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Abstract In this paper, investigation of the significance of
spectral and prosodic behaviors of speech signal has been car-
ried out for dialect identification. Spectral features such as
cepstral coefficients, spectral flux, and entropy are extracted
from shorter frames. Prosodic attributes such as pitch, energy,
and duration are derived from longer frames. IViE (Intona-
tional Variations in English) speech corpus covering nine
dialectal regions of British Isles has been considered, to eval-
uate the proposed approach. Since corpus is available in both
read and semi-spontaneous modes, the influence of spectral
and prosodic behavior over these datasets is distinguishably
articulated. Further, two distinct classification algorithms,
namely support vector machine (SVM) and an ensemble of
decision trees along with the SVM are used for identification
of nine dialects. Dialect discriminating information captured
from both features are used for constructing feature vectors.
Experiments have been conducted on individual and combi-
nations of features. A better dialect recognition performance
is observedwith ensemblemethods over a single independent
SVM.

B Nagaratna B. Chittaragi
nbchittaragi@gmail.com

Ambareesh Prakash
ambareesh.prakash@gmail.com

Shashidhar G. Koolagudi
koolagudi@nitk.ac.in

1 Department of Computer Science and Engineering, National
Institute of Technology Karnataka, Surathkal 575025, India

2 Department of Information Science and Engineering,
Siddaganga Institute of Technology, Tumkur, India

3 Department of Mechanical Engineering, National Institute of
Technology Karnataka, Surathkal, Karnataka 575025, India

Keywords Dialect recognition · Spectral features ·
Ensemble learning · Random Forests · Extreme random
Forests · Gradient boosting

1 Introduction

Dialects represent the unique pronunciation patterns of a lan-
guage, spoken among the community of speakerswho belong
to a particular geographical area. Dialects mainly exhibit
grammatical, phonological, and prosodic differences among
them. Pronunciation variations that occur in an individual’s
speaking styles are influenced by many surrounding factors
related to the speaker, such as socioeconomic status, cultural
background, geographical locations, education [1].

State-of-the-art systems that are capable of characterizing
and identifying dialects would supply valuable inputs in the
process of improving the performance of interactive speech
systems. Dialectal traits are important factors in degrading
the performance of automatic speech recognition (ASR) and
human–computer interaction (HCI) systems [2]. Automatic
dialect identification (ADI) can enhance the performance of
ASR and HCI systems. Automation of dialect processing
helps in the characterization of pronunciation patterns from
socio-linguists [3]. In forensics, the tasks such as speaker
identification, characterizing speaker traits, and speaker pro-
filing are benefited by ADI systems [4]. ADI systems are
helpful in developing robust speech systems, for portable
devices. ADI can be used as an interpreter in call centers
for an effective region-based customer call attention. Dialect
identification is also useful in native language identification,
medical applications, indexing of historical spoken docu-
ments and their retrieval, entertainment media, and so on [5].

ADI can be considered as a particular case of Language
Identification (LID) problem, which is now drawing the
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Fig. 1 Average LP spectra for utterance of “A” from female speakers
of 9 dialects

attention of researchers from speech and language processing
communities. Despite several approaches to design a robust
ADI systems, it is considered as a challenging task, since
ADI involves identification of the dialects within the same
language class. Hence, the majority of the models developed
are constrained to be language dependent. Applying these
models to other languages may not be conducive, as there are
many fundamental differences across languages regarding
pronunciation patterns, phonology, grammatical structure,
etc. [6,7]. Unavailability of standard datasets and difficulty
in identifying the boundaries between the dialects are other
challenges.

Several authors have proposed the use of variations in
pronunciation of phonemes, consonants, or syllables across
the dialects for characterization [8]. These variations have
been explored successfully by analyzing acoustic–phonetic
features that are represented with spectral and prosodic char-
acteristics [9]. For instance, the spectral changes observed
in the pronunciation of a vowel “A” by female speakers
of nine different British English are shown in Fig. 1. This
represents the averaged LP spectra for different dialects. Dif-
ferent energy levels, the width of spectral peaks, sharpness
and position of formants are observed among nine dialects.
These variations indicate the influence of spectral features in
dialect identification. These features characterize the vocal
tract by considering its shape and size during the produc-
tion of various sound units. Speech cannot be simply defined
as a collection and concatenation of audio units. Rather, the
imposition of prosodic variations such as intensity patterns,
intonations, and duration of the sound units add naturalness
to the uttered speech [10]. The change in pitch, duration, into-
nation, rhythmic pattern, and stress features render a kind of
melody to speech. A unique pattern of pronunciation style is
observed in several dialects of any language.

Spectral and prosodic features have been considered
for dialect recognition in this work. Performance of sin-
gle learned SVM and ensemble approaches are compared.
Spectral features such as Mel frequency cepstral coeffi-
cients (MFCC), shifted delta coefficients (SDC), spectral
flux, and spectral entropy are extracted since they are usually
involved in modeling the pronunciation variations. Prosody
differences among dialects are captured through energy,
duration, and pitch features. IViE speech corpus with nine
dialects of British English is used for evaluation. Exper-
iments have been conducted with single SVM classifier,
three tree, and SVM-based ensemble classification tech-
niques. Cross-dataset results and analysis are performed over
possible combinations of two types of datasets (read and
semi-spontaneous).

The remaining paper is organized as follows: Sect. 2
gives details of the existing work in dialect identification.
Brief details of IViE speech corpus and various features
extracted for dialect identification are given in Sect. 3. Sec-
tion 4 describes the implementation details of ADI systems.
Section 5 discusses the experiments, results and performance
analysis. Section 6 concludes with an appropriate summary
of the present work and further research directions.

2 Literature Review

In this paper, existing literature on automatic processing of
dialects has been reviewed with respect to language mod-
els, acoustic–phoneticmethods, phonotactic approaches, and
classification techniques. These are discussed briefly in this
section.

Few authors have observed that the boundaries between
languages are distinct andhaveproposed the same for dialects
aswell, hence appliedLID techniques forADI [11,12]. Com-
monly, dialects are treated as subclasses of the languages
and most common LID methods such as language modeling
and phone recognition approaches are applied to achieve sig-
nificant results [6,13]. In contrast, many other studies have
been suggested that a majority of dialects cannot be treated
as independent languages, as differences between dialects
are very close unlike languages. Informally, there is a lot of
overlap among the dialects [1]. Since dialects belong to the
same language, they basically use the same vocabulary, syn-
tax, and semantics, whereas variations may be observed only
in pronunciation patterns and phonology, and a slight vari-
ation is observed in grammar. Hence, approaches applied
for LID may not be suitable straight away for ADI [14].
Many studies on dialect processing are proposed at the sen-
tence, word, syllable, or phoneme levels. Text-dependent and
text-independent scenarios have been considered with read
and spontaneous speech for dialect processing [15,16]. Fur-
ther, it has been identified that dialect recognition problem
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has been addressed most commonly with acoustic–phonetics
[12,15,17] and phonotactic methods [8,18,19].

Spectral acoustic differences existing among dialects have
been studied extensively by extractingMFCCs and SDC fea-
tures. Both spectral cues and temporal variations are captured
and evaluated for classification of dialects with Gaussian
mixture models (GMM) [7,11,20]. Significant dialect recog-
nition performance is reported with an addition of i-vectors
to MFCC-SDC features [11,21]. Feature i-vector is obtained
through a data-driven approach, which includes mapping of
a sequence of frames of speech onto a fixed low-dimensional
vector space, called total variability space [22]. Kullback–
Leibler divergence-GMM (KLD-GMM)-based methods are
applied to obtain the most discriminating GMMmixtures for
dialects. Further, frame selection decoding (FSD) is used to
enhance the classification accuracy by avoiding confusing
acoustic regions [14].

Several attempts are being made in the literature to use
prosodic features, since they contribute additional features
for dialect recognition. The variations in prosodic features
are extracted from duration, pitch, and energy contours of
the phoneme, syllable, word, or pseudo-syllables [23,24].
Pseudo-syllables represent the patterns matching the C × V
structure that includes a cluster of optional consonants with
a single vowel segment.

A majority of phonotactic approaches are suitable for
dialect identification if transcriptions of the utterances are
available. Unavailability of transcriptions makes the dialect
identification a challenging task [25]. Many authors focus on
using phone recognition language modeling (PRLM), paral-
lel PRLM (PPRLM), and parallel phone recognition (PPR)
models for dialect processing. PPRLM approach is applied
for recognizing four colloquial dialectswithmodern standard
Arabic (MSA) dialects [3,18].

Literature has many references to ADI systems that are
being addressed using generalized classifiers such as GMM,
hidden Markov model (HMM), SVM, artificial neural net-
works (ANN). Among all, GMM-based models are widely
seen in many cases as baseline systems. GMMs aid in
typically modeling the standard acoustic properties that
are supposed to be normally distributed and uncorrelated
[7,8,15,20]. Later, theGMMscombinedwith universal back-
groundmodel (UBM) are used for dialect classification in the
case of multiple languages [9,22]. The combinations of local
and global prosodic features extracted from four Arabian
dialects are proposed for dialect classification using HMM
with GMMs [8].

SVM models are found to be very powerful prediction
and classification schemes, designed for handling high-
dimensional input spaces. These models provide an oppor-
tunity for working with a large feature representation of
speech [26]. MFCC features combined with prosodic fea-
tures to form large dimensional feature vector and have been

used with SVM for classifying dialects in the Hindi, an
Indian language [23]. MFCC features are used in classifying
dialects of American English with SVM hyperplanes [27].
A GMM-SVM hybrid classifiers are have been proposed for
classifying three dialects of Spanish. Experiments are con-
ducted on individual and combinations of few features such
as line spectral pairs (LSP), MFCC, Energy, Pitch, and Zero
crossing rate (MEPZ) attributes alongwith formants frequen-
cies features [28]. SVMs sometimes end upwith an increased
computational cost during training if the dataset is too large.
This problem is being addressed by using minimal enclosing
ball (MEB) technique [29].

Recently, the concept of combining multiple classifiers
is being proposed for the improvement of the performance
over individual classifiers. Very few attempts can be found
addressing dialect identification problems with ensemble
techniques [12,30]. Rotation forest an ensemble of decision
trees has been used to explore robustness issues among all
dialects [9]. Similarly, AdaBoost ensemble algorithm has
been used in word-based dialect identification problem by
applying in the probability space, rather than the features
space [12]. These two methods have reported a significant
improvements when compared with single classifiers. The
majority of works have been found and are relying mainly
on use of n-gram features for identification of dialects from
text-based datasets for natural language processing [31].

3 Details of Speech Corpus and Feature Extraction
for Dialect Identification

3.1 IViE Speech Corpus

Intonational Variation in English (IViE) speech corpus con-
sists of nine dialects of British English, spoken across various
regions of the British Isles. The speech dataset has been col-
lected with the intention of investigating cross-varietal and
stylistic variations inEnglish intonations across nine dialects.
The dataset was recorded from nine urban varieties. The
experimenters introduced the complete process of recording
to the speakers before the start of recording. In the interactive
tasks, the subjects/speakers spoke to each other. Recording
was done in both read and semi-spontaneous mode from 12
subjects (6F + 6M adolescents) representing each dialect
[32]. Both read and semi-spontaneous datasets are available
separately. In the rest of the paper, the semi-spontaneous
dataset is referred as a semi-read dataset. Details of IViE
corpus are given in Table 1.

3.2 Feature Extraction for Dialect Identification

In the present work, dialect discriminating characteristics are
captured through the spectral and prosodic cues. Preprocess-
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Table 1 Details of IViE dataset used

Sl. no. Region Dialects Read mode
(in min)

Semi-read
mode (in min)

1 Belfest ID1 52 32

2 Bradford ID2 49 31

3 Cardiff ID3 49 35

4 Cambridge ID4 51 37

5 Dublin ID5 48 33

6 Leeds ID6 51 31

7 Liverpool ID7 48 26

8 London ID8 50 38

9 Newcastle ID9 53 31

Total duration ∼8h ∼5h

ing is carried out to remove longer silence regions from the
input audio [33].

3.2.1 Spectral Features

Dialect-relevant cues exist in the behavior of the vocal tract
system concerning specific sequences of vocal tract shapes
for a speech utterance [23]. The changes in the shape of the
vocal tract occur due to pronunciation variations. These have
been observed in the utterance of similar linguistic units
(vowels, consonants, syllable, word, and sentence) of dif-
ferent dialects. Articulatory configuration corresponding to
sound unit, co-articulation effect, the context of the units,
gender variability, and emotional status are also important
reasons of acoustic variability [34].

MFCCs The human auditory system follows the nonlinear
model to process speech signal. It is mentioned in the lit-
erature that lower frequency components of speech signal
always carrymost of the phonetic information. Hence, a non-
linear mel-scale filter is used to weigh a lower frequency
components [35]. In this work, RASTA (Relative Spectra)
processed MFCC features (12 + 1 frame energy) with 13
delta and 13 delta-delta values representing SDC features
are extracted [36]. MFCC features are derived from 40 filter
banks. RASTA filter-based processing helps in suppressing
noisy portions of the speech. The details of the RASTA fil-
tering process is covered in this paper by excluding other
regular steps of MFCC feature extraction. The RASTA filter
is a band-pass filter that uses the transfer function HRASTA,

HRASTA(z) = 0.1z4
[
2z+z−1−z−3−2z−4

1−0.98z−1

]
(1)

In this filter, each log filter-bank magnitude component
f [m, i], where i takes values 1, 2, . . . N (No. of channels)
is filtered by using HRASTA(z) function and producing the

RASTA-filtered log filter-bank magnitudes f RASTA[m, i].
This approach attenuates all frequency components less than
1Hz and above 10Hz. As a result of analysis of artifacts, the
low-pass filtering assists in smoothening of spectral changes
that exist in adjoining frames [37].

Spectral Flux The spectral change between two successive
frames is measured as spectral flux. It is possible to distin-
guish between two sounds, whether they are similar or not
based on loudness and pitch, through auditory sensation fea-
ture called timbre. The spectral flux is commonly used for
measuring timbre of the utterance. The quick changes in the
power spectra of a signal are measured through spectral flux.
Flux is calculated by comparing the power spectra of one
frame against the same of the previous frame [33]. Follow-
ing equation is used to estimate the flux.

Fl(i,i−1) =
W fL∑
k=1

(ENi (k)) − (ENi−1(k))
2 (2)

where ENi (k) = Xi (k)∑W fL
l=1 Xi (l)

, here ENi (k) is the kth nor-

malized DFT coefficient at the i th frame, W fL is the frame
size.

Spectral Entropy The short-term entropy of energy, mea-
sures the variations occurring in the energy profile of a speech
signal. Since every dialect directly shows differences in into-
nation, a correlation between pitch and energy profile helps
to discriminate dialects [33].

First, a division of spectrum of a frame into L sub-bands
(bins) is done. The energy E f of the f th sub-band, f =
0, . . . , L − 1 is calculated and each bins are normalized by
taking the total spectral energy, where n f = E f∑L−1

f =0 E f
, the

entropy of each normalized energy is then calculated with
the following Eq. (3)

H = −
L−1∑
f =0

n f · log2(n f ) (3)

where L = 10, i.e., each frame is divided into 10 bins for
computing spectral entropy in this work.

3.2.2 Prosodic Feature

Features at frame level represent limited local information
present in the signal. However, some features need to be
extracted from the longer span of the speech, to represent
changes within and among the sequence of sound units.
Intonation, intensity patterns, and the different speaking rate
features induce the naturalness to the speech during a con-
versation [38]. These represent the prosodic cues and assists
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in exploiting the particular speaking patterns of each dialect.
Usually, pitch, intensity variations, stress patterns, and rhyth-
mic production are explored to represent the prosodic
attributes. These additional features of the speech units con-
tribute additive information for identification of dialects.

Spontaneous and read speech have demonstrated signif-
icant variations in both acoustic and linguistic properties.
These are observed even with two types of speech datasets
available in IViE corpus. Spontaneous speech exhibited the
existence of clear prosodic cues such as varying rate of
speaking, corrections, filled pauses, repetitions, use of partial
words during the pronunciation [39], whereas read speech of
all nine dialects of English has shown rich spectral informa-
tion [40]. Hence, in this work, the focus is given on exploring
both spectral and prosodic features.

Pitch Pitch also knownas fundamental frequency (F0) repre-
sents the perceptual property of sound, commonly described
as a perception of the relative altitude of sound. Fundamen-
tal frequency represents the physical correlate of the pitch
and the rate of vibration of the vocal fold. However, a dif-
ferent F0 is perceived among the speakers of dialects. The
auditory pitch perception influenced by the harmonic struc-
ture and amplitude plays a role in distinguishing various
pronunciation styles of nine dialectal regions [38,41]. The
subharmonic-to-harmonic ratio-based pitch estimation algo-
rithm is used in this paper bywhich, accurate pitch perception
results and reduction in gross error rate is achieved [42].

Energy Both the dialect speech corpora have reflected vari-
ations in energy profile since every dialect follows varying
stress patterns during pronunciation. Hence, frame level
energy is considered as a feature for identification of dialects.
Equation (4) is used for calculating energy.

E(i) =
wL∑
n=1

|xi (n)|2 (4)

here xi (n), n = 1, . . . ,WL be the audio samples in the i th
frame, where WL is the length of the frame.

E(i) = 1

WL

wL∑
n=1

|xi (n)|2 (5)

Energy is normalized by dividing it with WL to remove the
dependency on the frame length.

3.3 Post-processing of Features

The process of feature extraction and post-processing of fea-
tures carried out in this work is shown in Fig. 2. Single
feature vector has been constructed for a speech signal for

further processing. Initially, the speech signal is divided into
M frames where each frame is of length 20ms with a 10ms
overlap. The spectral features that are mentioned above have
been computed at every frame forming a M × N dimen-
sional matrix, whereM represents the number of frames, and
N represents the length of feature vector. Further, midterm
processing is carried out to represent the statistical values
of the feature vectors, rather than considering the derived
feature vectors. Midterm processing is done for every two
consecutive frames Fi and Fi+1 to compute statistical mean
and standard deviation. Due to this, the dimensionality will
be doubled (2N) for each frame. Further, the mean of all M
frames has been taken to form a single feature vector of size
2N. Later, the time taken for the complete utterance of each
sound clip is appended as a duration feature (ms) to prosodic
and combined features. At the end, feature vector size is
82((39+ 1+ 1) × 2) for spectral features, sizes of prosodic
and combined features are 5((2×2)+1) and 87((43×2)+1)
respectively when duration feature is appended.

4 Dialect Identification System Using Spectral and
Prosodic Features

In this work, spectral and prosodic behaviors and their com-
binations are used for implementing dialect identification
system. A single classifier-based multi-class SVM, three
tree-based ensemble methods (viz: Random Forest (RF),
Extreme Random Forest (ERF), Extreme Gradient Boost-
ing (XGB)) and bagging classifier based on SVM (BSVM)
are used. The primary focus of the present work is to examine
the behaviors of single and ensemble classifiers for designing
dialect identification using spectral and prosodic features.

In general, individual classifiers use statistical methods
to estimate class-conditional probabilities. Later, they are
converted into posterior probabilities. SVM is a powerful
pattern classification method that separates the classes by
constructing a hyperplane. SVMs are designed to work on
high-dimensional input spaces, for example, language and
dialect classification problems [43], whereas in ensemble
classifiers the prediction results of multiple base models are
combined due to which accuracy is expected to increase
[44]. Instead of relying on decisions by a single expert (base
learner), they attempt to decide by utilizing the collective
input from a committee of experts. Either independent or
dependent approach is followed for the selection of appropri-
ate base models. Bagging algorithms combines predictions
from independent base models derived from bootstrap sam-
ples of the original data [45]. Usually boosting algorithms,
follow dependent fashion in the growth of ensembles. Base
models are improved iteratively, depending on training to
reduce the errors of the current ensemble [46]. Figure 3
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Fig. 2 Statistical midterm processing of short-term features

describes the details of the general workflow of single and
ensemble classification methods.

4.1 SVM-Based Dialect Identification System

In the proposed work, SVMs are trained on nine dialects
with one-versus-rest approach to handle 9-class pattern clas-
sification into nine two-class classification problems. SVM
uses a linear separating hyperplane with the maximal margin
between support vectors using linear kernel function [47].
Dialectal cues at spectral and prosodic levels are extracted
separately and nine SVMmodels are trained with individual
and combination of features. Training inputs from all nine

dialect classes are of the form
{{

(xi , k)
}Nk
i=1

}n
k=1

, where Nk

is the total speech inputs belonging to kth dialect class, k
takes nine labels k = 1, 2, . . . 9. All these are used to train
the SVM model for nine classes. The SVM for the dialect
class k is constructed using the set of training inputs and the

desired outputs,
{{

(xi , yi )
}Nk
i=1

}n
k=1

, the desired output yi for

the training example xi , takes value+ 1 if xi ∈ kth class rep-
resentingpositive example, else− 1 representing the negative
example. For evaluation of the developed dialect identifica-

Fig. 3 Workflow of single vs. ensemble classifiers: derived from the
work [26]
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Fig. 4 Dialect recognition system with SVM

tion system, feature vectors derived from test speech samples
are given to all SVM models. For a given test pattern x, the
evidence T Sk(x) is obtained from all nine SVMmodels. The
class label k associated with SVM, which gives maximum
evidence, is hypothesized as the dialect class C of the test
pattern, i.e., C(x) = argmaxk(T Sk(x)). The block diagram
of proposed dialect identification system with SVM is given
in Fig. 4.

4.2 Ensemble Learning-Based Dialect Identification
System

Recently, ensemble methods resulting from combining the
predictions of several classifiers have proven to be the most
successful approaches for speech recognition tasks. How-
ever, use of these state-of-the-art techniques, for dialect
identification is rarely observed. In this work, both bagging
(RF, ERF, BSVM) and boosting (XGB)-based methods are
used in designing dialect identification systems. For each
feature type, a separate ensemble system is developed in two
stages. In the first stage, evidences are obtained for all models
under three configurations in four scenarios ( see Table 2).
In the second stage, the proof of individual ensemble com-
ponent models is compared with each other [26,48].

Decision tree-based RF classifier is implemented in this
work, with a forest that includes 2048 decision trees con-
structed by bootstrapping approach (samples are drawn ran-
domlywith replacement) from the training dataset. Empirical
analysis has yieldedbetter accuracywith the use of 2048deci-
sion trees with IViE speech corpus. During the construction
of the tree, splitting a node is controlled by picking best split
decided by Gini criterion among a random subset of features.

Gini = NL

∑
k=1...K

pkL(1 − pkL) + NR

∑
k=1...K

pkR(1 − pkR)

(6)

Table 2 Four combinations (four scenarios) of two different IViE
speech dataset, R—read dataset, S—semi-read dataset

Sl. no. Type Description

1 RR Disjoint sets of read dataset are
used in training and testing
(80:20)

2 RS Complete read dataset for training
and a semi-read dataset for
testing

3 SS Disjoint sets of semi-read dataset
are used in training and testing
(80:20)

4 SR Complete semi-read dataset for
training and read dataset for
testing

where pkL represents the portion of the k class in a left node of
the tree, pkR represents the portion of in right node of the tree,
NL and NR indicates the number of nodes in left and right
part of a tree.

√
n features are used to split a node, where n is

the size of feature vector [49,50]. When the complete forest
is constructed with decision trees, classification is done by
combining voting from predictions of different trees trained
on different parts of the training set.

An ERF is a small variant of RF, that differs in the way
of the splitting of trees. Forest is constructed with 2048 trees
by sub-sampling done with replacement. Instead of using an
optimized split for tree construction as in RF method, ERF
chooses the best out of randomly generated thresholds for
each candidate feature. In thismodel also, maximum features
parameter is selected as

√
n, where n is the size of feature

vector [49,51].
XGB Boosting iteratively improves the base learner

prediction in a greedy fashion, such that each additional
base learner improves the accuracy by further reducing the
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Fig. 5 Ensemble-based dialect recognition system

selected loss (error) function. Multi-class logloss function is
used in this work.

logloss = − 1

N

N∑
i=1

M∑
j=1

yi, j log(pi, j ) (7)

where N is size of feature vector, M is the number of class
labels, yi, j of base learner is 1 if observation i belongs to
class j , 0 if not. pi, j represents the predicted probability if
observation i is in class j .

In this work, decision tree classifier is used as the base
learner. Decision trees are constructed as follows: η (eta)
representing learning rate parameter is assigned with 0.2,
which controls the shrinking of feature weight to make the
boosting process more conservative. Maximum depth of a
tree is limited up to 6, subsample ratio of the training inputs
are limited, such that 0.6 of data instances are used to grow
trees. Objective function softmax for handling nine classes
is used in this work. These few parameters are fine-tuned get
better recognition accuracy. The XGBoost library is used for
implementation [52,53].

In addition, ensemble technique with SVM as a base
learner is implemented for dialect identification system using
bagging classification function. The bootstrap aggregating
(bagging) method similar to that of RF is used with 2048

SVM classifiers as the weak learner instead of decision trees.
It fits the base classifiers each on random subsets obtained
from the dialect dataset and final predictions are computed
by averaging all classifiers [49,54]. The block diagram of
proposed dialect identification system using three decision
tree and SVM-based ensemble methods is given in Fig. 5.

5 Experiments, Results and Discussion

In thiswork, the performance is evaluatedwith SVMand four
ensemble classifiers under three configurations. Since the
IViE dataset is small and available in read (8h) and semi-read
mode (5h), every experiment is carried out in four different
scenarios to realize the influence of spectral and prosodic fea-
tures with both speech corpora. Details are given in Table. 2.

For evaluating the developedADI systems, feature vectors
derived from test speech samples are given to all the ADI
systems. The model giving highest evidence is hypothesized
as the dialect corresponding to the given speech sample.

5.1 Performance Evaluation Using SVM

Nine SVM models trained on the datasets of nine English
dialects are used to handle 9-class pattern classification prob-
lems with extracted feature vectors.
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Table 3 Dialect recognition performances using SVM-based systems

Features Recognition accuracy in %

RR RS SS SR

Spectral 86.33 67.44 85.59 74.13

Prosodic 76.25 39.19 61.09 34.33

Spectral + prosodic 90.93 69.14 89.9 76.00

Four combinations of two datasets
RR RS SS SR
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Fig. 6 Comparison of dialect recognition performance of spectral,
prosodic and the combined, S + P: spectral + prosodic features, RR:
read–read,RS: read–semi-read, SS: semi-read–semi-read andSR: semi-
read–read

Series of experiments are conducted in four scenarios
with 5-fold cross-validation approach. Table 3 shows the
recognition performances obtained for nine dialects in four
scenarios. Spectral features have shown better significance
in discriminating dialects with all scenarios when compared
to the prosodic features. The accuracy is comparatively good
and almost similar when training and testing are carried out
with same data set (RR and SS). With these two scenarios, in
training phase, themachine has learned the complete patterns
of pronunciation styles of both read and semi-read speech of
all dialects. When samples with similar patterns are tested, it
is leading to a better accuracy of 90.93% in RR scenario. The
comparative results obtained using SVM classifier is shown
in Fig. 6.

Read and semi-read speech is significantly different in
acoustics and linguistics [40]. Read speech is a well pro-
nounced controlled speech, indicating clear and correct
phoneme pronunciation in the acoustic space [39]. Whereas,
semi-read speech is with varying filled pauses, change in the
rate of speech, and with partial words pronunciations. Due
to these varying properties of two types of speech, reduction
in accuracy is observed when training and testing sets are
different (RS and SR). RS scenario shows a lower perfor-

Table 4 Performance of SVM-based dialect identification using
prosodic features: ID1:ID9 9 dialectal regions. Average recognition per-
formance: 39.19% in RS scenario

Confusion matrix for prosodic features

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9

ID1 31 0 16 0 4 0 11 3 7

ID2 3 35 2 2 6 1 6 17 0

ID3 0 0 62 0 0 7 2 0 1

ID4 2 7 4 5 3 0 0 10 41

ID5 15 5 3 0 5 1 27 9 7

ID6 9 10 16 1 10 9 8 9 1

ID7 0 6 0 0 6 0 62 0 0

ID8 1 10 5 3 10 1 26 9 5

ID9 6 0 15 2 0 1 7 4 36

mance, due to the absence of specific properties of semi-read
speech during the training phase.Whereas, all such attributes
exist in testing patterns of semi-read speech. Also, due to
spectral space shrinkage in the semi-read speech, the indi-
vidual phoneme recognition accuracy is reduced and hence
the reduction in overall performance.

Prosodic features such as pitch, energy, and duration are
used in this study. Table 4 shows the details of individual
dialect identification performance with the help of confu-
sion matrix for RS scenario. Results indicate that explored
prosody features are not significant as the spectral features
in all scenarios for dialect identification. The performance
achieved is only 39.19% with prosodic features in RS sce-
nario. ID3 and ID7 dialectal regions have been classified
with the better classification of 86.11% (62 out of 72 testing
samples) for prosodic features. Speakers representing these
two regions have shown the unique pronunciation patterns
and styles with high influence of pitch and energy features,
when compared to other dialects [32], whereas dialectal
regions representing ID4, ID5, ID6, and ID8 have shown
high misclassification rate, indicating the lesser influence of
considered prosodic features. ID4 (more than 50%) is highly
misclassified with ID9 dialect, similarly, ID8 is misclassified
with ID7 dialect.

To understand the influence of pitch on dialects, the
average pitch values of male and female speakers are con-
sidered and shown in the form of a box plot given in Fig. 7.
Box plots are chosen as they represent detailed statistics of
the distribution of data based on the five statistical mea-
sures namely median, minimum, maximum, first quartile
and third quartile. A rectangle spans between first quar-
tile and third quartile typically called as interquartile range,
and it is observed to be large in all dialects except ID7
and ID9. Spans of first quartile and third quartile are not
exactly divided by median value. Outliers that represent
the high maximum and low minimums are found in ID7

123



4298 Arab J Sci Eng (2018) 43:4289–4302

Female and Male speakers 
ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9

Pi
tc

h 
in

 H
z

40

60

80

100

120

140

160

180

200

Fig. 7 Statistical range for Pitch values of all 9 dialects

and ID9 dialect speakers. Minimum and maximum val-
ues are distinct in all dialects. These patterns have shown
the significance of prosodic features in discriminating the
dialects. Prosodic information many times behaves compli-
mentary to spectral information. Hence, combining spectral
features with prosodic information increases the accuracies.
Since all dialectal regions are from British English, they
all most share similar speaking patterns with minor varia-
tions. Use of single SVM classifier has failed in identifying
these minor differences effectively that exist among dialects
[32,55].

5.2 Performance Evaluation Using Ensemble
Classification Techniques

From the literature, it is observed that ensemble of various
classifiers or learners work better rather than single clas-
sifiers [48]. In this regard, ADI systems are evaluated to
understand the behaviors of three ensemble methods using
decision tree base learner and ensemble method with SVM
as a base or weak learners [48]. Each of these is evaluated
using three different configurations namely simple valida-
tion (SV), cross-fold validation (CV) and hold-out voting
(HOV).

Generally, cross-validation makes the model more stable
by considering the variations across the dataset. A better
approximation is achieved as it trains and tests on every part
of the dataset by typically taking care of the expected pre-
diction error. Similarly, CV is performed in this paper by
considering the 4 out of 5 (k = 5) folds for training pur-
pose and left over one fold for testing. Testing is carried out
to observe the average behavior of the system each time by
rotating the training and testing folds.

Further, to prevent the over fitting of hyper-parameters of
all models on CV results and also to generalize the model,

HOV approach is performed. Complete dataset is divided
into 80:20 ratio, where 80% of data used for training the
model and predicted the results for 20% of hold-out set.
Similar procedure is followed and five predictions are being
generated over five different combinations of 80% data.
Final predictions for 20% data are computed by consider-
ing majority votes obtained out of all five predictions. HOV
performances are referred for further analysis of the systems,
as they are giving better accuracies, and the obtained results
are considered to be more stable across the datasets than SV
performances.

In simple validation with RR and SS scenarios, 80:20
ratio of the complete dataset is used for training and testing,
respectively. The results obtained are considered to be less
significant even though better results are obtained. Since the
machine is biased and purely depends on samples involved
in training and testing [49].

Results obtained from series of experiments conducted
in this study, using decision trees and SVM-based ensem-
ble methods are presented in Table 5 and 6 respectively.
It is evident from the results that the spectral features
such as MFCCs, flux and entropy have shown distinct
values for all nine dialects of British English. Hence, spec-
tral features have outperformed in all four ensembles and
all scenarios. It is observed from the results that dialect
recognition accuracy is comparatively high when train-
ing and testing is carried out with the similar data set
(RR and SS) with both spectral and combined features.
Among all ensemble methods, it is noticed that RR sce-
nario with combined features has produced highest dialect
recognition rate of 95.87% and 97.52% with ERF and
BSVM ensemble methods, respectively. Results obtained
have significantly proved the influence of both spectral and
prosodic features among all nine dialect speakers of British
English.

SS scenario has also given better recognition performance
with spectral and combined features of 90% and 92.30%with
XGB and BSVM ensemble methods, respectively. A slight
reduction in accuracy is due to the fact that semi-read and
read speech do not posses similar acoustic properties [39].

RS and SR scenarios yielded slightly less performances
with spectral and combined features. Hence, these results
suggest that even ensemble algorithms fail to recognize
the dialect discriminating boundaries among the available
feature vectors. Comparison of nine dialect recognition per-
formance concerning spectral features is given in Fig. 8 and
same for combined features in given Fig. 9.

From Table 5 and 6, among all ensemble models, it is
noticed that RF, ERF, and XGB models have exhibited a
degradation in performance for prosodic features in RS, SS
and SR scenarios except in the RR scenario, whereas BSVM
ensemble has shown the lower performance of about 33.59%
for all scenarios (even with RR). Highest accuracy of about
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Table 5 Dialect recognition
rate performance in % three
tree-based ensemble algorithms

Features Read-read scenario

Random forest Extreme random forest Extreme gradient

CV HOV SV CV HOV SV CV HOV SV

Spectral 88.76 91.74 92.56 91.07 93.39 91.74 83.14 85.12 85.95

Prosodic 67.77 71.07 71.41 70.74 76.03 76.86 64.46 67.77 69.42

Spectral + prosodic 90.08 92.56 91.74 94.21 95.87 96.69 85.12 88.43 90.08

Read–semi-read scenario

Spectral 63 62.96 64.97 66.57 67.74 67.59 67.31 68.83 69.59

Prosodic 40.83 41.20 41.36 42.99 43.67 44.59 42.16 43.05 41.97

Spectral + prosodic 64.19 65.28 64.97 69.25 69.44 71.45 67.41 66.97 68.51

Semi-read–semi-read scenario

Spectral 83.58 85.38 86.92 84 86.15 86.6 85.23 90 89.23

Prosodic 47.69 46.92 50.77 50.77 52.31 53.08 48.15 50.06 50.12

Spectral + prosodic 85.23 86.92 87.69 85.69 86.15 86.92 85.29 90 90.77

Semi-read–read scenario

Spectral 78.64 79.61 80.92 79.20 81.26 81.09 75.85 76.78 75.45

Prosodic 45.33 46.26 47.26 46.16 46.60 47.76 44.34 46.13 46.43

Spectral + prosodic 81.82 83.41 83.75 82.55 84.57 85.07 77.94 78.44 79.27

CV cross-fold validation, HOV hold-out voting, SV simple validation

Table 6 Dialect recognition performance in % using SVM-based
ensemble

Features Read–read scenario

CV HOV SV

Spectral 94.38 95.98 96.66

Prosodic 32.75 33.59 34.29

Spectral + prosodic 95.71 97.52 97.26

Read–semi-read scenario

Spectral 69.47 69.99 70.53

Prosodic 32.74 33.17 36.25

Spectral + prosodic 70.70 70.52 71.19

Semi-read–semi-read scenario

Spectral 87.85 88.46 89.74

Prosodic 46.31 49.23 47.69

Spectral + prosodic 91.38 92.30 93.08

Semi-read–read scenario

Spectral 77.74 79.43 79.61

Prosodic 30.41 30.18 30.51

Spectral + prosodic 80.13 81.42 81.76

52.31% has been achieved with ERF method among RS, SS,
and SR scenarios with prosodic features. Comparison of nine
dialect recognition systems using prosodic features is given
in Fig. 10.

Comparison of dialect recognition performances with
respect to single classifier SVM and four ensemble meth-
ods are demonstrated for spectral, prosodic, and combined
features in Fig. 11. It is observed that the use of ensemble
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Fig. 8 Comparison of dialect recognition performance using spectral
features

approaches have reduced the training complexity and have
shown high predictive accuracy over two datasets considered
in this work [56], whereas single classifier SVM also gives
better results due to the use of appropriate features, hyper
parameter tuning and selection of suitable kernel function.
Among all four ensemble methods, BSVM-based ensem-
ble method has reported the highest accuracy of 97.52% for
combined features and shown slightly better recognition per-
formance than decision tree-based ensemble methods except
for prosodic features in all four scenarios.
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Fig. 9 Comparison of dialect recognition performance using both
spectral and prosodic feature

Four ensemble methods 
RR RS SS SR

D
ia

le
ct

 R
ec

og
ni

tio
n 

A
cc

ur
ac

y 
%

0

10

20

30

40

50

60

70

80
RF
ERF
XGB
BSVM

Fig. 10 Comparison of dialect recognition performance using
prosodic features

6 Summary and Conclusions

In this paper, spectral and prosodic features are explored and
analyzed individually and in combination from dialect dis-
crimination perspective. Spectral features such as cepstral
coefficients, SDCs, spectral flux, and entropy are extracted.
Prosodic properties are also explored from the longer frame.
In this paper, SVM, decision tree-based and SVM ensemble
methods are used for developing the dialect identification
system and results are verified with individual and com-
binations of the features. IViE speech corpus available in
two modes is used to carry out experiments in four possi-
ble combinations of the dataset. Better dialect recognition is

Five classifiers
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Fig. 11 Comparison of dialect recognition performance for RR sce-
nario with all five classifiers

achieved with RR and SS scenarios. Spectral features have
shown better performance with single classifier SVM and
four ensemble methods. Selected prosodic features resulted
in lesser significance with all dialects of British English.
Single classifier SVM, decision tree and SVM-based ensem-
ble methods have shown better recognition performance in
RR scenario. Results have indicated the higher influence of
spectral features with nine dialects and existence of minor
non-overlapping behaviors with prosodic features proved
with higher performances for combined features.

In future, language-specific dialect discriminating
prosodic features can be explored. Prosodic cues among
dialects exist in rhythmic patterns, stress and intonations can
be further examined to make efficient dialect identification
system. Further ensemble algorithms can be fine-tuned with
specific parameters for efficient recognition of dialects. The
ensemble of various classifiers can be implemented.
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