given as in [57]:

ml2
d2Yp(t)

dt2
+ D

dYp(t)

dt
+ mglcos(Yp(t)) = uc(t) (57)

Here the angular position of the robotic manipulator arm
is represented by Yp(t). The other parameters include: link

length which is denoted by l. Also, the term D
dYp(t)
dt quan-

tifies the viscous friction torque and g = is the acceleration
due to gravity, = 9.8m/s2. For simplicity, the values of
m = l = D = 1 are used in this paper. Further, uc(t) is the
control torque exerted on the robotic arm. The correspond-
ing state space representation of above differential equation
is given by:

⎡

⎣
Ẏp

Ÿp

⎤

⎦ =
⎡

⎢
⎣

0 1

−gcos(Yp)

l
−D
ml2

⎤

⎥
⎦
[
Yp

Ẏp

]
+
[

0
1

ml2

] [
uc
]
. (58)

The difference equation of one-link robotic manipulator
with sampling period, T = 0.45s is given by

Yp(k + 1) = F[Yp(k),Yp(k − 1)] + T 2uc(k) (59)

where the nonlinear function F is

F[Yp(k),Yp(k − 1)] = (2 − T)Yp(k) + Yp(k − 1)(T − 1)

− 9.8T 2cos(Yp(k − 1)). (60)

0 5 10 15 20 25 30 35 40 45 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Simulation Time

Y
p
(k

+1
)

an
d

 Y
d
(k

+1
)

Response of a plant
Reference model output

Fig. 29 Open-loop response of plant without controller in the loop
(Example 3)

40 60 80 100 120 140 160 180 200 220 240
−3

−2

−1

0

1

2

3

4

Simulation Time

Y
d
(k

+1
)

an
d

 Y
P
 (

k+
1)

Response of a plant with fixed learning rate
Reference model output
Response of plant with adaptive learning rate

Fig. 30 Response of plant under RBFN controller action at the initial
stage of training (Example 3)

Note that the order of Eq. 59 is n = 2, so total number of
inputs applied to the controllers are equal to 4. The desired
reference model dynamics are given by the following differ-
ence equation

Yd(k + 1) = Yd(k)(2 − 1.5T) + Yd(k − 1)

× (−1 − 2.5T 2 + 1.5T) + T 2r(k − 1)
(61)

where r(k) = sin(t) is the externally applied input. The
response of plant (without control) and reference model is
shown in Fig. 29.

It can be seen from the figure that output of plant is not
following the reference model output. Hence, the controller
is required in the loop. The value of fixed learning rate, ηc,
as well as initial value of adaptive learning rate, ηc(0), is set
equal to 0.027. The responses of plant obtained at various
stages of training under RBFN controller action are shown
in Figs. 30, 31 and 32.

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2989

240 250 260 270 280 290 300 310 320 330 340
−1

−0.5

0

0.5

1

1.5

Simulation Time

Y
d
(k

+1
)

an
d

 Y
P
 (

k+
1)

Response of a plant with fixed learning rate
Reference model output
Response of plant with adaptive learning rate

Fig. 31 Response of plant under RBFN controller action as the training
progresses (Example 3)

536 538 540 542 544 546 548 550 552
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Simulation Time

Y
d
(k

+1
)

an
d

 Y
P
 (

k+
1)

Response of a plant with fixed learning rate
Reference model output
Response of plant with adaptive learning rate

Fig. 32 Response of plant under RBFN controller action after sufficient
amount of training (Example 3)

0 50 100 150 200 250 300 350 400 450
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Simulation Time

Y
d
(k

+1
)

an
d

 Y
P
 (

k+
1)

Reference model output
Response of plant with adaptive learning rate
Response of plant with fixed learning rate

Fig. 33 Response of plant under MLFFNN controller action at the
initial stage of training (Example 3)

Similarly, the outputs of the plant when NARX- and
MLFFNN-based controllers are used in the loop are shown
in Figs. 33, 34, 35, 36 and 37.

0 200 400 600 800 1000 1200 1400
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Simulation Time

Y
d
(k

+1
)

an
d

 Y
P
 (

k+
1)

Reference model output
Response of plant with adaptive learning rate
Response of plant with fixed learning rate

Fig. 34 Response of plant under MLFFNN controller action as the
training progresses (Example 3)

3400 3402 3404 3406 3408 3410 3412 3414 3416 3418 3420
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Simulation Time

Y
d
(k

+1
)

an
d

 Y
P
 (

k+
1)

Reference model output
Response of plant with adaptive learning rate
Response of plant with fixed learning rate

Fig. 35 Response of plant under MLFFNN controller action after suf-
ficient amount of training (Example 3)

0 50 100 150 200 250 300 350 400
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Simulation Time

Y
d
(k

+1
)

an
d

 Y
p
(k

+1
)

Response of a plant with fixed learning rate
Reference model output
Response of a plant with adaptive learning rate

Fig. 36 Response of plant under NARX controller action at the initial
stage of training (Example 3)

It can be seen from the figures that response of the plant
improved at a much better rate when adaptive learning rate
is used as compared to improvement obtained with fixed

123

2990 Arabian Journal for Science and Engineering (2018) 43:2971–2993

880 882 884 886 888 890 892 894 896 898
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Simulation Time

Y
d
(k

+1
)

an
d

 Y
p
(k

+1
)

Reference model output
 Response of a plant with fixed learning rate
Response of a plant with adaptive learning rate

Fig. 37 Response of plant under NARX controller action after certain
amount of training (Example 3)

100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

3

Simulation Time

M
S

E

Instantaneous MSE with Adaptive learning rate
Instantaneous MSE with fixed learning rate

Fig. 38 MSEof plant obtained under RBFNcontroller action (Example
3)

learning rate. Also, it can be seen that response of the plant
improved at a much better rate when RBFN is used as a
controller. This can be inferred from the time axis. This con-
clusion can be further verified from the plots of instantaneous
mean square error (MSE) which are shown in Figs. 38, 39
and 40, respectively.

It can be seen that MSE decreases down to zero very
quickly when the adaptive learning rate is used as compared
to MSE plot obtained with fixed learning rate. Among the
controllers, RBFN has performed better than NARX- and
MLFFNN-based controllers as its MSE took very less time
to reduce to zero (with both fixed and with adaptive learning
rate). Further, the time taken by control algorithm to run is
listed in Table 5.

It can be seen that RBFN-based control program took least
time in executing, whereas NARX and MLFFNN took more
time as compared toRBFN. ThismakesRBFNmore efficient
than NARX- and MLFFNN-based controllers. The adaptive
learning rate values associated with the output- and input-

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

Simulation time

M
S

E

Instantaneous MSE with fixed learning rate
Instantaneous MSE with adaptive learning rate

Fig. 39 MSE of plant obtained under MLFFNN controller action
(Example 3)

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

Simulation time

M
S

E

Instantaneous MSE with adaptive learning rate
Instantaneous MSE with fixed learning rate

Fig. 40 MSEofplant obtainedunderNARXcontroller action (Example
3)

Table 5 Elapsed time for control program to run

Type of controller Time taken by program to run (in seconds)

RBFN 1.24

NARX 13.62

MLFFNN 13.40

layer weight vectors of MLFFNN controller converges to
0.000850 and 0.0048. In NARX-based controller, they con-
verged to 0.00049 and 0.00073 and in theRBFNcase the final
learning rate values associated with the output-layer weight
vector, widths and radial centres converges to 0.000133,
0.00037 and 0.0031, respectively. The upper bounds of adap-
tive learning rate found in case of MLFFNN controller are
2.78 and 2.22 for output- and input-layer weights, respec-
tively. In case of NARX-based controller, the upper bound
is equal to 2.28 and 1.49. Finally, for the RBFN-based con-

123

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2991

3600 3601 3602 3603 3604 3605 3606 3607
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Simulation Time

M
S

E
MSE with NARX controller
MSE with MLFFNN controller
MSE with RBFN controller

Fig. 41 MSE of plant obtained at the instant of disturbance signal
(Example 3)

troller the upper bounds found for output-layerweight vector,
widths and radial centres are 1.33, 2.16 and1.61, respectively.

9.3.1 Robustness Testing

9.3.2 Disturbance Signal

A signal of 2.9 units is added in the output of the controller
at k = 3600th time instant. This causes an increment in the
MSE. The corresponding MSE plots obtained with different
controllers with adaptive learning rate are shown in Fig. 41.

From the figure notice that MSE obtained with RBFN
controller action took least time to reduce down to zero. This
makes RBFNmore robust than NARX- andMLFFNN-based
controllers.

9.3.3 Parameter Variation

Now the values of weights in the output weight vectors of all
the controllers are varied by an amount of 0.75 value. This
leads to an increase in the MSE value. The corresponding
MSE plots obtained with different controllers are shown in
Fig. 42.

The performance ofRBFN-based controller is again found
superior as the MSE drops quickly down to zero after the
impact of parameter variations.

9.3.4 Analysis of the Results: Example 3

In this example also, the performance of RBFN-based con-
troller is found to be superior that of NARX- and MLFFNN-
based controller. The plant’s response improved quickly with
RBFN-based controller and also recovered quickly from the
effects of parameter variation and disturbance signal under
RBFN controller action. The MSE obtained of plant under
RBFN controller action also reduces quickly to zero during

4500 4502 4504 4506 4508 4510 4512 4514 4516
0

1

2

3

4

5

6

7

8

9

Simulation Time

M
S

E

With RBFN controller
With NARX based controller
With MLFFNN based controller

Fig. 42 MSE of plant obtained at the instant of parameter variation
(Example 3)

the online training with fixed as well as with the adaptive
learning rate.

10 Discussion

After doing the simulation study, it can be easily concluded
that RBFN-based controller has performed much better than
that of theMLFFNN- andNARX-based controllers. The per-
formances of controllers got improved when the adaptive
learning rates are used in place of the fixed one. Also, the sta-
bility of the system remains intact during the online training.
As far as the structural complexity is concerned,RBFN-based
controller requires less number of parameters to be trained.
Also, the computational time of RBFN is found to be least
as compared to MLFFNN- and NARX-based controllers.
This makes RBFN an efficient controller. Another reason
of now choosing RBFN over MLFFNN- and NARX-based
controllers is the robustness shown by it to the parameter
variations and disturbance signals.

11 Conclusion

This paper involves a comparative study of feed-forward
and recurrent type neural networks as adaptive controllers.
The various parameters present in the neural networks were
trained online using the dynamic back-propagation method.
To make the method more powerful, an adaptive learning
rate was developed using the Lyapunov stability method. It
ensures the faster convergence of parameters and avoids the
possibility of instability. The control scheme proposed in this
paper is suitable even when the dynamics of the system are
not known. Three simulation examples are considered in the
simulation study, and the performances of these controllers
(for controlling the complex nonlinear systems and to com-
pensate the effects of system uncertainties) were tested and

123

2992 Arabian Journal for Science and Engineering (2018) 43:2971–2993

compared. TheRBFN- based controllerwas found to bemore
computationally efficient, better in controlling the nonlinear
systems andmore robust in handling the system uncertainties
as compared to NARX- and MLFFNN- based controllers.

Funding This study is not funded by any agency.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of
interest.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Narendra, K.S.: Identification and control of dynamical systems
using neural networks. IEEETrans.NeuralNetw. 1(1), 4–27 (1990)

2. Khalil, H.K.: Noninear systems. Prentice-Hall, New Jersey 2(5),
5-1 (1996)

3. Wang, T.; Gao, H.; Qiu, J.: A combined adaptive neural network
and nonlinear model predictive control for multirate networked
industrial process control. IEEE Trans. Neural Netw. Learn. Syst.
27(2), 416–425 (2016)

4. Wei, Q.L.; Liu, D.R.: A novel policy iteration based deterministic
q-learning for discrete-time nonlinear systems. Sci. China Inf. Sci.
58(12), 1–15 (2015)

5. Ku, C.-C.; Lee, K.Y.: Diagonal recurrent neural network based
control using adaptive learning rates. In: Decision and Control,
1992, Proceedings of the 31st IEEEConference on, pp. 3485–3490.
IEEE (1992)

6. Ge, H.-W.; Wen-Li, D.; Qian, F.; Liang, Y.-C.: Identification and
control of nonlinear systems by a time-delay recurrent neural net-
work. Neurocomputing 72(13), 2857–2864 (2009)

7. Elmali, H.; Olgac, N.: Robust output tracking control of nonlin-
ear MIMO systems via sliding mode technique. Automatica 28(1),
145–151 (1992)

8. Sadati, N.; Ghadami, R.: Adaptive multi-model sliding mode con-
trol of roboticmanipulators using soft computing.Neurocomputing
71(13), 2702–2710 (2008)

9. Kanellakopoulos, I.; Kokotovic, P.V.; Morse, A.S.: Systematic
design of adaptive controllers for feedback linearizable systems.
IEEE Trans. Autom. Control 36(11), 1241–1253 (1991)

10. Kokotovic, P.V.: The joy of feedback: nonlinear and adaptive. IEEE
Control Syst. 12(3), 7–17 (1992)

11. Liu,M.:Decentralized control of robotmanipulators: nonlinear and
adaptive approaches. IEEE Trans. Autom. Control 44(2), 357–363
(1999)

12. Guo, Y.; Hill, D.J.; Wang, Y.: Nonlinear decentralized control of
large-scale power systems. Automatica 36(9), 1275–1289 (2000)

13. Nasr, M.B.; Chtourou, M.: Neural network control of nonlinear
dynamic systems using hybrid algorithm. Appl. Soft Comput. 24,
423–431 (2014)

14. Kumar, R.; Srivastava, S.; Gupta, J.R.P.: Diagonal recurrent neural
network based adaptive control of nonlinear dynamical systems
using Lyapunov stability criterion. ISA Trans. 67, 407–427 (2017)

15. Haykin, S.; Neural Network: A comprehensive foundation. Neural
Netw. 2(2004), 41 (2004)

16. Nørgaard, P.M.: System identification and control with neural
networks. Department of Automation, Technical University of
Denmark (1996)

17. Liu, G.P.: Nonlinear Identification and Control: A Neural Network
Approach. Springer, Berlin (2012)

18. Zilouchian, A.; Jamshidi, M.: Intelligent Control Systems Using
Soft Computing Methodologies. CRC Press, Inc., Boca Raton
(2000)

19. He, W.; Chen, Y.; Yin, Z.: Adaptive neural network control of an
uncertain robot with full-state constraints. IEEE Trans. Cybern.
46(3), 620–629 (2016)

20. Nelles, O.: Nonlinear System Identification: From Classical
Approaches to Neural Networks and Fuzzy Models. Springer,
Berlin (2013)

21. Levin, A.U.; Narendra, K.S.: Control of nonlinear dynamical sys-
tems using neural networks: controllability and stabilization. IEEE
Trans. Neural Netw. 4(2), 192–206 (1993)

22. Sastry, P.S.; Santharam, G.; Unnikrishnan, K.P.: Memory neuron
networks for identification and control of dynamical systems. IEEE
Trans. Neural Netw. 5(2), 306–319 (1994)

23. Noriega, J.R.; Wang, H.: A direct adaptive neural-network control
for unknown nonlinear systems and its application. IEEE Trans.
Neural Netw. 9(1), 27–34 (1998)

24. Nouri, K.; Dhaouadi, R.; Braiek, N.B.: Adaptive control of a non-
linear dc motor drive using recurrent neural networks. Appl. Soft
Comput. 8(1), 371–382 (2008)

25. Fourati, F.; Chtourou, M.; Kamoun, M.: Stabilization of unknown
nonlinear systems using neural networks. Appl. Soft Comput. 8(2),
1121–1130 (2008)

26. Zhang, H.; Luo, Y.; Liu, D.: Neural-network-based near-optimal
control for a class of discrete-time affine nonlinear systems with
control constraints. IEEE Trans. Neural Netw. 20(9), 1490–1503
(2009)

27. Yu, L.; Fei, S.; Long, F.; Zhang, M.; Yu, J.: Multilayer neural
networks-based direct adaptive control for switched nonlinear sys-
tems. Neurocomputing 74(1), 481–486 (2010)

28. Wu, Y.; Shen, L.; Zhang, L.: Study on nonlinear pH control strategy
based on external recurrent neural network. Proc. Eng. 15, 866–871
(2011)

29. Zhao, W.; Ren, X.: Neural network-based sliding mode control for
dual-motor servo systems. IFAC Proc. 46(20), 382–386 (2013)

30. Rajesh, RJ.; Preethi, R.; Mehata, P.; Pandian, B.J.: Artificial neural
network based inverse model control of a nonlinear process. In:
Computer, Communication and Control (IC4), 2015 International
Conference on, pp. 1–6. IEEE (2015)

31. Aouiti, C.: Oscillation of impulsive neutral delay generalized
high-order hopfield neural networks. Neural Comput. Appl., 1–19
(2016). https://doi.org/10.1007/s00521-016-2558-3

32. Aouiti, C.; Mhamdi, M.S.; Touati, A.: Pseudo almost automorphic
solutions of recurrent neural networks with time-varying coeffi-
cients and mixed delays. Neural Process. Lett. 45(1), 121–140
(2017)

33. Aouiti, C.; Mhamdi, M.S.; Cao, J.; Alsaedi, A.: Piecewise pseudo
almost periodic solution for impulsive generalised high-order hop-
field neural networks with leakage delays. Neural Process. Lett.
45(2), 615–648 (2017)

34. Aouiti, C.: Neutral impulsive shunting inhibitory cellular neural
networks with time-varying coefficients and leakage delays. Cogn.
Neurodyn. 10(6), 573–591 (2016)

35. Yoo, S.J.; Choi, Y.H.; Park, J.B.: Generalized predictive control
based on self-recurrent wavelet neural network for stable path
tracking of mobile robots: adaptive learning rates approach. IEEE
Trans. Circuits Syst. I Regul. Pap. 53(6), 1381–1394 (2006)

36. Yoo, S.J.; Park, J.B.; Choi,Y.H.: Indirect adaptive control of nonlin-
ear dynamic systems using self recurrent wavelet neural networks
via adaptive learning rates. Inf. Sci. 177(15), 3074–3098 (2007)

37. ul Amin, R.; Aijun, L.; Khan,M.U.; Shamshirband, S.; Kamsin, A.:
An adaptive trajectory tracking control of four rotor hover vehicle

123

https://doi.org/10.1007/s00521-016-2558-3

Arabian Journal for Science and Engineering (2018) 43:2971–2993 2993

using extended normalized radial basis function network. Mech.
Syst. Signal Process. 83, 53–74 (2017)

38. Zhao, X.; Shi, P.; Zheng, X.; Zhang, J.: Intelligent tracking control
for a class of uncertain high-order nonlinear systems. IEEE Trans.
Neural Netw. Learn. Syst. 27(9), 1976–1982 (2016)

39. Noble, D.; Bhandari, S.: Neural network based nonlinear model
reference adaptive controller for an unmanned aerial vehicle. In:
Unmanned Aircraft Systems (ICUAS), 2017 International Confer-
ence on, pp. 94–103. IEEE (2017)

40. de Jesús Rubio, J.; Zhang, L.; Lughofer, E.; Cruz, P.; Alsaedi, A.;
Hayat, T.: Modeling and control with neural networks for a mag-
netic levitation system. Neurocomputing 227, 113–121 (2017)

41. Gonzlez-Olvera; Marcos, A.; Tang, Y.: Modeling, identification
and control based on recurrent neural networks of a class of non-
linear systems. IFAC Proc. Vol. 42(10), 1511–1516. 15th IFAC
Symposium on System Identification (2009)

42. Kumar, R.; Srivastava, S.; Gupta, J.R.P.: Lyapunov stability-based
control and identification of nonlinear dynamical systems using
adaptive dynamic programming. Soft Comput. 21(15), 4465–4480
(2017)

43. Agand, P.; Shoorehdeli, M.A.; Khaki-Sedigh, A.: Adaptive recur-
rent neural networkwith Lyapunov stability learning rules for robot
dynamic terms identification. Eng. Appl. Artif. Intell. 65, 1–11
(2017)

44. Bakefayat, A.S.; Tabrizi, M.M.: Lyapunov stabilization of the non-
linear control systems via the neural networks. Appl. Soft Comput.
42, 459–471 (2016)

45. de Jesus, R.J.: Discrete time control based in neural networks for
pendulums. Appl. Soft Comput. (2017). https://doi.org/10.1016/j.
asoc.2017.04.056

46. Aftab, M.S.; Shafiq, M.: Neural networks for tracking of unknown
SISO discrete-time nonlinear dynamic systems. ISA Trans. 59,
363–374 (2015)

47. Behera, L.; Kar, I.: Intelligent Systems and Control Principles and
Applications. Oxford University Press, Inc., Oxford (2010)

48. Ku, C.-C.; Lee, K.Y.: Diagonal recurrent neural networks for
dynamic systems control. IEEE Trans. Neural Netw. 6(1), 144–
156 (1995)

49. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J.: Learning Internal
Representations by Error Propagation, Technical report. California
Univ San Diego La Jolla Inst for Cognitive Science (1985)

50. Phansalkar, V.V.; Sastry, P.S.: Analysis of the back-propagation
algorithm with momentum. IEEE Trans. Neural Netw. 5(3), 505–
506 (1994)

51. Polycarpou, M.M.; Ioannou, P.A.: Identification and Control of
Nonlinear Systems Using Neural Network Models: Design and
Stability Analysis. University of Southern California, Los Angeles
(1991)

52. Zurada, J.M.: Introduction to Artificial Neural Systems, vol. 8.
West, St Paul (1992)

53. Liao, T.L.; Horng, J.H.: Adaptive control of a class of nonlinear
discrete-time systems using hybrid neural networks. In: Control
Conference (ECC), 1997 European, pp. 506–511. IEEE (1997)

54. Yang, G.-B., Donath, M.: Dynamic model of a one-link robot
manipulator with both structural and joint flexibility. In: Robotics
andAutomation, 1988. Proceedings, 1988 IEEE International Con-
ference on, pp. 476–481. IEEE (1988)

55. Paul, R.: Robot Manipulators: Mathematics, Programming, and
Control: TheComputer Control of RobotManipulators.MITPress,
Cambridge, MA (1981)

56. Sciavicco, L.; Siciliano, B.: Modelling and Control of Robot
Manipulators. Springer, Berlin (2012)

57. Sanxiu, W.; Shengtao, J.: Adaptive friction compensation of robot
manipulator. In: Hu, W. (ed.) Electronics and Signal Processing,
pp. 127–134. Springer, Berlin (2011)

123

https://doi.org/10.1016/j.asoc.2017.04.056
https://doi.org/10.1016/j.asoc.2017.04.056

	Comparative Study of Neural Networks for Control of Nonlinear Dynamical Systems with Lyapunov Stability-Based Adaptive Learning Rates
	Abstract
	1 Introduction
	1.1 Background

	2 Related Work
	2.1 Motivation
	2.2 Contributions of the Paper

	3 Problem Statement
	4 Preliminaries, Basic Concepts and Mathematical Formulation of ANNs
	4.1 RBFN Model
	4.1.1 Choice of Radial Basis Function

	4.2 MLFFNN Model
	4.3 NARX Model

	5 Structural Comparison of NARX, MLFFNN and RBFN
	5.1 Computational Complexity of ANN's Structures

	6 Parameters Adjustment Rules for ANN-Based Controller
	6.1 Case I: RBFN Controller
	6.1.1 Update Equations for Radial Centres
	6.1.2 Update Equations for Output Weight Vector
	6.1.3 Update Equations for the Radial Centre's Width

	6.2 Case II: MLFFNN Controller Model
	6.2.1 Adjustment of Output Weight Vector
	6.2.2 Adjustment of Input Weight Vector

	7 Lyapunov Stability-Based Adaptive Learning Rate
	8 Adaptive Control of Nonlinear Systems
	8.1 Selection of Controller Inputs

	9 Simulation Study
	9.1 Example 1 Dynamical System of Relative Degree 3
	9.1.1 Robustness Testing
	9.1.2 Case I: Disturbance Signal
	9.1.3 Case II: Parameter Variation
	9.1.4 Analysis of the Results: Example 1

	9.2 Example 2 Dynamical System of Relative Degree 4
	9.2.1 Robustness Testing
	9.2.2 Case I: Disturbance Signal
	9.2.3 Case II: Parameter Variation
	9.2.4 Analysis of the Results: Example 2

	9.3 Example 3 Robotic Manipulator Control
	9.3.1 Robustness Testing
	9.3.2 Disturbance Signal
	9.3.3 Parameter Variation
	9.3.4 Analysis of the Results: Example 3

	10 Discussion
	11 Conclusion
	References

