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Abstract
In wireless sensor networks (WSNs), thousands of sensor nodes are deployed to measure various environmental parameters
such as temperature, light intensity, humidity and air pressure. All living beings can sense the variation in these parameters;
therefore, these parameters are termed as natural signals. The natural signals are highly correlated in time and space; therefore,
it can be compressed significantly to achieve the low sampling rates. The correlation property of natural signals is exploited
here to compress/decompress these signals for reducing the transmission cost of the networks. The real-time temperature
signal is measured using national instruments (NI) WSN platform, which is used for analysis purpose. The signal at first is
transformed into sparse signal and then compressed. The compressed signal is transmitted to the receiver, where it is decoded
into original sparse signal using algorithms based on greedy iterative approaches, i.e. orthogonal matching pursuit (OMP),
stagewise orthogonal matching pursuit (StOMP) and generalized OMP (gOMP). The most popular greedy algorithm, OMP,
is compared with StOMP and gOMP. The performance is analysed quantitatively in terms of peak signal-to-noise ratio, root-
mean-squared error and execution speed of these greedy algorithms. It is demonstrated through simulation, the computational
speed of StOMP and gOMP is much better than OMP, and also, the sparse signal is recovered with accuracy approximately
equal to OMP.

Keywords Compressed sensing · Wireless sensor networks · Orthogonal matching pursuit · Sparse signal · Peak signal-to-
noise ratio · Execution time

1 Introduction

Sparse signal recovery refers to the problemof recovering the
sparse signals using few linearly transformed measurements
that possess incoherence properties. Sparse signals have a
few nonzero coefficients in a suitable transform basis or dic-
tionary. Sparse signal recovery is also known as compressed
sensing or compressive sampling [1]. Compressed sensing
is being widely used in the areas like image processing,
wireless communication, signal processing, cognitive radios,
geophysics, astronomy. [2]. These applications involve high-
dimensional signals, which require the large memory space
and bandwidth in order to store and transmit them, respec-
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tively. This leads to inefficient use of available resources.
Compressed sensing removes the constraints of limited band-
width and storage space by encoding the large-dimensional
signals into smaller dimensions and then recovering the orig-
inal signals from their compressed form [3]. This theory was
given by Donoho [4], Candès and Wakin [5]. In compressed
sensing, a sparse signal x ∈ RN is sampled and compressed
into a set of M measurements, whereas M is much smaller
than N . If these measurements are taken in an appropriate
order, then original sparse signal x can be possibly recov-
ered using this small set of measurements [6].

Compressed sensing has attractedmuch attention in recent
years for wireless sensor networks (WSNs) where measure-
ment capabilities are limited due to energy constraints.WSNs
are distributed networks of thousands of sensor nodes with
the capabilities of sensing, processing and communication
with the sink node and other sensor nodes also. These net-
works are being widely used in the areas like environmental
monitoring, building automation, health, industrial monitor-
ing, smart homes. [7]. Due to the implementation of sensor
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nodes on the large scale, the energy expenditure and transmis-
sion cost of the network increase to a great extent. Different
kinds of routing anddata fusionprotocols havebeenproposed
in the literature to reduce the energy consumption and trans-
mission overhead [8–11]. In this article, use of compressed
sensing is presented in WSNs to reduce the volume of data
transmission within the network which further decreases the
energy consumption of the network also.

Compressed sensing transforms a discrete time signal x
of size N , i.e. x ∈ RN into a K sparse signal using a discrete
cosine transform (DCT) domain matrix, �, (� ∈ RN×N )

according to Eq. (1).

x = �α (1)

where α is a column vector of transform coefficients. If
α ∈ RN has K elements of significant values such that rest
of (N − K ) elements can be rejected without any substantial
loss and K � N , then α is known as K sparse representa-
tion of original signal x in DCT domain. The matrix � can
be referred as the basis matrix. Compressed sensing encodes
K sparse signal by computing a measurement vector y of
dimension M , where K < M < N . As x has sparse repre-
sentation with respect to basis �, y is expressed as

y = �x = Aα (2)

where � is known as measurement matrix as� ∈ RM×N

and A ∈ RM×N = ��. The measurement vector y is
decoded into original signal x by determining the transform
coefficient vector using y = Aα where A is a rectangular
matrix A ∈ RM×N = �� and �, � matrices are known in
advance [12,13]. The reconstruction of original signal x from
a few random projections is an ill-posed problem; therefore,
signal sparsity must be known in prior to recover x using
M � N projections only [14]. In compressed sensing, vari-
ous sparse signal recovery algorithms have been presented to
reconstruct the sparse signal from a few measurements. One
of such algorithms is l0 minimization as expressed in Eq. (3).

minα̃ ‖α̃‖0 s.t. Aα̃ = y (3)

Unfortunately, this algorithm is very difficult in practice and
isNPhard in general. Therefore, alternatives toNPhard prob-
lem are explored and then l0 optimization algorithm replaced
by l1 minimization approach [15]. l1 minimization algorithm
is based on linear programming techniques and imposes the
condition of restricted isometry property (RIP) on the mea-
surement matrix A to obtain a unique sparsest solution. For
the condition of RIP, there must exist a restricted isometry
constant (RIC) δK , 0 < δK < 1 such that

(1 − δK ) ‖α‖22 ≤ ‖Aα‖22 ≤ (1 + δK ) ‖α‖22 (4)

for all entries of transform coefficient vector, α [16]. How-
ever, l1 minimization approach provides the strong guaran-
tees of recovered signal yet infeasible for many applications
due to their computational complexity and polynomial run
time. Therefore, the decoding algorithms with strong signal
recovery having less computational time become of criti-
cal importance. To solve this problem, a family of greedy
iterative algorithms have been proposed, e.g. matching pur-
suit (MP) [17], orthogonal matching pursuit (OMP) [18],
stagewise OMP (StOMP) [19], subspace pursuit (SP) [20],
compressive sampling matching pursuit (CoSaMP) [21].
Amongall these greedy algorithms,OMP ismostwidelyused
sparse signal recovery algorithm due to its simplicity and
competitive performance. OMP algorithm iterates K times
where K is the sparsity of signal to be recovered. In each
iteration, a single column is selected from the measurement
matrix on the basis of its correlation with the residual signal.
In this way, computational time of OMP algorithm directly
depends upon the sparsity of signal. Various efforts have been
done to reduce the number of iterations of OMP algorithm
with the aim of increasing the execution speed of the algo-
rithm. Methods are proposed which can identify more than
one indices in each iteration to increase the computational
efficiency of OMP algorithm. These methods are all variants
of OMP such as StOMP, SP and CoSaMP. [22]. These algo-
rithmsworkon themodification of identification step ofOMP
in different ways. For example, in StOMP, multiple indices
are chosen in each iterationwhose correlationmagnitudes are
greater than a specified threshold value. In SP and CoSaMP,
multiple indices are selected in the identification step, and
after that, a large portion of selected indices is pruned to pol-
ish the identification step. Recently, an algorithm has been
proposed in [23] with the objective of enhancing the recov-
ery performance in less computational time in comparison
with OMP. It is termed as generalized OMP (gOMP), also
known as orthogonal super greedy algorithm (OSGA) [24]
or orthogonal multi-matching pursuit (OMMA) [25]. Here,
in this paper, a comparison is made between OMP, StOMP
and gOMP to find out whichever algorithm provides fast and
satisfactory sparse signal recovery. The comparative analysis
is performed in terms of peak signal-to-noise ratio (PSNR),
root-mean- squared error (RMSE) and execution time of the
algorithms.

For comparison, the sparse signal is generated by rep-
resenting the temporally correlated temperature signal into
discrete cosine transform (DCT) domain. The main objec-
tives of this work are as follows:

1. To measure real-time temperature data using national
instruments (NI) WSN platform.

2. To apply compressed sensing on these measured val-
ues by compressing them using measurement matrix at
the encoder. At the receiver end, to retrieve the origi-
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nal sparse signal from its compressed form, sparse signal
recovery algorithms, i.e. OMP, StOMP and gOMP, are
implemented sequentially.

3. To evaluate the performance of recovery algorithms on
the basis of the efficacy of recovered signal and execution
speed.

The rest of paper is structured as follows. Section 2 describes
the experimental set-up needed to record the temperature
signal using NIWSN hardware followed by the compressive
encoder and decoder in Sects. 2.2 and 2.3, respectively. OMP,
StOMP and gOMP all are explained stepwise including their
advantages and disadvantages. The performance parameters
required to differentiate the recovery algorithms are depicted
in Sect. 3 accompanied by the conclusion in Sect. 4.

2 Sparse signal recovery inWSNs: a case
study

In environmental monitoring WSNs, the sensor nodes are
deployed to measure the environmental parameters such as
light intensity, temperature, air pressure, wind direction and
humidity. The measurements of these parameters are highly
correlated in time and space because many sensors monitor
the same spatial region over varying sample intervals. Due
to the deployment of a large number of sensor nodes for
monitoring, same geographic area leads to spatial correlation
among sensor measurements and slow variation with time
caused these signals to be temporally correlated also [26].
The correlation of one-dimensional signal x (k)

i sensed by a

node with the same signal shifted by m time samples, i.e.
x (k+m)
i , averaged for all the N signals of X (k) ∈ R

N is known
as temporal correlation ρm

(
X (.)

)
[27], which is defined as

ρm

(
X (.)

)
=

N∑

i=1

1

N

∑KT
k=1

(
x (k)
i − E [xi ]

) (
x (k+m)
i − E [xi ]

)

KT σ 2
xi

(5)

where time varies from k = 1, . . . , KT .
Compressed sensing exploits the spatial–temporal corre-

lations within the sensor measurements to make them highly
compressible, hence achieving much lower sampling rates.
In further subsections, it is explained in detail that how the
temperature values are read using NI WSN hardware kit and
LabVIEW and further compressed using CS encoder and
recovered via iterative greedy algorithms.

2.1 Experimental set-up

The testbed for real-time temperature measurement con-
sists of NI WSN-9791 Ethernet gateway, NI WSN-3212
programmable thermocouple input node, one set of 4AAbat-
teries for NI WSN measurement node, J-type thermocouple,
Ethernet cable, graphical NI LabVIEW software installed on
the desktop and power supply for WSN-9791. The various
components and their connections are displayed in Figs. 1
and 2, respectively.

As shown in Fig. 2, a network is established between
WSN gateway and WSN measurement node connected with
a J-type thermocouple, using IEEE 802.15.4 communication

Fig. 1 i Ethernet cable; ii thermocouple sensor; iii AA battery; iv NI WSN 3212 thermocouple measurement node; v NI WSN 9791 Ethernet
gateway

Fig. 2 WSN set-up for temperature measurement
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Fig. 3 Thermocouple temperature and link quality measurements using LabVIEW

protocol. TheWSN gateway is attached using Ethernet cable
to the desktop loaded with LabVIEW. The WSN measure-
ment node and gateway are configured in LabVIEW using
NI MAX (National Instruments Measurement and Automa-
tion Explorer) software. After detecting the WSN node in
LabVIEW, each and every pin of measurement node can be
programmed. The thermocouple temperature and link quality
pins are configured in the following way as shown in Fig. 3.

2.2 Compressive sensing encoder

In presentWSNs, the temperature samples aremeasured at an
interval of 60 s. These samples are found highly temporally
correlated with the temporal correlation of 0.9, calculated
according to Eq. (5). These samples are sparsified using a
transform domain matrix �. The matrix � must satisfy the
following twocriteria: (1) itmust be able to sufficiently sparse
the signal, and (2) it must be incoherent with corresponding
measurement or sensing matrix� [28]. Here, discrete cosine
transform (DCT) matrix is used for the same.

DCT matrix is also known as representation matrix
or basis matrix. DCT matrix uses dynamic thresholding
approach for determining the K sparse elements. The math-
ematical expression for transform matrix of DCT is given
below.

DCT (N × N ) =
[
ψi, j = Ccos

(
i (1 + 2 j)

π

2N

)]
(6)

where i ∈ {0, . . . , N − 1} and j ∈ {0, . . . , N − 1} represent
the row and column numbers of the matrix. C is a constant,
defined as follows

C =
⎧
⎨

⎩

√
1
N , for i = 0

√
2
N , for i �= 0

(7)

DCT matrix is orthogonal; hence, its inverse is obtained
by taking the transpose of the matrix, IDCT=DCTT . DCT
matrix makes a signal sparse by concentrating most of
the information in the low-frequency components. There-
fore, high-frequency components have very less information;
hence, they are eliminated without any significant loss [13].

Another matrix, known as measurement matrix, � ∈
RM×N , is used for compressing the signal during the sig-
nal acquisition step, i.e. y = �x . The matrix must be
structured in such a way that it consists of least number of
nonzeros in order to reduce the complexity of encoding. Dif-
ferent kinds of measurement matrices have been proposed in
the literature, for example Gaussian random matrix, Fourier
matrix, scrambled Fourier (SF) matrix, partial noiselet (PN)
matrix. [29]. All these matrices suffer from the limitations of
large computational complexity (because of large number of
nonzero entries) and storage space. The simplest measure-
ment matrix proposed by Ravelomanantsoa [30] is used for
compressing the data in the presented work. The matrix is
called as deterministic binary block diagonal (DBBD) and is
expressed as
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Fig. 4 Coherence between � and � matrices

�DBBD =
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m
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0
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0 0
. . . 0

0 0 0

m
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⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

(8)

The blocks of this diagonal matrix are identical and contain
m = N

/
M , elements each, where M and N are the number

of rows and columns of measurement matrix, respectively.
According to second criteria for basis matrix �, it must be
incoherent with the measurement matrix �. It means that
each and every element of measurement matrix � must not
be correlated with the elements of basis matrix�. The coher-
ence μ among two matrices is expressed below

μ (�,�) = √
N max

i, j

∣∣〈φi ,ψ j 〉
∣∣

‖φi ‖2‖ψ j‖2
(9)

where φi∈{1,...,M} and ψ j∈{1,...,N }, respectively, represent the
row vectors of � and column vectors of �. Since μ ∈[
1,

√
N

]
, for matrices � and � to be incoherent, μ must be

closer to one [12,16]. As the value ofμ approaches to
√
N ,�

and � matrices become less incoherent with each other and
lead to poor signal recovery. The coherence between DBBD
andDCTmatrices is shown in Fig. 4. The coherence between
two matrices decreases as the number of rows M in the mea-
surement matrix increases which makes these two matrices
more uncorrelated w.r.t. each other.

2.3 Compressive sensing decoder

In this subsection, the algorithms based on a greedy itera-
tive approach for sparse signal recovery are described. These
algorithms are required at the sink node to decode the com-
pressed signal. The sink node is free from the constraints of
limited bandwidth and energy. Greedy algorithms compute
the support of the sparse signal iteratively. After calculating

the signal support, the pseudoinverse of the matrix confined
to the selected columns is used to reconstruct the sparse sig-
nal. These algorithms feature the fast signal recovery but face
some disputes also.

2.3.1 Orthogonal matching pursuit

To recover the sparse signal α, we need to determine which
columns ofmatrix A have significant contribution in themea-
surement vector y. To solve this problem, the columns from
matrix A are selected in a greedy order using OMP algorithm
[18]. OMP is an iterative greedy algorithm in which a single
column is selected from Awhich found to be most correlated
with the residue part of the signal y at each step. The selected
column is then added to the set of already selected columns,
hence framing a matrix Aopt. The pseudoinverse of matrix
Aopt is calculated to solve the least square fit, hence obtaining
a new sparse signal estimate. The residual is updated itera-
tively by subtracting the contribution of selected columns
from the measurement vector, hence finding a global opti-
mal solution for the signal α. This algorithm was proposed
by Mallat and Zhang [31]. The steps of OMP are described
in Table 1.

Since OMP algorithm iterates K times to compute the
residual correlations and solve a least square problem for
the sparse signal approximation, it requires large run time.
In addition to this, algorithm builds up the optimal set one
element at a time. The efficient implementation of OMP
would necessarily require Cholesky factorization of opti-
mal set, thereby reducing the complexity of solving the
least square problem. In K steps, OMP would take at most
4K 3

/
3 + KMN + O (N ) arithmetic operations. In worst

case, where no sparsity is assumed, OMP will take M steps
for performing the 4M3

/
3 + M2N +O (N ) operations [19].

2.3.2 Stagewise orthogonal matching pursuit

Unlike OMP, instead of selecting the largest component of
measurement vector y, in StOMP multiple coordinates are
selected whose correlation magnitudes are above a specified
threshold value. After that, least square problem is solved
similar toOMPand residual is updated iteratively. In addition
to this, StOMP completes in a few iterations (e.g. 5), while
OMP can take many (e.g. K ) where K is the sparsity level
of signal to be recovered. Therefore, StOMP must run much
faster than OMP. StOMP was developed and analysed by
Donoho et al. [19]. StOMP can be executed in the following
steps as shown in Table 2.

The formal noise level σS = ‖rS‖2
/√

M , and thresh-

old parameter tS takes values in the range 2 ≤ tS ≤ 3. The
threshold value has been designed in such a way that many
coefficients can enter at each stage and algorithm quits after a
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Table 1 OMP algorithm

In Table 1, firstly, the residual, index set and iteration counter are initialized. Then an index from matrix A is selected, which found maximally
correlated with the residual signal. The selected index is then added to the set �t , and its size increases as the number of iterations increases. The
selected indices from matrix A frame a submatrix Aopt which is used for solving the least square problem in the next step. The least square problem
is solved to compute the sparse signal using pseudoinverse of matrix Aopt. After calculating the sparse signal, residual is updated and the process
is repeated iteratively. At last, sparse signal is multiplied with inverse DCT matrix to obtain the original signal

fixed number of iterations. The number of coefficients enter-
ing each stage should be equal to K , but sometimes, it falls
below K due to missed detections or false discoveries which
degrades the performance of algorithm. The main disadvan-
tage of this algorithm is determining an appropriate value of
threshold as different threshold values could lead to different
results.

StOMP algorithm solves the least square problem via con-
jugate gradient (CG) solver requiring at most S (v + 2) MN
+ O (N ) arithmetic operations in S stages, where v is the

number of CG iterations [19]. As StOMP has modest storage
requirements at any step of algorithm execution, there is only
need to store the current estimate αS , current residual vector
rS and the current active set�S . This makes StOMP feasible
for very large scale sparse applications.

2.3.3 Generalized orthogonal matching pursuit

gOMP is simply a generalization of OMP algorithm. This
algorithm is designed with the aim of reducing the com-
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Table 2 StOMP algorithm

In StOMP algorithm, residual, index set and iteration counter are initialized in the first step. The correlation between the columns of matrix A
and residual is calculated. In third step, multiple indices from matrix A are selected having correlation values above the threshold value, and then,
selected indices are added to the index set �S . The indices in the set �S construct the matrix Aopt which is further used for computing the sparse
signal by solving the least square problem. The residual is updated in the next step, and all these steps are repeated iteratively to approximate the
original signal

putational cost of OMP. It only differs with OMP in the
identification step by selecting n columns in each iteration
for estimating the support of sparse signal. The value of n for
gOMP is bounded between n ≤ K and n ≤ M

/
K , whereas

OMP is treated as special case of gOMP with the value of
n = 1 [23,32,33] Since OMP algorithm requires that all the

chosen indices are “correct” (which is in actual support of
sparse signal) for acceptable sparse signal recovery. How-
ever, this is not possible. In gOMP, if one “correct” index is
chosen among the multiple selected indices, then maximum
iterations will be equal to K as in OMP. However, there is
probability for the selection of multiple “correct” indices at a
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Table 3 gOMP algorithm

In Table 3 for gOMP algorithm, with the initialization of residual, index set and iteration counter, the correlation between the columns of matrix A
and residual is calculated. The correlation magnitudes are sorted in the descending order, and indices corresponding to n largest entries are selected
from matrix A and added to the set �k . Then, least square problem is solved to approximate the sparse signal. The process is repeated until the
conditions of termination are satisfied

time; then, number of iterations will certainly be less than K .
The iterations required in gOMP algorithm are denoted by k,
and its value should be k < min

{
K , M

/
n
}
. Like OMP and

StOMP, the complexity of gOMP is directly dependent upon
the number of iterations, i.e. 2kMN + (

2n2 + n
)
k2M . Less

the number of iterations, lesser will be the computational cost
of the algorithm.

3 Results and analysis

The simulation is performed on a system supporting an Intel
CORE i3 processor and 4GB memory space with MATLAB
8.5. A temperature signal measured using NI WSN-3212
thermocouple node by keeping in an open environment is
analysed. The signal is represented as a sparse signal in DCT
domain and further compressed using �DBBD measurement

matrix during signal acquisition step. The compressed signal
is converted into original sparse signal using OMP, StOMP
and gOMP sequentially. The comparative analysis is per-
formed on the basis of RMSE, PSNR and execution time.

3.1 Performance parameters

The performance of sparse signal recovery algorithms is eval-
uated using the following parameters.

Root-mean-squared error (RMSE)—RMSE values are
calculated using the following mathematical expression

RMSE =
√∑N

1 (x − x̃)2

N
(10)

where x and x̃ are the original and reconstructed signal,
respectively.
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Fig. 5 Original temperature signal

PSNR—The distortion between original signal and recov-
ered signal is measured using peak signal-to-noise ratio as
[30]

PSNR [dB] = 10 log10

(
max x2

1
N

∑N−1
0 (x − x̃)2

)

(11)

Compression ratio (CR)—For various reconstruction algo-
rithms,CRwill be different. For example, inOMPandgOMP,
the number of samples required to reconstruct the signal of
length N is equal to K ; hence, CR is

CR = N

K
(12)

Although, in StOMP algorithm, the samples needed to
recover the original signalmay be equal to or less than K (due
to false alarms) depending upon the applications, therefore,
there is not any standard mathematical formula to calculate
CR in case of StOMP.

3.2 Performance analysis

The WSN measurement node equipped with a thermocou-
ple at its input pins was placed in an open environment to
measure the temperature. The temperature values available
at the output pins ofmeasurement node are visualized in Lab-
VIEW and then exported to MATLAB for further analysis.
The original temperature signal is displayed in Fig. 5 where
1024 temperature samples are shown.

Sparsity Analysis Since the signal is highly temporally
correlated, it becomes enough sparse when represented into
a transform domain. Here, DCT is applied formaking the sig-
nal sparse. DCT operates by concentrating all information in
low-frequency components and decreases the contribution of
higher-frequency components; hence, they are eliminated. In
thisway, the signal ismade as sparse by retaining a fewcoeffi-
cientswhich have significant values, while others are rejected
without any significant loss of information. The sparse signal
is shown in Fig. 6 where only first 64 samples are displayed.
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Fig. 6 Sparsity analysis in temporally correlated data

These samples contain 99% energy of total samples. The
remaining samples are not shown in the Fig. 6 due to their
negligible energy content.

Regeneration of Original Sparse Signal At the receiver,
the original sparse signal is recovered from its compressed
form using sparse signal recovery algorithms, i.e. OMP,
StOMP and gOMP. The performance of these algorithms is
analysed at different levels of sparsity as shown in Fig. 7.
As in OMP, the number of samples required to reconstruct
the sparse signal is equal to sparsity measure K , whereas,
in StOMP, the number of samples may fall below the spar-
sity value of the signal which degrades the performance very
slightly. This happen due to themissed detections or false dis-
coveries. False discoveries are also known as false alarms.
The number of coordinates which are in the actual support of
the signal but not appear in the selected coordinates is known
as missed detections. However, false alarms are the number
of incorrectly selected coordinates which are not in the sup-
port of signal but chosen in signal estimation. However, in
gOMP, n samples are selected for each sparsity level, and
after that, these samples are pruned to K for actual sparse
signal estimation. Figure 7 shows that there is no noticeable
difference in the signal recovery using all three algorithms.
The performance of all algorithms improves as signal spar-
sity increases. The detailed analysis is presented in Tables 4,5
and 6 for OMP, StOMP and gOMP algorithms, respectively.
The parameters considered for performance evaluation are
RMSE, PSNR and execution time. There is no such a signif-
icant difference in the PSNR and RMSE values of recovered
signal, but a large variation is observed in the number of
iterations from OMP to StOMP and gOMP. In StOMP and
gOMP, far less iterations are required thanOMPwhich in turn
affect their computational time. The execution time for each
of the algorithm is tabulated in Table 7. In order to recover
the sparse signal with the sparsity 8, the run time decreases
from OMP to StOMP and gOMP and the difference in their
execution time increases when sparsity increases to 128. In
this way, StOMP and gOMP are more effective algorithms
than OMP in terms of their accuracy and execution speed.
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Fig. 7 Sparse signal recovery in WSN using N = 1024 original samples and signal reconstruction using K = 8, · · · 128 samples via a OMP, b
StOMP and c gOMP, respectively

4 Conclusion

A temperature signal is measured using NI WSN thermo-
couple programmable input node at the same time interval.
The signal is found highly temporally correlated; hence,
it becomes enough sparse when represented into discrete
cosine transform domain. The sparse signal is further com-
pressed using deterministic binary block diagonal measure-

ment matrix and transmitted to the receiver. At the receiver
end, compressed signal is decoded into the original signal
using greedy iterative algorithms. Here OMP, StOMP and
gOMP algorithms are used for decoding purpose. A compar-
ative analysis of all three algorithms is performed in terms of
PSNR, RMSE and their computational time. The PSNR and
RMSE values of the recovered signal using all three algo-
rithms are found approximately equal. However, the large
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Table 4 Performance parameters obtained in signal reconstruction via
OMP

K NS CR RMSE PSNR [dB]

8 8 128 0.2604 43.7187

16 16 64 0.2392 44.4543

32 32 32 0.2017 45.9385

64 64 16 0.1688 47.4820

128 128 8 0.1441 48.8549

Table 5 Performance parameters obtained in signal reconstruction via
StOMP

S K NS CR RMSE PSNR [dB]

3 8 8 128 0.2670 43.4995

3 16 12 85 0.2490 44.1067

4 32 19 54 0.2445 44.2645

4 64 44 23 0.2067 45.7224

5 128 81 13 0.1623 47.8270

Table 6 Performance parameters obtained in signal reconstruction via
gOMP

k K n CR RMSE PSNR [dB]

4 8 8 128 0.2649 43.5702

5 16 16 64 0.2414 44.3760

5 32 32 32 0.2204 45.1670

7 64 64 16 0.1835 46.7595

7 128 128 8 0.1593 47.9883

Table 7 Simulation run time for OMP, StOMP and gOMP in millisec-
onds

K 8 16 32 64 128

OMP 0.8 2 5 20 200

StOMP 0.5 0.6 1 2 5

gOMP 1 3 6 10 12

difference in their execution time is observed. In order to
recover the original signal using 8 samples, StOMP run 1.6
times faster than OMP, whereas gOMP run with approx-
imately equal speed to that of OMP. In a typical case of
128 samples, the speed of recovery via StOMP and gOMP
become 40 times and 17 times faster than OMP algorithm,
respectively. These results establish the superior performance
of StOMP and gOMP over OMP. Based on these results, this
is recommended that StOMP and gOMP should be preferred
for solving large-scale sparse problems like medical images
such as magnetic resonance imaging, electrocardiogram sig-
nals and radar.
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