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Abstract The kernel method is a very effective and pop-
ular method to extract features from data such as images.
A novel method is presented to enhance traditional kernel
method for face image representation in this paper, which is
very suitable to treat the high-dimensional datasets. The pro-
posedmethod is called weighted kernel representation-based
method (WKRBM) in this paper. WKRBM assumes that the
test sample can be expressed by all the training samples and
linear solution in the mapping space. It uses the obtained lin-
ear combination to recognize face images. In particular, the
coefficients of a linear combination can be set as the optimal
weight that is an important factor to obtain better perfor-
mance for image classification. The rationale, characteristics,
and advantages of the proposed method are presented. The
analysis describes that WKRBM outperforms collaborative
representation-based kernel method for image recognition.
Extensive experimental results illustrate that WKRBM has
partial properties of sparsity, which is effective to recognize
images.

Keywords Image classification · Representation-based
kernel · Adaptive weights with kernel · Feature space
representation

B Yongbin Qin
ybqin@foxmail.com

1 School of Computer Science and Technology, Guizhou
University, Guiyang 550025, China

2 Guizhou Key Laboratory of Public Big Data, Guizhou
University, Guiyang 550025, China

3 School of Computer Science and Technology, Harbin
Institute of Technology Shenzhen Graduate School, Shenzhen
518055, China

1 Introduction

The kernel method has been widely applied for feature
extraction and classification in pattern recognition and image
processing [1–3]. Kernel regression, kernel Fisher discrim-
inant analysis, and kernel principal component analysis
(KPCA) are typical kernel methods and have a lot of applica-
tions. If we set an input space, a kernel method would finish
itswork in a novel space (i.e., feature space ormapping space)
in general, which stems from original input space. One of the
characteristics of the kernel method is that it does not use the
virtue of kernel functions to implement details of the corre-
sponding transform. As a consequence, the kernel method
would produce lower computational cost than conventional
nonlinear methods. One of the merits of kernel methods is
that it cannot generate error classification when it is used
to represent the test sample. The reason of problems above
can be showed briefly as follows. The sparse method is that
only uses training samples and sparse solution to express
a test sample. In other words, this method presumes that
the elements of spare solution are 0 or near 0 when it can
exploit training samples and sparse solution to express the
test sample. The total of the training samples is smaller than
the dimension of samples in general in face image classifi-
cation and the test sample is represented by Refs. [4,5] must
emerge much representation error. Representation error usu-
ally increases the probability of false classification result
of the test sample. And conventional sparse method also
produces expensive computational cost. That is, the kernel
method is a good choice for image representation.

In practice some scholars have proposed different meth-
ods to address the problems of incorrect representation for
face recognition and accelerate the classification process of
kernel-based methods [6–9]. Billings et al. [10] proposed
to fuse the orthogonal least-squares algorithm and kernel
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nonlinear discriminant analysis in improvement classifica-
tion speed. The proposed algorithm only uses a small portion
of training samples to express and sort the test sample, which
improves the classification efficiency. However, this method
ofRef. [11] does not have any regularization term,whichmay
make orthogonal least-squares algorithm over-fitting. Caw-
ley et al. [11] proposed another kernelmethod to dealwith the
problem of image classification, which used the kernel trick
to get a nonlinear variant of Fisher’s analysis methods. This
method exploits leave-one-out cross to improve kernel Fisher
discriminant analysis, which can speed up the processing and
decrease the rate of classification errors on image classifica-
tion. However, kernel Fisher discriminant might incur the
ill-posed phenomenon in its real applications [12,13]. Some
scholars proposed a lot of regularization methods to address
this problem. Yang [14] proposed to integrate PCA plus LDA
method and Fisherface [15] to tackle difficult question of
kernel Fisher discriminant above. Baudat et al. [16] used the
QR decomposition algorithm to eliminate the zero eigen-
values and keep away from singularity. Unfortunately, these
methods dropped important discriminant information, such
as the within-class covariance matrix in the null space which
was very useful to address the difficult problem of small
sample size [17–21]. Lu et al. [22] utilized generalization of
direct-LDA [19] to solve the size problem of appeared small
sample, which obtained good performance for face recogni-
tion. However, when different test samples were expressed
by linear coefficients and training samples for this method,
it had different kernel methods with the same linear com-
bination coefficients, which cannot properly represent test
samples [22]. As consequence, the improvement of kernel
method is an effective method to solve problems above [23].

This paper fully considered the diversity of different sam-
ples andproposed a novelmethodWRKBM(weighted kernel
representation-based method) to deal with the drawbacks
of general kernel method, which can use different kernel
methods and varying linear combination coefficients rather
than different kernel method and the same linear combina-
tion coefficients to properly represent different test samples.
Meanwhile, our method has partial sparsity, which is impor-
tant and effective for image recognition [24]. The main
idea of WRKBM is that employs obtained all the training
samples to express obtained the test sample and construct
the residual to classify the test sample from new mapping
space is proposed in the paper. The implementations of
WKRBM have the following steps. Firstly, we use the Gaus-
sian function method to obtain the kernel representations in
the old mapping space for images, which is corresponding
to test samples and training samples from original data. Sec-
ondly, the weights of coefficients of the linear representation
can be obtained by WKRBM in the new mapping space.
Finally,we utilize the obtainedweights and kernel function to
establish the relation of the test sample with all training sam-

ples. Our proposed method is regarded as weighted kernel
representation-based method (WKRBM). We also analyze
the rationale, characteristics and advantages ofWKRBMand
the differences between WKRBM and conventional kernel
methods to show its performance. The experimental results
illustrate that WKRBM not only can have high accuracy for
image classification, but also possess partial attribute of spar-
sity; that is, the sparse solution is near 0 or equal 0. Sparseness
is effective for image classification [6]. To make the pro-
posed method obtain better performance, WKRBM is used
to compute the weights which make different classes prop-
erly represent a test sample. A further merit of WKRBM is
that it can decrease the dimension of the original image. For
example, an original representation-basedmethod should use
a m dimensional vector to represent a sample. If m is very
large, then the computational complexity will be very high.
However, WKRBM can be easily implemented and has low
computational cost.

The structure of this paper is as follows. Section 2 illus-
trates WKRBMmethod; Sect. 3 presents the rationale, char-
acteristics, advantages of WKRBM and differences between
WKRBM and KRBM, differences between WKRBM and
sparse method. Section 4 describes experimental results of
massive experiments. Section 5 provides the conclusion of
this paper.

2 WKRBM Method

WKRBM includes two main steps. The first step uses
weighted linear representation of all the training samples to
express the test samples in the new mapping space. The sec-
ond step employs the obtained representation results to sort
the test sample. The specific implementations of WKRBM
are presented as follows. Suppose A denotes all the training
samples fromoriginal data,where A ∈ [A1, A2, . . . , An] and
n denotes total of all the subjects.We assume that a given test
sample is represented by Y in the original space. We employ
the nonlinear mapping φ to obtain a new space (i.e., old fea-
ture space or old mapping space) from the original sample.
In the old mapping space, the i th training sample Ai from
the original space can be denoted by φ(Ai ). We assume that
the given test sample φ(Y ) can be linearly represented by
training samples φ(Ai ) and coefficients in the obtained old
mapping space, where i ∈ [1, 2, 3, . . . , n] and the formula
φ(Y ) = β1φ(A1) + β2φ(A2) · · · + βnφ(An)

︸ ︷︷ ︸

n

is intuitively

used to denote the relation of them. We assume that all the
samples are column vectors. And the formula above is trans-
formed into formula (1).

φ(Y ) = ξδ (1)
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where ξ = [φ(A1), φ(A2), . . . , φ(An)] and δ = (β1, β2, . . . ,

βn)
T is the coefficients of the linear representation of all the

training samples ξ in the old mapping space. Because φ is
unknown and ξ is not a square matrix, we cannot directly
obtain δ. However, ξTξ is a square matrix, and we can con-
vert formula (1) into formula (2) to solve δ.

ξTφ(Y ) = ξTξδ (2)

Weassume that kernel function k(Ai , A j )=φT(Ai )φ(A j )

[9,25,26]. We can further convert Eq. (2) into Eq. (3).

KY = K δ (3)

In particular, KY and K , respectively, represent kernel
function of the test sample and kernel function of the train-
ing sample in the mapping space (i.e., old mapping space).
KY ,K , and δ are defined as follows:

KY = [k(A1,Y ), k(A2,Y ), . . . , k(An,Y )]T ,

K = [k1, k2, . . . , kn] and

ki = [k(A1, Ai ), k(A2, Ai ), . . . k(An, Ai )]T

where i ∈ [1, 2, 3, . . . , n].
We can obtain the solution of Eq. (3) by Eq. (4), where μ

is a nonnegative and nonzero constant and E is the identity
matrix.

δ =
{

K−1KY , K is not singular
(K + μE)−1KY , K is singular

(4)

It is obvious that KY = (k1, k2, . . . , kn)δ = β1k1 + · · · +
βnkn , where k j = [k(A1, A j ), k(A2, A j ), . . . , k(An, A j )]T
and j ∈ [1, 2, . . . , n]. This illustrates that a test sample ky
is expressed in term of ki in the old space. And, ki is the
i th training sample from the old mapping space. Meanwhile,
previous study makes us know that the contribution of each
training sample for expression of test sample in the map-
ping space is important for classification. Thus, the issue of
improving the accuracy on face recognition might be trans-
formed into a new issue of reasonably setting the weights.

In response to phenomena above, we proposed the fol-
lowing scheme with the purpose of adaptively obtaining the
coefficients of the linear combination in the mapping space
method via kernel functions. We obtain a new linear combi-
nation in the new mapping space, which is the basis of the
old mapping space.We assume that φ′ is new nonlinear map-
ping in the new mapping space. We assume that the obtained
test sample φ′(Y ) is expressed by all the input image training
samples φ′ = [φ′(A1), φ

′(A2), . . . , φ
′(An)] in the newmap-

ping space, i.e.,φ′(Y ) = ∑n
i=1 β ′

iφ
′(Ai ) can be obtained. Let

δ′ = [β ′
1, β

′
2, β

′
3, . . . , β

′
n]T. Finally, the WKRBM method

obtains the solution of φ′(Y ) = ∑n
i=1 β ′

iφ
′(Ai ).

In order to implement operations above, we first obtain
the deviation di of the i th training sample and test sample in
the obtained old mapping space and use it as weight of φ(Ai )

by Eq. (5).

di = ‖KY − kiδi‖2 (5)

where k(Ai , A j ) = (φ(Ai ))
Tφ(A j ). Especially, K ′

Y and K ′
represent kernel function of the test sample and kernel func-
tion of the training sample in the new mapping space. The
meanings of K ′

Y and K ′ are as follows:

KY = [k(A1,Y ), k(A2,Y ), . . . , k(An,Y )]T ,

K = [k1, k1, . . . , kn] and

ki = [k(A1, Ai ), k(A2, Ai ), . . . k(An, Ai )]T

where i ∈ [1, 2, 3, . . . , n].
Second, we use the product of the obtained weight of

Eq. (5) and old mapping φ(Ai ) to obtain the new mapping
φ′(Ai ) of the i th training sample in the new mapping space.
The new mapping φ′(Ai ) of the i th training sample in the
new mapping space will be represented as Eq. (6):

φ′(Ai ) = diφ(Ai ) (6)

Third, according to illustration of the kernel function and
Eq. (6) above, the new kernel function in the new mapping
space can be obtained.

k′(Ai , A j ) = (φ′(Ai ))
Tφ′(A j ) = (diφ(Ai ))

T(d jφ(A j ))

= did j k(Ai , A j ) (7)

Then, an equation k′
Y = k′δ′ is solved by Eq. (8).

δ′ =
{

(k′)−1k′
Y , k′ is not singular

(k′ + μE)−1k′
Y , k′ is singular (8)

where k′ and k′
Y = (di k)×kY , respectively, denote thematric

and vector corresponding to the newkernel functions of train-
ing samples and test sample in the new mapping space.

Finally, we can use the test sample from the old mapping
space, obtained coefficients and training samples of one sub-
ject from the new mapping space to construct the residual
of every class and exploit the residual to sort test sample.
We assume that all the training samples of the pth subject
are k′′ = [k′

1, k
′
2, . . . , k

′
l ] and l denotes the number of train-

ing samples of each subject. Meanwhile, we assume that
δ′′ = [β ′

1, β
′
2, . . . , β

′
n]T is the vector associated with class

p. Let residual of the pth class be ep and ep is calculated by
Eq. (9).

ep = ∥

∥k′
Y − k′′δ′′∥

∥
2
2 (9)
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When a subject has the minimum error, WKRBM thinks
that test sample kY belongs to this subject. In other words, if
the test sample is close to the linear representation of all the
training samples of the pth subject, WKRBM thinks that the
test sample belongs to this subject.

Classification is determined below if t = argmin
p

ep, the

test sample is considered to be the pth class.

t = argmin
p

ep (10)

3 Analysis of the Proposed Method

We will introduce the rationale of WKRBM, illustrate its
characteristics, show its advantages, and provide the differ-
ences from WKRBM and other methods in this section.

3.1 Rationale, Characteristics, and Advantages of
WRKBM

WKRBM has three characteristics and merits. First, it can
obtain a linear system based kernel method. Second, it
can adaptively obtain weights by using the obtained kernel
function and the weights to allow test samples to be bet-
ter recognized. The weight is a proper penalized factor on
training samples. It allows effects on the test sample of dif-
ferent training samples to be better exploited. The idea to
employ the difference from training sample and the test sam-
ple as a weight is partially similar with the scheme in [30],
but the implementation procedure is very different. Third,
WKRBM has higher accuracy for image recognition than
conventional kernel method. The high accuracy is shown in
Sect. 4.WKRBMcan also decrease the dimension of original
images in the mapping space, which increases the flexibility
of the operation and improves the effectiveness of image pro-
cessing. WKRBM also has partial properties of sparsity. The
sparsity is effective for image classification [30]. The spar-
sity of WKRBM is better than KRBM shown as in Figs. 4,
5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24,
25 and 26. WKRBM can be easily implemented.

The rationale ofWKRBMis described in detail as follows.
We assume that above nonlinear mapping φ is known, φ can
be solved by Eq. (2). It is obvious to obtain that ξTφ(Y ) =
[φT(A1)φ(Y ), φT(A2)φ(Y ), . . . , φT(An)φ(Y )]T, where
φ(Ai ) and φ(Y ), respectively, denote the i th training sam-
ple and test sample from the old mapping space and
(ξTξ)i j = φT(Ai )φ(A j ),i. j ∈ [1, 2, 3, . . . , n]. Accord-
ing to the vector knowledge, we know that φT(Ai )φ(Y ) =
‖φ(Ai )‖ • ‖φ(Y )‖ cos θi , where θi means the angle between
vectors φ(Ai ) and φ(Y ). When all training samples are unit
vectors in the old mapping space, ξTφ(Y ) = [φT(A1)φ(Y ),

φT(A2)φ(Y ), . . . , φT(An)φ(Y )]T can convert an issue of

the cosine similarity between each training sample and the
test sample from old mapping space to solve the problem
Eq. (2). If two training samples are orthogonal in the obtained
old mapping space, ξTξ would be the unit matrix. We can
obtain the solution of Eq. (2), which is δ = ξTφ(Y ) =
[φT(A1)φ(Y ), φT(A2)φ(Y ), . . . , φT(A2)φ(Y )]T = [cos θ1,

cos θ2, . . . , cos θn]T. Similarly, we can obtain the coefficient
solution δ′ of the newmapping space δ′ = [(φ′(A1))

Tφ′(Y ),

(φ′(A2))
Tφ′(Y ), . . . , (φ′(An))

Tφ′(Y )]T = [

cos θ ′
1, cos θ ′

2,

. . . , cos θ ′
n

]T, where φ′(Ai ) and φ′(Y ), respectively, denote
the i th training sample and test sample from new map-
ping space and θ ′

i means the angle between vectors φ′(Ai )

and φ′(Y ). This shows that the solution vector δ′ =
[β ′

1, β
′
2, β

′
3, . . . , β

′
n]T of WKRBM makes up with n compo-

nents that are used to express the difference of the test sample
and training samples in the obtained new mapping space. As
shown in Ref. [25], if the difference between the i th training
sample and the test sample is smaller, β ′ is usually large. In
other words, the contribution of the i th training sample (i.e.,
β ′
i k

′
i ) is large. If difference between a sample from the train-

ing samples of the i th subject and the test sample is little,
test sample is considered to be this subject. We use Eq. (9) to
find the subject, which is the most similar to this test sample
and the test sample is classified into this subject by Eq. (10).
This partially illustrates the rationale of WKRBM. As a con-
sequence, WKRBM is proper.

3.2 The Differences of WKRBM and Other Methods

In Sect. 3.2, first, conventional sparse method [5] with
WKRBM on the sample representation will be compared.
Then,wewill show thedifferences between conventional ker-
nel method and WKRBM and between conventional sparse
method and WKRBM. We know that Ref. [5] only used
training samples and sparse solution to represent the test sam-
ple. In other words, the above sparse representation method
attempts tomakemost elements of sparse solution are near or
equal to 0 [27]. All training samples can be utilized to express
the test sample and classify it in a certain condition, which
does not cause any error in theory [28]. Unfortunately, this
condition usually cannot be reached and this representation
method would bring the classification error. If total of train-
ing samples is small, the error of classification would get
greater. Obviously, face recognition problem is not a low-
dimensional problem, where the total of training samples
is smaller than the dimensionality of samples. In the pro-
cessing of image processing, among training samples usually
have certain relations, which might increase the probability
of error classification of this test sample.WKRBMcan effec-
tively use the nonlinear mapping to deal with the correlated
problem in the mapping space and extract more important
features. WKRBM may better express the test sample than
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Fig. 1 Characteristic of the
conventional kernel method Conventional

kernel method
Different test samples are represented by the same linear

combination of all the training samples

Fig. 2 Characteristic of
WKRBM

WKRBM
Different test samples are represented by different linear

combination of all the training samples

conventional sparse representationmethods. It is notable that
kernel method represents test sample and classify it in the
mapping space has been proposed [29].

WKRBM is a kernel-based representation method. To
better show the performance of WKRBM, we analyze the
differences of WKRBM and conventional kernel methods.
Here kernel-based representation methods mainly refer to
kernel principle component analysis (KPCA) [30] and kernel
Fisher discriminant analysis (KFDA) [31]. Above methods
are typical kernel methods, which can use kernel functions to
map original test samples and original training samples from
original data into obtained mapping space. Thus, each test
sample will be expressed by n kernel functions, where total
of all the training samples is n. This kind of kernel methods
indeed uses varying kernel functions corresponding to the
same linear combination to represent varying test samples.
However, these test samples use the same coefficients feature
extractor in the mapping space.

The representation of the test sample is different in
WKRBM method. First, the test sample is mapped into
another space (old feature space or oldmapping space). Then,
it uses kernel function and the property of representation in
this mapping space to compute weights of coefficients of
linear representation. Finally, the test sample is expressed
and classified by coefficients and training samples in new
obtained mapping space. The implementations of WKRBM
are as follows in detail.

Step1 Divide all the original images into two sets, i.e.,
the set A of training samples and set of Y ′ test samples. In
particular, it denotes a given test sample Y .

Step 2 Employ the nonlinear mapping φ to obtain the i th
training sample φ(Ai ) and the test sample φ(Y ′) in the old
mapping space. Utilize equation k(Ai , A j ) = φT(Ai )φ(A j )

and Eq. (3) to compute kernel functions KY and K corre-
sponding to the test sample and training sample in the old
mapping space, respectively.

Step 3 Obtain the linear combination coefficients δ of
equation KY = K δ by Eq. (4) in the old feature space.

Step 4 Obtain deviation di of the i th sample by Eq. (5).
Step 5Exploit the product of di and the i th training sample

to obtain new mapping relation δ′ of the new feature space
by Eq. (6).

Step 6 Calculate the training samples and test samples by
equation k′

Y = (di k) × kY and Eq. (7) in the new feature
space, respectively.

Step 7 Use Eq. (8) to solve the coefficients of the linear
combination in the new feature space.

Step 8 Obtain the residual of the pth class by Eq. (9).
Step 9 Classify the test sample by Eq. (10).
Previous study makes us know that, we can use Eqs. (4),

(5), (6), (7), and (8) to compute the coefficients of the linear
combination in newobtainedmapping space.When the linear
system is established, we also use gp = β ′

i k
′
i + β ′

i+1k
′
i+1 +

· · ·+β ′
i+l k

′
i+l to classify test sample Y . It is obvious that, β ′

i
and k′

i (i ∈ [1, 2, 3, . . . , n]) vary with test sample Y . That is,
kernel function and obtained coefficients vary with the test
sample in the newmapping space. This is obvious difference
with kernel methods. Meanwhile, we design a novel algo-
rithm to obtain special linear combination in the mapping
space, which makes it have ability to better express a given
test sample and classify it. To intuitively show the difference
of conventional kernel method and WKRBM, we provide
Figs.1 and 2 below.

4 Experiments and Results

In Sect. 4, this paper designs massive experiments to inspect
the capability of WKRBM on ORL [32], AR [33], and
GT [34] databases. As shown later, the feasibility and
good performance of WKRBM will be described by these
experiments. In the experiments, two-dimensional principle
component analysis (2D-PCA), naïve collaborative repre-
sentation classification (CRC), kernel representation-based
method (KRBM) (i.e., Ref. [25] proposed this method)
[25], fast iterative shrinkage thresholding algorithm (FISTA)
[35] and L1-regularized least-squares (L1LS) [36] are used
as comparative experiments to show the performance of
WKRBM. 2DPCA is one of typical traditional methods to
extract features [37]. 2DPCA directly uses two-dimensional
original image to construct the covariance matrix and
employs its eigenvectors to extract image feature. PCA
(principal component analysis) [38] need to convert two-
dimensional original image into one-dimensional vector,
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which results in PCA has higher computational cost than
2DPCA to extract feature for image processing. That is, PCA
not only has higher computational cost, but also ignores the
relation between different vectors, which loses some impor-
tant information. As a consequence, 2DPCA is reasonable
for its excellent performance on image recognition. In our
experiments, the number of feature vector of 2DPCA is 22
in the experiment. CRC is a symbol of conventional sparse
method with 2-norm sparse solution. The main idea of CRC
is as follows. First, CRC exploits all the training samples to
represent the test sample and the coefficients of the linear
combination can be obtained. Then, CRC uses all the train-
ing samples of every class and test sample to construct the
residual. Finally, CRC utilizes the minimum residual to find
the class of the test sample. CRC has tough performance and
it has lower computational cost than L1LS and FISTA. In our
experiments, let parameter λ be 0.01 when the solution of the
coefficients ofCRCcan be solved byEq. (9) inRef. [5]. L1LS
and FISTA are typical methods of sparse method with 1-
norm sparse solution. L1LS can exploit the truncatedNewton
interior point method to address l1-regularized least-squares
problem, which has good performance for image processing.
FISTAcanoptimize thewavelet subbandwidthparameter and
deal with the problem of reconstruction. Meanwhile, it can
find the rate of multi-step approach convergence. KRBM is a
novel kernel method. The main implementations of KRBM
method are as follows. First, KRBM constructs a linear sys-
tem to represent the test sample by all the training samples in
new space. Then, KRBMuses the linear representation result
to classify the test sample. KRBM has lower computational
cost than general kernel method. And it has different lin-
ear coefficients for different test sample, which obtain better
performance on image recognition.Whenwedesign the com-
parison experiments byKRBM, theGaussian kernel function

k(xi , x j ) = exp

[

−‖xi−x j‖2

2σ

]

is chosen [25]. And parameter

σ is 107 in this paper. Thus, these methods are used as the
comparative experiments, which is powerful to show good
performance of WKRBM. Gaussian kernel function is used
to conduct the experiments here. Let σ be 107 in theGaussian

kernel function k(xi , x j ) = exp

[

−‖xi−x j‖2

2σ

]

. And μ is 0.01

in Eq. (8) in this paper. Each face database can be separated
into training set and test set. We show the performance of our
method as follows.Wefirst useWKRBM, 2DPCA,CRC, and
KRBM to classify face images on the same face dataset when
total of training samples is different. Then, WKRBM is uti-
lized to obtain linear coefficients to show that our method
exist partial sparse property. It is clear that sparsity is impor-
tant and effective to recognize face images. In Tables 2, 3,
WKRBM, 2PCA andCRC, CRC andKRBMare shown. Fig-
ures 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21,
22, 23, 24, 25 and 26 illustrate that values of obtained coef-

Fig. 3 Five images from ORL dataset

Fig. 4 The obtained coefficients of WKRBM from the ORL face
database when the number of training sample of each class is 4

ficients in the new mapping space vary from the number of
coefficients on different face datasets. As shown in Tables 1,
2, and 3, WKRBM has good performance on image recog-
nition. Comparative experiments on ORL, AR, and GT face
datasets are as follows.

4.1 Experiment on the ORL Dataset

In this section, first 9 images of each class in the ORL dataset
are used to test the performance of WKRBM for face recog-
nition. The 360 images are chosen from 40 different persons,
and each person takes nine images. Size of each image is
56 × 46 matrix. Different samples of the same subject have
different facial expressions, which is an important character-
istic. Figure 3 shows 5 different face images from the ORL
dataset.

We, respectively, design the experiments when the total
of images of each class is 4, 5, and 6. And the first 4, 5 and
6 images of each class are looked upon as training samples
and the other images of each class are regarded as test sam-
ples. Table 1 describes that error rate of image classification
on ORL dataset. This illustrates that WKRBM has higher
accuracy than 2D-PCA and CRC, CRC, FISTA, L1LS, and
KRBM. For example, WKRBM obtains the rate of classifi-
cation errors is 52.50, 53.13, 51.67, and 50.00% when the
total of training samples of every subject varies from 4 to 7.
However, KRBM obtains the rate of classification errors is
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Fig. 5 Theobtained coefficients ofKRBMfrom theORL face database
when the number of training sample of each class is 4

Fig. 6 The obtained coefficients of WKRBM from the ORL face
database when the number of training sample of each class is 5

Fig. 7 Theobtained coefficients ofKRBMfrom theORL face database
when the number of training sample of each class is 5

Fig. 8 The obtained coefficients of WKRBM from the ORL face
database when the number of training sample of each class is 6

Fig. 9 Theobtained coefficients ofKRBMfrom theORL face database
when the number of training sample of each class is 6

Fig. 10 The obtained coefficients of WKRBM from the ORL face
database when the number of training sample of each class is 7
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Fig. 11 The obtained coefficients of KRBM from the ORL face
database when the number of training sample of each class is 7

Fig. 12 Five images from AR dataset

53.00, 55.00, 53.33, and 51.25% when the total of training
samples of every class is from 4 to 7.

To illustrate the sparsity of coefficients of the linear com-
bination, we choose 4, 5, 6, and 7 images of every subject to
be as training samples on ORL face dataset, respectively. As
shown in Figs. 4, 5, 6, 7, 8, 9, 10 and 11, we can know that the
major coefficients of the linear combination from WKRBM
is 0 or nearer 0 than the major coefficients of the linear com-
bination fromKRBMwhen the number of training sample of
each class is 4, 5, 6 and 7, respectively. Thus, this shows that
WKRBM has partial property of sparsity, which is effective
for classification.

4.2 Experiment on the AR Dataset

In this section, first 26 images of each class in the AR dataset
are used to test the performance ofWKRBMfor face recogni-
tion. The 3120 images are chosen from 120 persons and each
person includes 26 images. Size of each image is 50 × 40
matrix. Different samples of the same subject have differ-
ent facial expressions, occlusions and illuminations, which
are important characteristic. Figure 12 shows 5 different face
images from the AR dataset.

We, respectively, design the experiments when the total of
images of each class is 14, 15 and 16. And the first 14, 15,
and 16 images of each class are looked upon as training sam-
ples and the other images of each class are regarded as test

Fig. 13 The obtained coefficients of WKRBM from the AR face
database when the number of training sample of each class is 14

Fig. 14 The obtained coefficients ofKRBMfrom theAR face database
when the number of training sample of each class is 14

samples. Table 2 describes that error rate of image classifi-
cation on AR dataset. It illustrates that WKRBM has higher
accuracy than 2DPCA and CRC, CRC, FISTA, L1LS and
KRBM. For example, WKRBM, respectively, obtains error
rate of image classification is 7.57, 6.36, and 6.67%when the
total of training samples of every subject varies from 14 to
16. However, CRC obtains the rate of classification errors is
14.86, 11.82, and 9.83% when the total of training samples
of every class is from 14 to 16.

To illustrate the sparsity of coefficients of the linear com-
bination, we choose 14, 15, and 16 images of every class to
be as training samples and only use 50 classes to obtain the
coefficients on AR face dataset here, respectively. As shown
in Figs. 13, 14, 15, 16, 17, and 18, we can know that themajor
coefficients of the linear combination from WKRBM is 0 or
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Fig. 15 The obtained coefficients of WKRBM from the AR face
database when the number of training sample of each class is 15

Fig. 16 The obtained coefficients ofKRBMfrom theAR face database
when the number of training sample of each class is 15

nearer 0 than the major coefficients of the linear combination
from KRBM when the number of training samples of each
class is 14, 15, and 16, respectively. Thus, this shows that
WKRBM has partial property of sparsity, which is effective
for classification.

4.3 Experiment on the GT Dataset

In this section, first 15 images of each class in the GT dataset
are used to test the performance of WKRBM for face recog-
nition. The 750 images are chosen from 50 subjects and each
subject has 15 images. Size of each image is 40× 30 matrix.
Different samples of the same subject have different facial
expressions and illuminations, which are important charac-

Fig. 17 The obtained coefficients of WKRBM from the AR face
database when the number of training sample of each class is 16

Fig. 18 The obtained coefficients ofKRBMfrom theAR face database
when the number of training sample of each class is 16

Fig. 19 Five images from GT dataset

teristic. Figure 19 shows 5 different face images from the GT
dataset.

We, respectively, design the experiments when the total of
images of each class is 3, 4, 5, and 6.And the first 3, 4, 5, and 6
images of each class are looked upon as training samples and
the other images of each class are regarded as test samples.
Table 3 describes that error rate of image classification on
GT dataset. It illustrates that WKRBM has higher accuracy
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Table 1 Rate of classification errors (%) on the ORL dataset

Number of training samples every class 4 5 6 7

WKRBM 52.50 53.13 51.67 50.00

Kernel representation-based method (KRBM) 53.00 55.00 53.33 51.25

Naïve collaborative representation classification (CRC) 54.50 56.25 53.33 53.75

Two-dimensional principle component analysis (2DPCA) and CRC 55.00 58.13 61.67 62.50

FISTA 55.00 56.87 55.83 55.00

L1LS 54.00 55.63 51.67 52.50

Table 2 Rate of classification
errors (%) on the AR dataset

Number of training samples every class 14 15 16

WKRBM 7.57 6.36 6.67

Kernel representation-based method (KRBM) 8.13 7.20 7.00

Naïve collaborative representation classification (CRC) 14.86 11.82 9.83

Two-dimensional principle component analysis (2DPCA) and CRC 50.00 47.58 44.75

FISTA 21.58 22.20 21.58

L1LS 19.38 16.06 13.25

Table 3 Rate of classification errors (%) on the GT dataset

Number of training samples every class 3 4 5 6

WKRBM 49.50 47.45 44.20 35.56

Kernel representation-based method (KRBM) 51.83 48.00 45.40 37.11

Naïve collaborative representation classification (CRC) 54.67 52.91 51.20 44.40

Two-dimensional principle component analysis (2D-PCA) and CRC 59.67 57.27 54.80 53.11

FISTA 50.38 49.27 48.00 39.11

L1LS 55.33 53.82 51.20 44.44

Fig. 20 The obtained coefficients of WKRBM from the GT face
database when the number of training sample of each class is 3

than 2DPCA and CRC, CRC, FISTA, L1LS and KRBM.
For example, the WKRBM obtains the rate of classification
errors is 49.50, 47.45, 44.20, and 35.78% when the total of

Fig. 21 The obtained coefficients ofKRBMfrom theGT face database
when the number of training sample of each class is 3

training samples of every subject varies from3 to 6.However,
2D-PCA and CRC obtains the rate of classification errors is
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Fig. 22 The obtained coefficients of WKRBM from the GT face
database when the number of training sample of each class is 4

Fig. 23 The obtained coefficients ofKRBMfrom theGT face database
when the number of training sample of each class is 4

Fig. 24 The obtained coefficients of WKRBM from the GT face
database when the number of training sample of each class is 5

Fig. 25 The obtained coefficients ofKRBMfrom theAR face database
when the number of training sample of each class is 5

Fig. 26 The obtained coefficients of WKRBM from the GT face
database when the number of training sample of each class is 6

Fig. 27 The obtained coefficients ofKRBMfrom theGT face database
when the number of training sample of each class is 6
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59.67, 57.27, 54.80, and 53.11% when the total of training
samples of every subject is from 3 to 6.

To illustrate the sparsity of coefficients of the linear com-
bination, we choose 3, 4, 5, and 6 images of every class to
be as training samples on GT face dataset here. As shown in
Figs. 20, 21, 22, 23, 24, 25, 26, and 27, we can know that the
major coefficients of the linear combination from WKRBM
is 0 or nearer 0 than the major coefficients of the linear com-
bination from KRBM when the number of training sample
of each class is 3, 4, 5 and 6, respective. Thus, this shows
that WKRBM has partial property of sparsity again, which
is effective for image classification.

5 Conclusions

Kernel method and sparse method are effective for image
recognition. Traditional kernel method uses linear coeffi-
cients and training samples to express different test samples.
However, it uses different kernel methods with the same
linear combination coefficients,which cannot properly repre-
sent test samples. The sparsemethod is that only uses training
samples and sparse solution to express a test sample. It pre-
sumes that the elements of spare solution are 0 or near 0
when it can exploit training samples and sparse solution to
express the test sample. The total of the training samples
is smaller than the dimension of samples in general in face
image classification and the test sample is represented that
must emerge much representation error. And conventional
sparse method also produces expensive computational cost.
This paper proposed a novel method WRKBM to overcome
defect of the traditional kernel method, which uses different
kernel methods and linear combination coefficients to rep-
resent different test samples. Meanwhile, this paper shows
that WKRBM possesses partial properties of sparsity and it
is effective for face recognition.

Themain idea of the proposedmethod is that can be treated
as one that uses the weighted sum of all the training samples
to represent the test sample by the kernel method and clas-
sifies the test sample into the subject, which has the greatest
contribution for all the training samples corresponding to the
weighted sum.

The analysis shows the rationale, characteristics and
advantages. Experimental results show that WKRBM has
great performance and has a low error rate for face represen-
tation. It is also easy to implement.
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