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Abstract The primary focus in this paper is on position
estimation of an unknown sensor node in indoor environ-
ment. Received signal strength (RSS)-based algorithm was
used for position estimation in which Gaussian filter and
averaging filter were used for distance estimation, and for
localization, trilateration and least square estimation were
used. IRIS motes from MEMSIC were used for the experi-
ments and were configured in real time to record the RSSI.
Effect on distance estimation and localization was studied
in indoor environment by conducting several experiments.
Simulation results show that the proposed sensor selection,
distance estimation based on RSSI as well as localization
method helps in improving accuracy of position estimation
in different environmental conditions.

Keywords Received signal strength indicator · Distance
estimation · Localization · Line of sight · Gaussian filter ·
Averaging filter · Wireless sensor networks

1 Introduction

Technological advancement in sensing and computing in
wireless communication, to monitor the physical activities,
has put forward the growth in wireless sensor network. In
present days, position-based services possess much more
impact on our daily lives.
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For Location-based applications, localization of the object
has becomemore andmore challenging issue [1–3]. Location
of sensor nodesmust be known tomake the intelligence of the
data meaningful. Three well-known scenarios, where having
location information of sensor nodes is an advantage, are as
follows:

– Deployment ofWSNs in rescue and relief troop by locat-
ing the enemy field, i.e., where the event has happened.

– Facilitation of many application service like target track-
ing to locate survivors in battle field has become possible.

– Geographical routing as well as network coverage can be
assisted.

Advancement in wireless communication, VLSI, electronics
and MEMS have helped a lot toward the development of
cheap, low-power, smart as well as multi-functional sensors
which can be deployed in a large scale to have the location
information.

In indoor environments, GPS (Global Positioning System
[4] with a accuracy of 10m) cannot be used, as the signals
get attenuated and accuracy becomes insufficient for local-
ization in indoor environment. For decimeter level precision
in indoor environment, accuracy is low as well as the cost
is high [5,6]. Hence low cost, low power, high precision are
essential for any positioning algorithm.

A typical comparison [7,8] of various methods which
is used for distance/angle estimation between two nodes is
given in Table 1.

Time-based methods as ToA, etc., are mostly dependent
upon synchronization. AoA cannot be a choice as it requires
extra hardware (not cost-effective). So adapting RSSI-based
distance estimation for localization would be appropriate
without any need of extra hardware or need for synchro-
nization.
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Table 1 Comparison of methods

Method Precision measurement Maximum distance Requirement of extra hardware Challenges

RSSI Meters (2–4m) Communication ranges None RSSI variation, interferences

ToA Centimeters (2–3cm) Communication ranges None Synchronization of node

TDoA Centimeters (2–3cm) Few meters (2–10m) Ultrasound transmitter Work distance is maximum

AoA A few degrees Communication ranges Set of receivers For small sensors

Among several approaches, RSSI-based distance estima-
tion has become a vital approach for distance estimation as
well as for localization of the object as it does not require
any extra hardware for implementation.

Received signal strength is the voltage which is measured
by the receiver’s signal strength indicator circuit. It is often
represented as measured power which is termed as square of
the signal strengthmagnitude.ManyRSSI-based localization
algorithms [9,10] have already been used by several WSN
community to perform efficient localization. No additional
bandwidth or energy requirement is necessary for the mea-
surement of the RSSI during the communication between the
sensors.

In our previous work [11], distance estimation was the
objective. The number of experiments and the number of data
samples collected per experiment in that work were less for
distance estimation. This resulted in a higher variance of RSS
and therefore RSS vs distance curve was not very accurate.
In this present work, we have extended the previous work
to localize an unknown sensor node by conducting several
experiments using large number of data samples. We have
proposed an approach to select the sensors required for the
distance estimation as well as for the localization using RSS.
Tomitigate abnormalRSSI fluctuation,we have incorporated
the use of Gaussian filter as well as averaging filter. Here our
key idea was to filter the RSS values from the fluctuated raw
RSS data with the help of the Gaussian and averaging filter
for distance estimation and localization.

1.1 List of Acronyms

The list of acronyms used in this paper is shown in
Table 2.

1.2 Sources of Error for the Measurement of RSSI

RSSI plays an important role in distance estimation as well
as localization of an object. But variation in RSSI is much
higher due to the several environmental factors. Even though
target is fixed, RSS keeps changing with time [12,13]. In
general, two of the major sources which affects RSSI are
[14]:

Table 2 List of acronyms used

AoA Angle of arrival

ADC Analog to digital converter

BS Base station

BW Bandwidth

DSSS Direct sequence spread spectrum

GPS Global positioning system

IoT Internet of things

IP Internet protocol

LoS Line of sight

LSE Least square estimation

ML Maximum likelihood

MLE Maximum likelihood estimation

MEMS Micro electro mechanical system

MSE Mean square error

MMSE Minimum mean square error

NLoS Non line of sight

PDF Probability density function

PLE Path loss exponent

QoS Quality of service

RSSI Received signal strength indicator

Rx Receiver

RF Radio frequency

ToA Time of arrival

Tx Transmitter

TDoA Time difference of arrival

TDMA Time division multiple access

UDP User datagram protocol

VLSI Very large scale integration

WSN Wireless sensor network

– Multipath:
Multipath signals cause frequency selective fading as
multiple signals arrive at receiver with different phases
and amplitudes,which constructively or destructively add
as a function of frequency. This effect is mitigated by
using the direct sequence spread spectrum or by fre-
quency hopping. Also, spread spectrum helps to reduce
the interference in the unlicensed band. As it is known,
sum of the measured power of each multipath signal is
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equivalent to the measured received power using wide-
band method [15].

– Shadowing:
Even if the effect of multipath is mitigated, RSS is influ-
enced by the shadowing. It is explained in terms of the
attenuation of signal due to the obstructions (furnitures,
walls etc.) in indoor environment termed asmedium scale
fading [14].

In general, wireless communications are quite often
affected by several unavoidable factors like obstacles, mul-
tipath, etc.

1.3 Research Objective

In order to achieve efficient localization, we have chosen
research laboratory for indoor environment, as here, propa-
gated signal will get reflected, may adopt multipath to reach
destination. Here, it is possible to analyze the behavior of the
propagated signal under various environmental factors and
to use the received RSS to estimate the distance and localize
the object. Hence, our objective was to select group of sen-
sors based on RSSI variation. Then by using those selected
sensors, we would create a testbed and develop a distance
estimation technique based on RSS which exploits Gaus-
sian as well as averaging filter to mitigate the abnormal RSS
values. In the last phase of our work, we would be able to
propose a localization algorithm which will help efficiently
to localize the object.

Remainder of this paper is organized as follows: In Sect. 2,
relevant research on RSSI is briefly reviewed. Section 3
explains the experiments and results and finally conclusions
are drawn in Sect. 4.

2 Literature Review

In this section, relevant research on range-based position
technique for wireless sensor network is reviewed. Sev-
eral measurement techniques have already been discussed in
[16,17]. To measure the distance and to localize the object,
there are four generic algorithms such as:

– ToA based [18]
ToA technique is mostly based upon accurate time mea-
surements of transmitted and received signals between
two sensor nodes. Based on propagation time and the
speed of the signal, distance between the sensor nodes is
calculated by themultiplication of time difference and the
speed of the propagated signal. These approaches usually
rely on synchronization. To calculate ToA for propagated
signal between two nodes, a common clock is essential
between two nodes or a protocol like two-way ranging

protocol [19,20], which can give necessary exchanged
time information. Here, to synchronize both the sensor
nodes in time, extra hardware is required which becomes
quite expensive.

– TDoA based [21,22]:
Here, estimation of time difference of arrival for two sig-
nals (i.e., signal propagating between the target sensor
node and the two reference sensor nodes) is performed.
Time difference of arrival measurements are nonlinear
function to the coordinates of the source. TDoA estima-
tion is performed by cross-correlating two signals which
travels between target node and the reference node.Delay
is calculated by the largest value of the cross-correlation
values.

– AoA based [23]:
AoA mostly rely on directional antennas or on multiple
antenna configuration for the estimation of the angle of
arrival of the received signal, from the anchor nodes.High
accuracy in AoA is dependent upon antenna arrays [24]
with certain amount of spatial diversity which depicts the
requirement for more powerful hardware.

– RSS based: Here shadowing model is used for distance
estimation between anchor node and the unknown node
with the help of received signal strength, and coordinate
is calculated by trilateration method in which three or
more anchor nodes are necessary.

As per the above depiction of the three methods (i.e., ToA,
TDoA and AoA), it is obvious that RSS-based technique
possesses much more advantages which includes no/ less
requirement of extra hardware with less complexity and cost.

Indoor positioning mostly rely on RSS-based technique
and has been used widely. Jeffrey Hightower and Gaetano
Borriello [25] proposed 3D location sensing which was
based on RSS analysis. Li [26] has proposed a RSS-based
joint estimation of unknown location coordinates in chang-
ing environment. Here they have used the combination of
distance-power gradient, a parameter of path loss model
and RSS-based location estimation. Authors were able to
eliminate the need for extensive modeling and channel mea-
surement. Also, it optimizes the performance in different
environment.

Laitinen et al. [27] used narrowband measurements at five
VHF frequencies to evaluate the accuracy ofRSS-based loca-
tion algorithms. They have used Kalman filter on estimated
coordinates to eliminate largest location errors. Tian et al.
[28] proposed RSSI-based DV-hop algorithm, where they
have incorporated the advantages of range-based as well as
range-free methods which have improved the accuracy as
compared to the previous algorithms. Zanca et al. [29] inves-
tigated the performance comparison of different localization
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algorithm. Here authors have focused on RSS-based mea-
surements only for comparison.

Chen et al. [30] proposed an improved RSSI-based algo-
rithm for a park light control and children location tracking
system.Here, they have established piecewise linear path loss
model, where only linear operation was required for RSSI-
based range estimation. Xu et al. [31] proposed a method
which illustrates the relationship function of RSSI variance
and distance. Based upon this they have established the log-
normal shadowing model where variance can be adjusted
dynamically. Their proposed method has proved that it has
self-adaptability to various environment.

Feng et al. [32] proposed anRSS-based indoor positioning
system which uses compressive sensing that recover sparse
signals from noisy environment by solving l1 minimization
problem. Liu et al. [33] proposed a 3D range-free localiza-
tion, named as hexahedral, where space is divided into a
lot of hexahedrons. Here, by simulation they were able to
achieve high accuracy. Mukhopadhyay et al. [34] proposed
a technique which combines (mean + filter), mode, (mode
+ filter), to evaluate RSS for indoor localization. El Assaf
et al. [35] proposed a localization algorithm which is used
for anisotropic wireless sensor network. The developed algo-
rithm can be used for both 2D as well as 3D scenarios.

Luo et al. [36] proposed a method for improved RSSI-
based localization which makes use of the uncertain data
mapping. Further they determined RSS data tuples and
applied a strategy which matches the data tuple patterns to
RSS data vector for localization. Lee et al. [37] proposed a
location tracking method which uses RSS values received
from Bluetooth Low Energy beacon. A method have been
imposed to reduce the noise generated in the environment by
the use of double Gaussian filter.

2.1 Problem Overview

As the primary focus on this work is on wireless sensor net-
works operating in indoor environment, GPS cannot be used.
Hence, RSS-based technique in localization is a good alter-
native. But, RSS is noisy, varies with several environmental
factors, unstable and challenging to use in practice. Hence,
intensive study is essential to understand the nature of RSS
behavior and its dependencies. In reference to these, some
problems with higher priority are:

– Selection of sensors from a group of sensors which have
almost similar characteristic for RSS is essential for dis-
tance estimation as well as for localization.

– Detailed investigation of RSS behavior at several dis-
tances in dynamic indoor environment is not done.
Hence for distance estimation and localization, thorough
analysis of the RSS behavior in various environmental
conditions is required.

– In general, log-normal path loss model for received sig-
nal strength-based localization excludes the influence of
several factors such as Tx power level, radio channels,
etc., on RSS. Hence, there is a need for specific model
for wireless sensor network.

– Various published research work on RSS-based local-
ization is simulation based rather than real-time experi-
mented work. Simulation-based work considers the RSS
uncertainty as statistical quantity instead of detailed
investigation. Hence, there is a need for detailed experi-
mental study.

Hence, investigating the above problems is of primary task
to use the RSS efficiently for distance estimation as well as
for localization.

3 Experiments and Results

3.1 Experimental Setup

The setup for the experimental work is defined as:

– Sensor nodes were deployed in several indoor environ-
ment.

– Maximum no. of sensor nodes were set to be 5.
– Sensor nodes were placed 1.22 m above the ground on
tripod stand in some experiments.

– RSS was received by the Base Station.
– Installed architecture was 2D.
– Deployed sensor nodes were static.

3.1.1 Basic Assumptions for the Experiment

– The network area used for the experimental purpose is a
fixed M × N area with length M (6 ft) and width N (3
ft) and K (5) number of sensors.

– Homogeneous sensor nodes were used as they possess
the same transmission range as well as the same initial
energy.

– As we are using the static model, location of the anchor
sensors and the BS remained unchanged.

3.1.2 Software and Hardware Setup

In this experimental work, we have used software platform
Moteview for configuring IRISmotes andMATLABR2015a
for computation. To carry out the experiment, we have used
both hardware ( Core i7 Intel 4790 CPU 3.60GHz processor,
64 bit for server, IRIS motes) and software (Moteview and
MATLAB). The architecture used to carry out the analysis
involved five nos of XM2110 IRIS (product of MEMSIC
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Fig. 1 Wireless sensor network setup

[38]) sensor nodes (one BS and other four communicating
nodes) as shown in Fig. 1.

Base Station, i.e., nodeAwasmounted on aMIB520 Inter-
face Board and was connected to a PC ( Core i7 Intel 4790
CPU 3.60GHz processor, 64 bit) via USB port. Base Sta-
tion was programmed with XMeshBase firmware to act as a
receiver. All other nodes were programmed to transmit the
packets. BS had to record all the RSSI data. RF power level
was set to 3.2 dBm (level 0). Antenna connected to each sen-
sor node is of 1.2 inch omni-directional with the gain of 3
dBi. Data transmission rate was 250 kbps. The frequency of
operation was kept 2.4 GHz with IEEE 802.15.4 standard for
communication.

3.2 Experimental Analysis

In this paper, for our experimental setup, we have considered
four phases which are as below:

– Phase-I: Selection of nodes based on the experimental
results from RSSI variation.

– Phase-II: RSSI measurement in the area of interest.
– Phase-III: Use of the measured RSSI in an efficient man-
ner for shadowing model analysis.

– Phase-IV: Localization of the unknown node.

3.2.1 Phase-I: Selection of Sensor Nodes

The flow chart to select sensors to deploy for the localization
purpose is shown in Fig. 2.
Selection of Tx power level:
Herewe intend to verify the fluctuations introduced due to the
several sensors at different power levels. For this purpose, we
have deployed 4 sensors (One BS and other communicating
nodes) as shown in Fig. 3. Received values of the RSSI from
3 different nodes were recorded in the time interval of 5min
till 30min. Then mean of the RSSI is calculated. Figure 4
shows the variation of mean RSSI to the different power
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Fig. 2 Flow chart to select the sensors for localization

Fig. 3 Sensor network deployment

levels. Range of received power for different nodes is shown
in the following Table 3:

From Fig. 4, it can be inferred that:

– With same transmitting power, Mean RSSI values for
same receiver nodes were different.

– Variation between the nodes at the same position was
small (approx.), except some points even if we have
increased the transmitting power. We found that mean
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Table 3 Maximum and minimum value of mean RSSI for different
nodes

Node ID Maximum mean RSSI in dBm Minimum RSSI in dBm

100 −39.14 −60.14

200 −46.85 −63.57

300 −40.85 −61.42

RSSI value from the node id 100 was always the highest
except one mean measurement.

For our experiments, we have chosen 0 power level, i.e., 3.2
dB for all the sensor nodes.
Selection of radio channels:
ZigBee and the IEEE 802.15.4 have divided the band of 2.4
GHz into 16 channels (i.e., 11–26). As wavelength is differ-
ent for different RF channels, RSSI gets influenced with the
variation in wavelength.

Here different sensor nodes were used to send RSSI and
five different frequency channels (i.e., Channel 14, Channel
17, Channel 20, Channel 23, Channel 26), among 16 chan-
nels as discussed above were used as test frequency bands
as shown in Figs. 5, 6 and 7. Measurements of RSSI were
recorded with increasing distance from 1 to 6m between Tx
and Rx . In this experiment, mean values of RSSI are based
on 7 measurements on each distance for each node at time
interval of 5min till 30min. It was observed that:

– Using same frequency channel for each node, RSSI val-
ues kept on decreasing with increase in distance.

– Different frequency channels have shown more similar
behaviors within 3m and more deviation after that, as
it is observed from Figs. 8, 9, 10, 11, and 12. Reason
being influence of multipath fading is less at the shorter
distance from the transmitter.

– Due to the presence of several environmental factors, sud-
den changes in the value of RSSI were unexpected.
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Fig. 6 RSSI measurement at Node ID 200 with various channels
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In available channels other than channel 26, rate of packet
loss due toWiFi is large. Hence for our experiments, we have
chosen the channel 26, as it is WiFi free.
Fluctuation in RSSI due to the movement of the Receiver with
fixed Transmitter:
In this experiment,wehave selected the channel 26 andwave-
length of the radio used was calculated to be 4.9212598 inch
which is 12.49 cms as the length of the antenna used was 1.2
inch (approx). In the above experiments as discussed earlier,
receiver was fixed and measurements were recorded. Here
we have moved the receiver to a maximum range of circle
with the diameter of 12.49 cms as shown in Figs. 13 and 14.

Here maximum RSSI of the mobile receiver are recorded
at each distance to compare with the maximum RSSI
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Fig. 13 Mobility of the receiver with fixed sensor node at different
distances
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Fig. 14 Maximum RSSI with mobile receiver

recorded for the static receiver. From Fig. 15, it can be
inferred that the RSSI graph shows a log-normal distribu-
tion as:

– Difference in RSSI values of the node at 1 m and at 2 m
is about 15 dBm.

– Difference in RSSI values of the node at 2 m and at 3 m
is about 9 dBm.

– Difference in RSSI values of the node at 4 m and at 5 m
is about 3 dBm.

– Difference in RSSI values of the node at 5 m and at 6 m
is about 0 dBm.
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which follows the log-normal signal model though it is dif-
ficult to move the receiver in practical scenarios.

3.2.2 Phase-II: RSSI Measurement

Here our first step was to analyze the RSSI data received
through the experiment conducted.

With reference to Fig. 16, Sensor Node A represents the
Base Station (BS) and PC is the server. Sensor Nodes B, C,
D, E represent the communicating nodes.
We have taken the measurement using the architecture as
shown in Fig. 16 and implemented the sensors as shown in
Fig. 17. Each sensor node was placed on tripod stand for
some experiments with a height of 1.2192 m.

Fig. 17 Sensor nodes installed on tripods in research lab

RSSI values were recorded at difference distances 1, 1.25,
1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5,
4.75, 5, 5.25, 5.5, 5.75, 6m. Due to the presence of environ-
mental noise, the recorded RSSI was quite fluctuating over
time. Hence, we have taken 12 samples of RSSI at the same
place in different time span from 0 to 30min.

From this measured value as shown in Tables 4 and 5, we
have found that some RSSI values were too large or too small
as compared to other values.

Fluctuation of RSSI in time with different distances is
shown in Figs. 18 and 19. To eliminate the contained error
in the experimental results, we have used Gaussian filter to
mitigate all the abnormal RSSI values caused by the envi-
ronmental factors. The PDF (Probability Density Function)
of Gaussian distribution (μ, γ 2) is formulated as

f(RSSI ) = 1√
2πγ

e−(RSSI−μ)2/2γ 2
(1)

where

μ = 1

k

k∑

i=1

RSSIi (2)

tends to be the mean of RSSI values in k no. of tests and

γ 2 = 1

k − 1

k∑

i=1

(RSSIi − μ)2 (3)

tends to be the variance.
In this paper, we have set the filter range [39,40] as [μ −√
3γ , μ + √

3γ ]. The measured RSSI values outside this
specified range is ignored (marked bold in Tables 4 and 5).
Still the output of theGaussian filter containsmuch variations
in RSSI. Hence, we need to apply the averaging filter to
obtain the averageRSSI values for the purpose of calculation.
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Table 4 Fluctuated RSSI values

RSSI/distance 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25

RSSI 1 −31 −40 −46 −40 −40 −43 −46 −67 −49 −52

RSSI 2 −31 −28 −40 −28 −43 −43 −46 −46 −49 −52

RSSI 3 −40 −34 −28 −46 −46 −28 −40 −46 −52 −49

RSSI 4 −34 −31 −34 −31 −40 −31 −64 −40 −52 −49

RSSI 5 −28 −28 −34 −34 −37 −40 −67 −64 −46 −46

RSSI 6 −28 −31 −31 −34 −37 −40 −46 −46 −55 −49

RSSI 7 −34 −28 −34 −28 −31 −40 −52 −46 −49 −49

RSSI 8 −28 −34 −28 −46 −31 −46 −46 −52 −49 −55

RSSI 9 −31 −28 −46 −28 −52 −52 −46 −46 −40 −43

RSSI 10 −34 −31 −31 −28 −40 −52 −28 −28 −55 −40

RSSI 11 −31 −31 −28 −34 −52 −46 −31 −40 −49 −55

RSSI 12 −28 −28 −28 −31 −31 −58 −40 −31 −43 −49

μ −31.5 −31 −34 −34 −40 −43 −46 −46 −49 −49

γ 3.57 3.61 6.64 6.64 7.34 8.53 11.36 11.36 4.39 4.39

μ − √
3γ −37.68 −37.25 −45.50 −45.50 −52.71 −57.77 −65.67 −65.67 −56.60 −56.60

μ + √
3γ −25.31 −24.74 −22.5 −22.5 −27.28 −28.23 −26.33 −26.33 −41.39 −41.39

Table 5 Fluctuated RSSI values

RSSI/distance 3.5 3.75 4 4.25 4.5 4.75 5 5.25 5.5 5.75 6

RSSI 1 −55 −52 −55 −58 −58 −64 −70 −76 −82 −94 −88

RSSI 2 −55 −52 −55 −58 −58 −64 −70 −76 −82 −88 −88

RSSI 3 −52 −55 −55 −55 −58 −64 −67 −76 −79 −88 −85

RSSI 4 −52 −58 −58 −55 −61 −61 −64 −79 −79 −85 −85

RSSI 5 −49 −55 −55 −55 −61 −73 −70 −82 −79 −82 −94

RSSI 6 −49 −40 −49 −40 −64 −70 −70 −82 −76 −82 −82

RSSI 7 −49 −52 −46 −46 −49 −70 −73 −79 −76 −82 −82

RSSI 8 −43 −52 −40 −49 −49 −61 −76 −73 −76 −79 −76

RSSI 9 −49 −40 −52 −52 −73 −64 −73 −67 −73 −79 −79

RSSI 10 −46 −55 −67 −55 −70 −61 −70 −70 −73 −76 −79

RSSI 11 −52 −70 −67 −67 −73 −70 −73 −70 −76 −76 −76

RSSI 12 −40 −61 −58 −70 −28 −43 −67 −79 −67 −73 −73

μ −49 −52 −55 −55 −58 −64 −70 −76 −76 −82 −82

γ 4.39 6.20 8.19 8.19 10.84 7.98 3.13 4.61 4.61 6 6

μ − √
3γ −56.60 −62.73 −69.18 −69.18 −76.77 −77.82 −75.42 −83.98 −83.98 −92.39 −92.39

μ + √
3γ −41.4 −41.27 −40.81 −40.82 −39.23 −50.17 −64.58 −68.02 −68.02 −71.61 −71.61

Equation used for estimation purpose is given as:

RSSI(avg) = 1

m

m∑

i=1

RSSIi (4)

The relationship of RSSI with increase in distance is rep-
resented in Fig. 20.

3.2.3 Phase-III: Shadowing Model Analysis

As discussed above, RSSI indicated the received signal
strength when the reference distance is d0 and n indicated
the path loss index. Here RSSI indicated the received power
of the sensor node in dBm, where 12 major data were
continuously measured. Hence, at 1m distance, we have
taken 12 samples received the RSSI as −31dBm (approx)
value.
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Path loss exponent n with increase in distance is satisfied
with the relation given as:

RSSI = −10 − 10 ∗ n ∗ log

[
1

d0

]
(5)

⇒ n = 10 + RSSI

10 ∗ log

[
1

d0

] (6)

⇒ J (n) = 2657.575n2 − 21606.434n + 45360 (7)

Now n can be obtained by taking derivative of the equation
(7) which is:

5315.15n − 21606.434 = 0 (8)

⇒ n = 4.06 (9)

So path loss exponent for this test experiment was found to
be 4.06.

With the above obtained parameter, Shadowing model for
our experiment is as follows:

Pr(d) = −31 − 10 ∗ 4.06 ∗ log

(
d

d0

)
+ Xγ (10)

RSSId = B − 10 ∗ n ∗ log dei (11)

where Xγ is the Gaussian distributed random variable with
zero mean in dB and with standard deviation γ ranging from
4 to 10. n is the path loss exponent. Hence, fitting curve of
Probability density of RSSI=−31dBm is given as follows:

f (RSSI ) = A ∗ e−(RSSI−53.44)2/2γ 2
(12)

where A = 0.04812. So the fitting curve of probability
becomes as:

f (RSSI ) = 0.04812 ∗ e−(RSSI−53.44)2/2γ 2
(13)

3.2.4 Phase-IV: Localization of Unknown Node

The approach to position estimation is given in the flow chart
as shown in Fig. 21.

The experiment was conducted in the indoor (2D) region
(research lab), with area of width 2m × length 6m. It was
divided into 65 points with origin point at the bottom left cor-
ner. Four red dots represent the position of the anchor nodes,
and blue dots represent the test points for the unknown node.
Figures 22 and 23 show the architecture and real-time place-
ment of sensor nodes in lab environment. Placement of four
Anchor Nodes J , K , L , M with the coordinates (0,0), (0,2),
(6,0), (6,2) and test points for the unknown node having the
coordinates (x, y) which has to be determined, is shown in
Fig. 24. The pseudocode for location estimation is presented
in Algorithm 1. The input to the algorithm comprises of k
RSSI values at n different distances. At first we record 12
RSSI values at different time interval and then compute the
mean and variance of all the 12 RSSI at each distance li
{i equals 1, 1.25, 1.5 …6m} (lines 3–10). To eliminate the
abnormal values received at each distances, we need to com-
pute [μ−√

3γ , μ+√
3γ ](Gaussian Filtering) (lines 11 and

123



Arab J Sci Eng (2018) 43:4145–4159 4155

Fig. 21 Flow chart for
localization
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12). To refine the received RSSI values, we use averaging
filter (lines 14–18). Now distance is estimated by de(i) (lines
19 and 20). At last location is computed (line 21).

Let RSSIi be the received signal strength measured
between the unknown node Q and the anchor nodes.
Received RSSI was optimized using Gaussian and averag-
ing filter. dei is the estimated distance between the unknown
node Q and the anchor nodes, which is calculated by a group
of nonlinear equations as:

(xQ − xJ )
2 + (yQ − yJ )

2 = d2e1
(xQ − xK )2 + (yQ − yK )2 = d2e2
(xQ − xL)2 + (yQ − yL)2 = d2e3

(xQ − xM )2 + (yQ − yM )2 = d2e4

(14)

By subtracting fourth equation from first, second and third
equation of Eq. (14), we get
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Fig. 23 Real-time placement of sensors for location Estimation
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x2J − x2M − 2(xJ − xM )xQ

+y2J − y2M − 2(yJ − yM )yQ = d2e1 − d2e4 (15)

Algorithm 1 Location Estimation
1: INPUT: k no of RSSI samples at l no of distances.
2: OUTPUT: Estimated coordinates of test points.
3: for i = 1 : l do
4: Initialize μ(i) = 0
5: for j = 1 : k do
6: Compute the mean μ.

μ(i) = μ(i) + 1

k
RSSI( j)

7: end for
8: for j = 1 : k do
9: Compute the variance γ .

γ 2(i) = γ 2(i) + 1

k − 1
(RSSI( j) − μ(i))2

10: end for
11: Compute μ(i) − √

3γ (i), μ(i) + √
3γ (i)

12: Eliminate the RSSI values which are out of the range of [μ(i) −√
3γ (i), μ(i) + √

3γ (i)] and recompute mean μ and variance γ

13: end for
14: for i = 1 : l do
15: Initialize RSSIavg(i) = 0
16: for j = 1 : m do
17: Compute RSSI by using averaging filter

RSSIavg(i) = RSSIavg(i) + 1

m
RSSI( j)

18: end for
19: Estimate the distance de(i) by LS

de(i) = 10

B + RSSIavg(i)

10n

20: end for
21: Compute the estimated location

X = p−1q

x2K − x2M − 2(xK − xM )xQ

+y2K − y2M − 2(yK − yM )yQ = d2e2 − d2e4 (16)

x2L − x2M − 2(xL − xM )xQ

+y2L − y2M − 2(yL − yM )yQ = d2e3 − d2e4 (17)

Equations (15)–(17) can be shown as pX = q, where

p =
⎛

⎝
2(xJ − xM ) 2(yJ − yM )

2(xK − xM ) 2(yK − yM )

2(xL − xM ) 2(yL − yM )

⎞

⎠ (18)

q =
⎛

⎝
x2J − x2M + y2J − y2M − d2e1 + d2e4
x2K − x2M + y2K − y2M − d2e2 + d2e4
x2L − x2M + y2L − y2M − d2e3 + d2e4

⎞

⎠ (19)

and

X =
(
xQ
yQ

)
(20)
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(
xQ
yQ

)
=

⎛

⎝
2(xJ − xM ) 2(yJ − yM )

2(xK − xM ) 2(yK − yM )

2(xL − xM ) 2(yL − yM )

⎞

⎠
−1

·
⎛

⎝
x2J − x2M + y2J − y2M − d2e1 + d2e4
x2K − x2M + y2K − y2M − d2e2 + d2e4
x2L − x2M + y2L − y2M − d2e3 + d2e4

⎞

⎠ (21)

In our experimental environment, signal propagation is
affected by wall, building material even by movement of
the human being. Hence it is difficult to estimate the param-
eter accurately in these environment. RSSI in general gets
affected bymultipath and shadowingwhich tends to the inac-
curacy in the distance estimation which in turn affect the
localization procedure. So, we have introduced noise in the
distance estimation. Let the new noisy estimation be d̃, then
Eq. (14) can be rewritten as:

(x̃Q − xJ )
2 + (ỹQ − yJ )

2 = d̃2e1
(x̃Q − xK )2 + (ỹQ − yK )2 = d̃2e2
(x̃Q − xL)2 + (ỹQ − yL)2 = d̃2e3

(x̃Q − xM )2 + (ỹQ − yM )2 = d̃2e4

(22)

where (x̃, ỹ) is estimated coordinate of the unknown node
Q. Hence, the equation can be written as:

( ˜xQ
ỹQ

)
=

⎛

⎝
2(xJ − xM ) 2(yJ − yM )

2(xK − xM ) 2(yK − yM )

2(xL − xM ) 2(yL − yM )

⎞

⎠
−1

·
⎛

⎝
x2J − x2M + y2J − y2M − d̃2e1 + d̃2e4
x2K − x2M + y2K − y2M − d̃2e2 + d̃2e4
x2L − x2M + y2L − y2M − d̃2e3 + d̃2e4

⎞

⎠ (23)

By subtracting Eq. (23) from Eq. (21), we get the range
error to be

( ˜xQ − xQ
ỹQ − yQ

)
=

⎛

⎝
2(xJ − xM ) 2(yJ − yM )

2(xK − xM ) 2(yK − yM )

2(xL − xM ) 2(yL − yM )

⎞

⎠
−1

·
⎛

⎝
(d̃2e1 − d2e1) − (d̃2e4 − d2e4)
(d̃2e2 − d2e2) − (d̃2e4 − d2e4)
(d̃2e3 − d2e3) − (d̃2e4 − d2e4)

⎞

⎠ (24)

Z =
⎛

⎝
(d̃2e1 − d2e1) − (d̃2e4 − d2e4)
(d̃2e2 − d2e2) − (d̃2e4 − d2e4)
(d̃2e3 − d2e3) − (d̃2e4 − d2e4)

⎞

⎠ (25)

=
⎛

⎝
(10(10+RSSI1)/10n1 − 10(10+RSSI1)/10nPL1 ) − (10(10+RSSI4)/10n4 − 10(10+RSSI4)/10nPL4 )

(10(10+RSSI2)/10n2 − 10(10+RSSI2)/10nPL2 ) − (10(10+RSSI4)/10n4 − 10(10+RSSI4)/10nPL4 )

(10(10+RSSI3)/10n3 − 10(10+RSSI3)/10nPL3 ) − (10(10+RSSI4)/10n4 − 10(10+RSSI4)/10nPL4 )

⎞

⎠ (26)

At each test point, we have estimated the coordinates
several times. we have considered the average of all the coor-
dinates as the final estimated coordinates. Let

˜xQ j = 1

m

m∑

l=1

xQl and ˜yQ j = 1

m

m∑

l=1

yQl (27)

where l ⇒ no. of times coordinates are estimated, m = 7
for our experiment and j ⇒ different test point location.
As (x̃ j , ỹ j ) is estimated coordinate of the unknown node Q,
hence, error-based performance evaluation between real and
estimated coordinates [16,41–44] is given as:

ERSSI = 1

k

k∑

j=1

√
(xQ j − ˜xQ j )

2 + (yQ j − ˜yQ j )
2 (28)

4 Conclusion and Future Work

In this paper, we have experimented on RSSI-based location
technique in wireless sensor network. To get the optimum
RSSI values, we have conducted several experiments which
carried large amount of experimented data. We have also
estimated the related RSSI influencing parameters and have
efficiently used Gaussian filtering for optimizing the RSSI
values. Analysis of RSSI variation due to power, frequency
as well as movement of receiver was done extensively. The
proposed position estimation algorithm combined the use
of sensor selection process as well as the Gaussian filtering
and average filteringwith the implementation of trilateration,
which helped to estimate the position of the unknown nodes.

Some of the significant contributions of this paper are as
follows:

– Implementation of a wireless sensor localization net-
work for distance estimation and localization of deployed
unknown node.

– Experimental analysis of small wireless sensors for dis-
tance estimation and physical movement monitoring.

– RSSI values have been optimized with the help of Gaus-
sian filtering at different distances.

– Proposed localization algorithm for location estimation
of the unknown node.
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In accord with the results obtained in our research, we con-
template to conduct the studies on these following issues in
future.

– When anchor nodes are replaced, the mean and variance
values of the RSS changed significantly. So, we intend
to repeat our experiments with more number of samples
as well as with the presence of more number of obstacles
in various environmental conditions and analyze the new
results.

– As shadowing effect possesses much influential role in
location accuracy, we intend to improvise the accuracy
by conducting some experiments.

– Number of anchor nodes play an important role in accu-
racy, we intend to increase the number of anchor nodes
in our future work.

– In future, we intend to extend the proposed approach to
comply with other several localization approach such as
global positioning system, Wireless Fidelity etc.
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