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Abstract A simple and facile methodwas developed for the
determination of trace amount of iron. The method is based
on the complex formation between Fe (III) and picrate anion
in the presence of piroxicam, as a complexing agent. Dis-
persive liquid–liquid microextraction (DLLME) was applied
to extract the formed ion associate, Fe (III)-piroxicam. The
absorbance of the extracted iron in the sedimented phase
was measured by UV–Vis spectrophotometry. Two statisti-
cal methods of response surface methodology and genetic
algorithm (GA) based on artificial neural network (ANN)
were employed for prediction and optimization of a four-
constituent DLLME. Plackett–Burman design was used for
screening the influential parameters including pH, the vol-
ume of picrate anion, disperser, and extraction solvents.
Central composite design (CCD) was used to obtain the opti-
mum levels in the proposed method. The experimentally
obtained data were used to train the GA model. CCD and
GA models were compared for their predictive abilities. The
result showed that both models have the ability to predict
the proposed process, but ANN model is more reliable than
CCD. The absorbance of the extracted iron obeys Beer’s law
in the range of 0.03–0.96µgmL−1(R2 = 0.998), and the
limit of detection of 0.008µg mL−1 and enhancement fac-
tor of 88.84 were achieved for the process. The developed
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procedure was successfully applied to the determination of
iron in water samples and two types of common vegetation
sample, i.e., tea and mint.
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1 Introduction

One of the most significant and essential elements in envi-
ronmental and biological systems is iron. It plays a leading
role in hemoglobin, myoglobin, catalase, and other proteins
responsible for oxygen and electron transfer. Its absence
in any living organism causes anemia, a disease which is
treated with iron salts. Interestingly enough, the excess of
the element during treatment may lead to serious poison-
ing [1]. Chemical properties such as valence, solubility, and
the degree of chelating are the most important factors in the
environmental effectiveness of iron, which exists in many
oxidation states (−II to +VI). The most prevalent forms
of dissolved Fe in natural water are Fe (II)and Fe (III). In
this regard, Fe (II) oxidizes in oxygen-rich environments
and Fe (III) makes stronger complexes. The World Health
Organization (WHO) states that the permissible value of
iron in drinking water ranges from 0.3 to 3.0 mgL−1[2].
For instance, tea as one of the most popular beverages and
mint as one of the most useful medicinal plants are found in
many households. Based on the medical research, excessive
drinking of tea exactly after eating could cause anemia. Con-
sequently, determination of iron species in environmental and
biological systems and vegetation is definitely essential due
to its direct effect on health. According to the literature sur-
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vey, different techniques such as spectrophotometry [3–5],
inductively coupled plasma optical emission spectrometry
[6,7], capillary electrophoresis [8], voltammetry [9], and
flame atomic absorption spectrometry [10] have been applied
for the determination of iron. Generally, a preconcentration
step is required for the determination of the low concentra-
tion of iron. Different methods such as solid-phase extraction
[11], co-precipitation [12], and cloud point extraction [13]
have been used for this purpose. Recently, researchers have
focused on the development of techniques using efficient and
low-cost organic solvents as well as the ease of operation and
low consumption of organic solvents [14]. Consequently,
various microextraction systems such as dispersive liquid–
liquid microextraction (DLLME) have been developed for
preconcentration and determination of both organic and inor-
ganic samples [15,16]. DLLME is a miniaturized sort of
liquid–liquid extraction (LLE) in which microliter volumes
of extraction solvent are used. An appropriate mixture of the
extraction solvent and the dispersive solvent is injected into
the aqueous sample. As a result of this injection, a cloudy
solution is formed. This solution is then exposed to cen-
trifugation, and the fine droplets are settled at the bottom
of the conical test tube. The interest analyte is extracted from
the initial solution and concentrated to a small volume of
the settled phase [17–19]. However, due to the difficulties in
measuring the small volume of the settled phase, the number
of studies in which DLLME is combined with UV–Vis spec-
trophotometry is limited. In recent years, the problemdealing
withmeasuring the absorbance of relatively small volumes in
UV–Vis spectrophotometry has often been tackled with the
evaporation or dilution of sedimented phase as well as using
special instruments such as fiber optic-linear array detection
spectrophotometry (FO-LADS) or digital colorimetery (DC)
[20]. Dealing with this practical problem, spectrophotometry
as a simple, low-cost, rapid, and sensitive technique has been
applied for DLLME determination of Rhodamine 6G [21],
cadmium and copper [22], iron [2], and cobalt [23].

In order to optimize the effective parameters in DLLME
and other techniques in analytical chemistry, mostly one-
factor-at-a-time approach has been used in which the inter-
action between the effective parameters of the process is
neglected.Besides, a larger amount of timeandmore reagents
are required. In recent years, the use of chemometricmethods
such as response surface methodology (RSM) based on the
experimental designs has resolved suchmajor problems [24].
The use of a reliable model is very important to optimize the
process.RSMconsists of a groupofmathematical procedures
to study the relationship between a number of variables and
one or more responses. Central composite design is an effec-
tive optimization process. A full factorial CCD was applied
to optimize the effective parameters on microextraction. In
2017, Habila and coworkers presented a new method for
determination of lead. In this method, DLLME was used for

preconcentration of lead in aqua solutions using 2,20 dithio-
bis (benzothiazole) as complexing agent. Plackett–Burman
was utilized to study the impact of analytical parameters
on DLLME recovery. The limit of detection was found
to be 4.3 mgL−1 [25]. In another study, a novel vortex-
assisted dispersive liquid–liquid microextraction method for
the preconcentration and separation of copper(II) using 1-
(2-pyridylazo)-2-naphthol using as chelating agent has been
reported [26]. These studies show the high potential of
DLLME in separation and preconcentration of trace amount
of heavy metals.

Lutfullah Sharma presented amethod for determination of
Fe (III) in which piroxicam was able to form a colored com-
plex with Fe (III) with Kf equal to 6.12 × 1010 [27]. Also,
azmi reported another study for determination of piroxicam
by using Fe (III) [28]. Based on the Lutfullah and azmis
studies, piroxicam was chosen as a proper complexing agent
to determine the concentration of Fe (III). Accordingly, ion
association can increase the sensitivity of the method. Thus
in this work, a DLLME coupled with UV–Vis spectropho-
tometry was used for preconcentration and determination of
the trace amount of iron (III) which is based on the forma-
tion of ion associate between Fe (III)-piroxicam and picrate
anion.

To promote the previous studies on iron, spectrophotom-
etry as a simple technique was applied to determine trace
amount of iron. The impact of various parameters onDLLME
was studied by Plackett–Burman design. Then, central com-
posite design (CCD) was used to optimize the significant
factors including sample pH, the volume of the disperser,
extraction solvents, and picrate anion.

2 Experimental

2.1 Reagents and Solutions

A stock standard solution of Fe (III) at the concentration of
0.1µg L−1 was prepared by dissolving analytical grade of
Fe(NO3).9H2O (Merck) in doubly distilled water. The stan-
dard solutions were prepared daily by the stepwise dilution
of stock solution. All chemicals such as chloroform, car-
bon tetrachloride, acetonitrile, dichloromethane, methanol,
ethanol, and hydrochloric acid, with the purity of higher
than 99%, were purchased from Merck. Hydrochloric acid
(1.0mol L−1), acetate, and phosphate buffer were used to
adjust the pH of the solutions.

2.2 Apparatus

The absorbance measurement and spectra recording were
carried out on a UV–Vis Ultrospec 3100 pro with a 1.00-cm
quartzmicrocell and the personal computer with swift II soft-
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ware. Inductively coupled plasma (Perkin-Elmer, OPTIMA
7300-DV) was used to check the reliability of the method
by determination of the concentration of iron ions in real
samples. The pH values were controlled by a Jenway 3300
pH meter with a glass combined electrode. Also, in order
to accelerate the separation process, a Sigma 3K30 model
centrifuge with 15-mL centrifuge tubes was used.

2.3 Experimental Designs Strategy

In the present study, two statistical methods of response sur-
face methodology (RSM) and genetic algorithm (GA) based
on artificial neural network (ANN) were employed for pre-
diction and optimization of a four-constituent DLLME. The
experimental designs plan was used in two stages: (1) con-
sidering the most important factors affecting the extraction
efficiency using Plackett–Burman design and (2) optimiz-
ing the significant factors applying a CCD. This method can
reduce the number of the experiments to study the effect of
parameters and their interaction. Then, the results were ana-
lyzed using MINITAB 16 software.

2.4 Procedure

Eight milliliters of Fe (III) standard solution (0.1µg mL−1)
was transferred to a 15-mL test tube with conical bottom,
and pH was adjusted to 4.2. One milliliter of piroxicam solu-
tion (0.001mol L−1) and 71µL picrate anion were added
into this sample solution to form ion association. A mixture
of 136µL of chloroform (as extracting solvent) and 531µL
of ethanol (as dispersive solvent) was rapidly injected into
the sample tube using a 2.0-mL Hamilton syringe. Immedi-
ately, fine droplets of extraction solvent were dispersed in
the aqueous phase as a result of which a cloudy solution was
produced. This mixture was centrifuged for 2min at 4000
rpm so that the analytes are concentrated to a small volume
of the settled phase [23,28,29]. About 40µL of the sedi-
mented phase was withdrawn using a Hamilton syringe. At
the end, it was inserted into the quartz microcell to measure
the absorbance.

2.5 Preparation of Water Sample

Tap water was prepared from Shahrekord University, and
well water was obtained by a well located in a personal farm
in Najafabad, Isfahan. Two drops of nitric acid were added to
the water samples. The samples were filtered through a cel-
lulose membrane filter of pore size 0.45µm and adjusted to
pH 4.2. A defined volume treated according to the procedure
mentioned in Sect. 2.3.

2.6 Determination of Iron in Vegetation

Tea was purchased from a local supermarket in Shahrekord.
Mint was also purchased from a local greengrocer’s. To pre-
pare the samples, 1.0 g of each individual powdered sample
weighed and was mixed with 20 mL of nitric acid solution
into a clean glass beaker. The acid digestion was carried
out by heating the mixture till nearly dryness. After cooling,
deionized water was added to the residue; then, it was neu-
tralized to pH 7 by sodium hydroxide solution. The solutions
were separately filtered and diluted to 50 mL with distilled
deionized water in a calibrated flask. After adjusting the pH
to 4.2, the total iron content was determined by the proposed
DLLME method.

3 Results and Discussion

3.1 Reaction Mechanism

Previous studies have shown that the use of picrate as
the counter ion increased the sensitivity and selectivity of
the spectrophotometric determination. The introduction of
a third component into a binary complex leads to for-
mation ion association system. So, in this study picrate
anion was selected to form ion association. The Fe (III)–
piroxicam–picrate complexwouldmore comfortably transfer
into organic solvent. This is probably due to more solubility
of iron (III)–piroxicam–picrate complex in organic solvents.
Therefore, the analytical signal increased in the presence of
picrate anion. Therefore, ion associate recombination seems
to be the easiest way to extract and determine Fe (III). Since
there are lots of factors affecting the extraction, the experi-
mental design was applied to consider the important factors
affecting the process.

3.2 Selection of the Extraction and Disperser Solvents

In DLLME, the extraction solvent should be denser than
water in order to settle at the end of the tube easily. More-
over, it should have enough potential to extract compounds
of interest, and the least solubility in water to minimize dis-
solution in the aqueous phase [15,18]. Thereby, chloroform,
carbon tetrachloride, and dichloromethanewere investigated.

The disperser solvent has to be miscible with both the
extraction solvent and aqueous phase [17,29]. As a result, all
combinations of extracting solvents and disperser solvents
such as ethanol, methanol, and acetonitrile were tested. It
should be noted that in the case of dichloromethane, no sed-
imented phase was observed. Both chloroform and carbon
tetrachloride had enough sedimented phases, but the inten-
sity of analytical signals increased in the former. This may
be explained by the high extractability of the iron ion asso-
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Fig. 1 The effect of the type of extraction–disperser solvent pair on
absorbance, conditions: 8ml of Fe (III) standard solution (0.1µgL−1),1
ml of piroxicam solution (0.001mol L−1), 71µL of picrate anion,
136µL of chloroform (as extracting solvent) and 531µL of ethanol
(as dispersive solvent), pH:4.2

ciate in this solvent. Therefore, chloroformwas chosen as the
extraction solvent. Since acetonitrile was used as disperser
solvent, the cloudy solution was not stable. Ethanol formed
more stable two-phase systems, and it compares favorably
with the intensity of the analytical signals. Thus, ethanol was
chosen as dispersive solvent for the next experiments. The
results indicated that the maximum absorbance was achieved
by applying ethanol–chloroform as disperser–extraction sol-
vents pair. The results are represented in Fig. 1.

3.3 Considering Significant Factors Using
Plackett–Burman Design

First, experimental Plackett–Burman design was utilized for
screening and considering the main parameters affecting the
extraction. Since the interaction is ignored in this design,
one can calculate the main effects with fewer experiments.
In the present study, the effects of the following eight fac-
tors were studied: pH of the sample, the concentration of the
chelating agent, extraction solvent volume, disperser solvent

volume, salt effect, extraction time, centrifugation speed, and
the amount of picrate. Table 1 shows the levels of factors
selected according to the outcomes of the preliminary exper-
iments. Following this, twelve trials were done in duplicate
and the results were listed.

The analysis of variance (ANOVA) method was utilized
for the determination of main effects [30,31]. The data of
Placket-Burman design are indicated in Table 2. As it is
represented, at 95% confidence level, centrifugation speed,
the concentrations of piroxicam and salt as well as extrac-
tion time have no significant influence on the response
(p-values ≥ 0.05). The results prove that DLLME method
is time-independent technique. This independence is due to
the large surface area between the extraction solvent and the
aqueous phase after the formation of cloudy solution. More-
over, the greatest advantage of this technique is the high speed
of theDLLMEprocess.Other factors, such as pH, the volume
of disperser, picrate, and extraction solution whose p values
are less than 0.05, have noticeable impacts on the extraction
efficiency. Hence, the aforementioned factors were consid-
ered in the next step of the design.

3.4 The Optimization of the Main Microextraction
Parameters Using CCD

In the next step, CCD was conducted in order to determine
the optimal conditions for the four screened significant fac-
tors. This design is one of the factorial designs for statistical
analysis, and it has been previously reported for optimiza-
tion of microextraction parameters [31]. The experimental
design was performed by MINITAB software version 16.0.
Table 3 reveals different variables, symbols, and levels. In
the present CCD, thirty experiments were predicted. Four
intendant variables, i.e., the volume of dispersive solvent (L),
extracting solvent (P), pH (E), and picrate volume (F), were
studied at five levels at the central point. For each of the four
variables, high and low points were selected to construction
a full factorial design was used to study the effect of each

Table 1 The experimental
variable and levels of the
Plackett–Burman design

Variable Symbol Variable levels

Low High

pH E 3 6

Concentration of chelating agent (mol L−1) G 10−4 10−3

Volume of picrate (µL) F 10 100

Salt effect M 0 10

Volume of dispersive solvent (µL) L 100 800

Volume of extraction solvent (µL) P 90 150

Time (s) T 30 300

Centrifugation speed (rmin−1) S 2000 10,000
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Table 2 Regression coefficients
and their significances for the
response of Placket–Burman
design

Term Effect Coefficient Standard error T p-valuea

Constant − 0.3770 0.0067 56.22 0.000

E −0.1875 −0.0937 0.0067 −13.98 0.000

G −0.0225 −0.0112 0.0067 −1.68 0.114

F −0.1858 −0.0929 0.0067 −13.85 0.000

M −0.0175 0.0087 0.0067 −1.30 0.212

L 0.0475 0.0237 0.0067 3.54 0.003

P 0.1725 0.0862 0.0067 12.86 0.000

T 0.0191 −0.0095 0.0067 −1.43 0.164

S 0.0258 −0.01292 0.0067 1.93 0.073

a Probability of seeing the observed “F value” if the null hypothesis is true

Table 3 Factors, their symbols
and levels for CCD

Variable Symbol Level

−a −1 0 +1 +a

pH E 1.8 3.3 4.8 6.3 7.8

Volume of picrate (µL) F 0 40 80 120 160

Volume of dispersive (µL) L 200 400 600 800 1000

Volume of extraction (µL) P 60 90 120 150 180

parameter and their interaction. In the present CCD, thirty
experiments were predicted.

Table 4 depicts the matrix and the corresponding respon-
ses. ANOVAwas considered for evaluating themodel and the
significance of effects (Table 5). The results of the statistical
analysis including the estimated regression coefficients and
p values are calculated. The fact that all variables with the
0.05 ≥ p values are significant reveals that the appliedmodel
has successfullymade an ideal prediction for the processwith
a linear relationship between the variables. All variables with
the p values of≥ 0.05 should be removed from the proposed
equation. The F-value of 30.66 implies that the model is sig-
nificant [30,31]. There is no chance that this large model
F-value could occur due to the noise. Moreover, the results
indicated that p value for lack of fit (0.667) was not signifi-
cant. The coefficient of determination (R2 and adjusted-R2)

was used for expressing the quality of the polynomial model.
R2 is an indicative factor for the amount of variations around
the mean explained by the model which was equal to 96.95.
The adjusted-R2 is adjusted for the number of terms in the
model, and it was equal to 93.69. The large adjusted R2 value
depicted a good relationship between the experimental data
and the fitted model. The suggested model is given by Eq.
(1). In this equation, b0 is the intercept and the b terms rep-
resent those parameters of the model which are optimized
iteratively to fit.

Y = b0 + b1E + b2L + b3P + b4E
2 + b5F

2 + b6L
2

+b7P
2 + b8EF + b9EL (1)

In which:

b0 = −1.57836 b1 = 0.239611 b2 = 0.935417

b3 = 0.0187667 b4 = −0.0336111 b5 = −9.765 × 10−6

b6 = −1.39062 b7 = −7.29 × 10−5 b8 = 0.0003125

b9 = 0.0625

The most relevant fitted response surfaces for the design are
shown in Fig. 2. In each figure, two factors are constant at
the central point and other ones are allowed to vary. The
point is that the curvatures of these plots indicate the inter-
action between the factors. As it can be seen, by increasing
the amount of chloroform from 110 to 140µL, and ethanol
from 400 to 600µL, in turn, the volume of the sedimented
phase, as well as absorbance, will increase (Fig. 2d). Further
increase in chloroform and ethanol volumeswill decrease the
analytical signals as a consequence of decreasing the enrich-
ment factor. In addition, decreasing the absorbance may be
interpreted by increasing the solubility of the complex in
aqueous phase when more ethanol is used. In the case of
lower volumes, the interface decreases so that the ion asso-
ciation cannot completely transfer into organic phase (Fig.
2d). As it is shown in Fig. 2a, c, and f, the extraction of the
ion association in acidic media is more probable (pH=3–
5.5), and in more acidic media (pH < 2.5), the certainty
of extraction is decreased. Finally, using optimization option
of the software, the optimal conditions were obtained as the
following: pH = 4.2, the volume of picrate, disperser, and
extraction solvents 71, 531, and 136µL, respectively.
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Table 4 Design and response
for CCD and ANN

Run Block E F L P ABS (Actual) ABS (Neural) ABS (CCD)

1 2 4.8 80 0.6 120 0.43 0.3500007 0.29751

2 2 4.8 80 0.6 60 0.02 0.0199807 0.06565

3 2 4.8 80 1 120 0.11 0.0897562 0.18809

4 2 7.8 80 0.6 120 0.05 0.0866138 0.18919

5 2 4.8 160 0.6 120 0.37 0.3698907 0.58268

6 2 4.8 80 0.6 120 0.39 0.3500007 0.54601

7 2 4.8 0 0.6 120 0.34 0.3400724 0.39554

8 2 4.8 80 0.2 120 0.28 0.2806187 0.46233

9 2 4.8 80 0.6 180 0.29 0.2904503 0.47701

10 2 1.8 80 0.6 120 0.18 0.1794744 0.31063

11 1 6.3 120 0.4 90 0.01 0.0102799 0.37183

12 1 6.3 120 0.8 150 0.19 0.1904439 0.44039

13 1 6.3 120 0.4 150 0.22 0.2202288 0.53071

14 1 4.8 80 0.6 120 0.37 0.3500007 0.54601

15 1 3.3 120 0.4 150 0.26 0.4485494 0.52663

16 1 4.8 80 0.6 120 0.39 0.3500007 0.54601

17 1 6.3 40 0.4 90 0.05 0.0518516 0.21347

18 1 3.3 120 0.8 90 0.02 0.0202039 0.18383

19 1 6.3 40 0.4 150 0.16 0.1602044 0.37235

20 1 3.3 120 0.8 150 0.22 0.1856894 0.43631

21 1 3.3 40 0.4 90 0.21 0.2104735 0.33899

22 1 6.3 120 0.8 90 0.02 0.0200539 0.18791

23 1 3.3 40 0.8 150 0.27 0.1519902 0.40755

24 1 4.8 80 0.6 120 0.33 0.3500007 0.54601

25 1 3.3 40 0.8 90 0.05 0.0498799 0.15507

26 1 6.3 40 0.8 90 0.01 0.0096522 0.02955

27 1 6.3 40 0.8 150 0.13 0.1301216 0.28203

28 1 3.3 120 0.4 90 0.15 0.149994 0.36775

29 1 4.8 80 0.6 120 0.35 0.3500007 0.54601

30 1 3.3 40 0.4 150 0.33 0.4159634 0.49787

3.5 Genetic Algorithm

In this research study, a feed-forward neural network (FF
ANN) was utilized to consider the relation between the input
parameters and the output. First, the number of neurons in
the hidden layer was determined. According to the available
methods, the number of neurons was selected using trial and
error [32–35]. Then, the learning algorithm was chosen to
achieve the best weights for the neural network. Since the
best training of network would be achieved by minimizing
the error function, the choice of a suitable learning method
is a crucial part of modeling by ANN. The back-propagation
algorithm was used to train the understudy feed-forward
ANN, and the Levenberg–Marquardt optimization algorithm
was employed for its training. Then, the validation of the pre-
diction model on the basis of error function was considered.
The mean square error (MSE) and the correlation coefficient

(r) were exploited to show the error function and the predic-
tive ability of the network, respectively. MSE can be defined
as follows:

MSE = 1

N

N∑

1

(
yi,exp − yi,pred

)2

where

MSE is the mean squared error
N is the number of experimental data points
yi,exp is the experimental value of training sample i
yi,pred is the predicted value from the neural network for
training sample i

In order to assess the fitting and prediction accuracy of
models made, the root-mean-squared error (RMSE) is other
parameter which is stated as follows:
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Table 5 Results of ANOVA for
CCD

Source dfa Seq SS Adj SS Adj MS F-valueb p value

Block 1 0.018727 0.018727 0.018727 16.05 0.001

Regression 14 0.500808 0.500808 0.035772 30.66 0.000

Linear 4 0.203183 0.203183 0.050796 43.54 0.000

E 1 0.040017 0.040017 0.040017 34.30 0.000

F 1 0.000150 0.000150 0.000150 0.13 0.725

L 1 0.028017 0.028017 0.028017 24.02 0.000

P 1 0.135000 0.135000 0.135000 115.73 0.000

Square 4 0.283150 0.283150 0.070787 60.68 0.000

E2 1 0.105125 0.156868 0.156868 134.47 0.000

F2 1 0.000006 0.006696 0.006696 5.74 0.031

L2 1 0.059894 0.084868 0.084868 72.75 0.000

P2 1 0.118125 0.118125 0.118125 101.26 0.000

Interaction 6 0.014475 0.014475 0.002412 2.07 0.123

EF 1 0.005625 0.005625 0.005625 4.82 0.45

EL 1 0.005625 0.005625 0.005625 4.82 0.45

EP 1 0.000100 0.000100 0.000100 0.09 0.774

FL 1 0.000625 0.000625 0.000625 0.54 0.476

FP 1 0.000900 0.000900 0.000900 0.77 0.395

LP 1 0.001600 0.001600 0.001600 1.37 0.261

Residual error 14 0.016332 0.016332 0.001167

Lack of fit 10 0.010732 0.010732 0.001073 0.14 0.667

Pure error 4 0.005600 0.005600 0.001400

Totalc 29 0.535867

a Degrees of freedom
b Test for comparing model variance with residual (error) variance
c Total of all information corrected for the mean

Fig. 2 The response surface plots of the effect of variables and their
interactions on the absorbance, conditions: 8ml of Fe (III) standard solu-
tion (0.1µgL−1), 1ml of piroxicam solution (0.001mol L−1), 71µLof

picrate anion, 136µL of chloroform (as extracting solvent) and 531µL
of ethanol (as dispersive solvent), pH: 4.2
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Fig. 3 Evolution of network performance (MSE) during training phase
using Levenberg–Marquardt

Table 6 Optimal values of the first layer of the network weights

HN* 1 HN 2 HN 3 HN 4 HN 5

Input 1 0.3610 3.2714 −0.7245 1.1729 1.2339

Input 2 0.6659 −0.3602 −0.0200 −1.3750 −0.1513

Input 3 0.4662 −1.0087 2.1874 −0.0189 −0.2914

Input 4 1.6073 −1.0415 1.2711 −2.0386 3.0048

Bias 2.1681 −1.1595 −1.2234 1.7887 1.1895

RMSE = √
MSE

Normalized root-mean-squared error (NRMSE) is deter-
mined as follows:

NRMSE = RMSE

Ymax − Ymin

in which Ymax and Ymin are the maximum and minimum
response obtained by each of the models.
Table 4 shows the experimental data which were used for
training the artificial neural network. The datawere randomly
dispersed into four groups, 70% in the training set, 15% in
the test set, and 15% in the validation set. After repetition of
the trails, a network with 5 hidden neurons showed the best
performance. The MSE value was obtained to be 0.002. The
results are illustrated in Fig. 3. Table 6 shows the weights
which are obtained from the final trained network. The ANN
prediction results are indicated in Table 7.

Table 7 Optimal values of the
output layer of the network
weights

Output1

HN 1 −0.8445

HN 2 −0.8149

HN 3 −0.7905

HN 4 −0.1435

HN 5 0.8428

Bias −0.4559

Table 8 Comparison of the precision and accuracy of RSM and GA-
ANN

Method MSE RMSE NRMSE

RSM-CCD 0.034 0.184 0.333

GA-ANN 0.002 0.044 0.100

3.6 Optimization by Genetic Algorithm

In this work, the genetic algorithm was applied to obtain
the optimal conditions.GA-ANNwas successfully employed
to find the best conditions. The properties which were used
for determining the controllers’ parameters were reported as
followed.

Chromosome population = 40
The number of generation = 100
Crossover fraction = 0.8
Elite count = 5%
Migration fraction = 0.2
Migration interval = 20

The optimum formulation using the genetic algorithm dis-
played. Validation was performed in triplicate, and the
optimum conditions for pH, volume of picrate, the volume of
dispersive, and the volume of extraction were 3.4, 160, 200,
and 170, respectively.

3.7 Comparison CCD and ANN

The predicted data obtained by central composite design and
ANN were compared with each other. In order to evaluate
the precision and accuracy of both applied models, MSE,
RMSE, and NRMSE for both models were calculated and
are summarized in Table 8.

Moreover, a regression analysis for predicted data byANN
and experimental data was done. As shown in Fig. 4, the
correlation coefficient (r) was 0.81 and 0.93 for RSM and
ANN, respectively. According to the obtained results, ANN
had higher predictive accuracy than CCD even with a limited
number of experiments.
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Fig. 4 Network model with
training, validation, test, and all
prediction

Table 9 Comparison of
optimization powers of
GA-ANN and RSM

Method Component Parameter Abs.

Optimization by GA-ANN pH 3.4 0.48

Volume of picrate (µL) 160

Volume of dispersive solvent (µL) 200

Volume of extraction solvent (µL) 170

Optimization by RSM pH 4.2 0.42

Volume of picrate (µL) 71

Volume of dispersive solvent (µL) 531

Volume of extraction solvent (µL) 136

3.8 Comparison of Optimization by RSM and GA-ANN

RSM and GA-ANN were employed to predict the optimize
parameters. Table 9 shows the comparison of the results
obtained by two methods for multi-objective. As this is iden-
tified, both RSM and CCD are suitable for this study.

3.9 Analytical Performance

The calibration graph was obtained by DLLME of 8.0
mL standard solutions containing the known amount of Fe

(III) under optimal conditions. The linear range of 0.03 −
0.960mg L−1 and the calibration equation of A = 0.165C+
0.081(R2 = 0.998) were achieved. The limit of detection
(LOD), which is calculated as three times the standard devi-
ation of the measurement of blanks divided by the slope of
the calibration graph, was found to be

0.008mg L−1. The enhancement factor (EF), defined as
the ratio of the slope of the calibration curve after and before
preconcentration, was found to be 110. The relative stan-
dard deviation (RSD) of 3.9 % for the solution containing
0.10mg L−1 of Fe (III) in optimal conditions for eight repli-
cated measurements (n = 8) was acquired.
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3.10 Effect of Coexisting Ions

The effect of the common coexisting ions on the analytical
signal of analyte was investigated. Eight mL of the solution
containing 0.10mg L−1 of Fe (III) with various amount of
interfering ions was treated by the recommended procedure.
The tolerable amount of each ionwas taken as a Fe (III): inter-
ference ratio that caused an error in the absorbance value of
no longer than±5%. As the results indicated in Table 10, the
presence of the common cations and anions in natural water
has no significant influence on the determination of iron (III)
under the optimum conditions. The tolerance of the method
tometal ions indicated that these cations can react with pirox-
icam and picrate to form pink complexes. Among the organic
species, only EDTA and SCN, which form relatively strong

Table 10 Tolerance limits of interfering species in the determination
of 0.1 mg L−1 of Fe (III)

Interferent-to-analyte
ratio

Interference species

1000:1 Na+, Mg2+, Ca2+, CH3COO−, NO−
3 , SO

2−
4 ,

Br−, I−,tartrate,citrate
800:1 Pb2+, Mn2+, Urea, Ni2+

500:1 Co2+, oxalate, Zn2+, Cr3+

100:1 Cd2+, PO3−
4

50:1 Hg2+, Cu2+

5:1 EDTA, SCN

complex with iron (III), make interference. It should be men-
tioned that in the sample type studied, the concentration of
such organic species is not significant.

4 Analysis of Real Sample

To evaluate the efficiency of the developedmethod, two types
of water samples (tap water and well water) and two types
of vegetation samples (tea and mint) were studied. Standard
addition technique was used in DLLME method. Reliability
and accuracy of the method were considered either by spik-
ing the sample or by comparing the results with data obtained
by ICP-OES. As the results shown in Table 11, the recovery
of spiked sample is good, and there is satisfactory agreement
between the results and data obtained by ICP-OES (at 95%
confidence limit), suggesting the proposed procedure is reli-
able for the sample type examined.

4.1 Comparison of the Proposed Method with the Other
Studies

The determination of iron (III) in the water samples by
aforementioned method was compared with some extractive
methods, the outcome of which is summarized in Table 12.
Clearly, the proposedmethod is comparable inLODandLDR
to the previous studies.
In fact, this study is a comparison between using two models
of statistical methods including GA and CCD for optimiza-

Table 11 Analytical results
(mean ± s, n = 3) for
determination of Fe in food
samples

Sample Spiked (µgL−1) Found (µgL−1) ICP (µgL−1) Recovery (%)

Tap water – 62.1 ± 2.3 63.3 ± 0.2

100 155.1 ± 3.2 – 91.7

200 270.6 ± 1.2 – 103.6

Well water – 274.9 ± 3.1 275.2 ± 0.3

100 373.1 ± 2.2 – 97.7

200 476.2 ± 4.3 – 100.4

Mint – 232.7 ± 4.5 –

Tea – 102.5 ± 3.3 –

Table 12 Analytical
characteristics of the different
extraction methods

System Detection R LDR∗ LOD∗∗ RSD% Refs.

DLLME-SFO Spectrophotometry 0.998 31–350 8 4.2 [17]

DLLME Spectrophotometry 0.998 25–1000 7.5 1.2 [2]

CPE FASS 0.999 10–250 1.7 2.1 [36]

LLE FAAS 0.999 Up to 5000 0.24 2.1 [37]

LLE FAAS 0.998 25–150 9 1.2 [38]

DLLME Spectrophotometry 0.998 30–960 8 3.9 This work

∗ Linear dynamic range (µg L−1)
∗∗ Limit of detection (µgL−1)
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tion of the significant factors for determination of iron.
Comparing the results of two methods showed that ANN
is more successful for modeling and optimizing the pro-
posed process. While most of the previous studies have been
applied for determination of iron in water sample, the pro-
posed method was applied in real sample such as tea and
mint. And it can be mentioned that, in none of the previous
studies done to measure iron microextraction, the combina-
tion of chemometrics and UV–visible spectrophotometry has
not been reported.

5 Conclusions

The proposed method of (DLLME) was successfully applied
for separation, preconcentration, and final determination of
iron (III) in food samples by UV–visible spectrophotometry
with perfect accuracy and precision. The efficient combina-
tion DLLME with UV–visible spectrophotometry presented
high extraction efficiencies for separation and preconcentra-
tion of iron (III). Furthermore, the powerful statisticalmethod
of response surface methodology was efficiently employed
for prediction and optimization of the influential parame-
ters in the proposed process. Comparing the result of two
methods including GA and CCD showed that ANN is more
successful for modeling and optimization this process. Using
experimental design and computer software not onlymake to
find a model for optimization the response, but also the num-
ber of the experiments reduced. The prominent advantages
of the present study are minimum organic solvent consump-
tion, reducing the number of the experiment, low cost, low
detection limit, easy and rapid operation, and short analysis
time. Also, the detection limit and the calibration range of
this method are comparable to the previous works.
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