
Arab J Sci Eng (2018) 43:645–660
https://doi.org/10.1007/s13369-017-2739-0

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Cloud Computing: A Multi-workflow Scheduling Algorithm
with Dynamic Reusability

Mainak Adhikari1 · Santanu Koley1

Received: 17 January 2017 / Accepted: 13 July 2017 / Published online: 21 July 2017
© King Fahd University of Petroleum & Minerals 2017

Abstract Cloud computing provides a dynamic environ-
ment of well-organized deployment of hardware and soft-
ware that are common in nature and the requirement for
propping up heterogeneous workflow applications to real-
ize high performance and improved throughput where the
most demanding task is multiple workflow applications sur-
rounded by their fixed deadline. Theseworkflow applications
consist of interconnected jobs and data. Nevertheless, hardly
any initiations are tailored on multi-workflow scheduling
exertion. These scheduling problems have been considered
methodically in cloud atmosphere. Accessibility of the com-
puting resources on the data center (DC) provides the exact
time of execution of each process, whereas the execution
time of every process within a workflow is pre-calculated
in the majority of the existing multi-workflow scheduling
problem. System overhead so far is an additional concern at
the same time as dynamically generating virtual machines
(VMs) with salvage them dipping the power eating. The aim
of this paper is to reduce the execution time of every job
and finalize the execution of all workflow within its dead-
line by producing VMs dynamically in DC and recycle them
as necessary. We recommend a dynamic multi-workflow
scheduling algorithm formally named as competent dynamic
multi-workflow scheduling (CDMWS) algorithm. Simula-
tion process describes one of the best algorithms so far in
terms of performance among subsistent algorithm andmoves
toward a new era of multi-workflow relevance.

B Santanu Koley
santanukoley@yahoo.com

Mainak Adhikari
mainak.ism@gmail.com

1 Department of Computer Science and Engineering,
Budge Budge Institute of Technology, Kolkata, India

Keywords Heterogeneous workflow application · Cloud
computing · Multi-workflow scheduling · Virtual machine ·
Deadline · Data center

1 Introduction

Cloud computing [1–3] is a new-fangled transformational
paradigm which permits dynamic resource allocation using
resource pool with an assortment of combination techniques
from distributed computing, high-performance computing
as well as platform virtualization techniques. Cloud service
providers akin to Amazon, Google or Microsoft mingles
numerousDCs [4] on poles apart geographical locations con-
sisting of an enormous quantity of host servers which can
generatemanifoldVMs as per request. It provides on demand
services as software, hardware, platforms are included in it
to serve user as pay-per-use concept. Cloud service provider
(CSP) [4] ensures Quality of Service (QoS) [5,6] in Ser-
vice Level Agreement (SLA) [7] to guarantee improved class
on dissimilar bound of service. Dissimilar scientific appli-
cations are mold by workflows that have been generally
used for a set of organized tasks via data. These work-
flows encompass considerable task that desires a number
of computing resources. They must complete within certain
pre-determined time edges known as the deadline. This is
necessary for a cloud environment to complete a singlework-
flow with minimum resources. This is really a challenging
task to achieve such workflow with a certain deadline.

Thewastage of computing resources is exceptionally ordi-
nary in those DCs where simple multi-workflow scheduling
problems are taken up. Here tasks have pre-computed exe-
cution time depending upon VMs. The diminution of the
deployment of the server, shrinking flexibility, efficiency and
elasticity of the resources are also the consequence of pre-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-017-2739-0&domain=pdf
http://orcid.org/0000-0001-8082-1332

646 Arab J Sci Eng (2018) 43:645–660

configured VM. Now, this is clear enough to comprehend
about the system that cannot be adequate to hold a wide num-
ber of user applications. Approximating the execution time
of each task on the fly based on the SLAmatrices of thework-
flow application and generating the right VMs dynamically
can enhance the scalability and elasticity of the resources of
cloud DC and facilitates to switch a huge number of user
applications.

In this paper,we recommended a dynamicmulti-workflow
scheduling algorithm entitled as competent dynamic multi-
workflow scheduling (CDMWS) in a cloud environment.
Dynamic approximation of the period of accomplishment
for every task is the focal point of the suggested algorithm.
It also portrays the generation of appropriate VMs for carry-
ing out those tasks with bare minimum resource requirement
that reuse the VMs. Here, it is mandatory for all tasks of a
workflow to complete their execution within the user-defined
deadline. Construction of the VMs dynamically can augment
the flexibility and elasticity of the cloud, and reusability of the
VMs can trim down the overhead and the rate of power con-
sumption. We become accustomed by means of a proficient
mechanism to come across the execution time of each task
within the application deadline even though it is not avail-
able. Now we are in a situation to articulate on the subject
of our proposed algorithm that is better than existing algo-
rithms with respect to various performance metrics by using
through simulation.

We have organized our paper as in dissimilar sections.
Section 2 describes the related work done so far in the area
of workflow scheduling. Section 3 properly describes the
problem along with problem formulation and the algorithm
itself. The assessment parameter andperformance-associated
issues are highly structured in Sect. 4. As a final point, Sect. 5
concludes the paper and discusses about the opportunities for
research direction.

2 Related Work

The cloud computing is the topical contraption in the vicin-
ity of distributed approach and putting on the magnetism of
the researchers throughout the world. The service-oriented
approach [8] engages in recreation aswin–win circumstances
for the service providers as well as users who put together
so popular today that entire services are moving in it. Now
about workflow scheduling in a cloud environment is one of
the well-liked neighborhood of research as many researchers
are interested in it and did remarkable work so far for cloud
[9–23] DCs. At this point, we analyze a number of associ-
ated scheduling algorithms for the data center based on cloud
atmosphere.

Paton et al. [9] presented an optimized workflow schedul-
ing algorithm based on a utility function. The algorithm

Tk15

Tk16

Tk17
Tk18

Tk19

Workflow-4
Deadline: 45

Tk11

Tk13 Tk12

Tk14

Tk7 Tk8

Tk9

Tk10

Workflow-2
Deadline: 35

Tk1 Tk2 Tk3

Tk4 Tk5

Tk6

Workflow-1
Deadline: 30

Workflow-3
Deadline: 40

Fig. 1 A set of four workflows with its deadlines

Tk1 Tk2 Tk3

Tk4 Tk5

Tk6

Tk7 Tk8

Tk9

Tk10

Tk11

Tk13 Tk12

Tk14

Tk15

Tk16

Tk17
Tk18

Tk19

Tk0

Tk20

Fig. 2 A sample multi-workflow application

comes across the explicit desirability of dissimilar workloads
with an evaluation stratagem.

Hu et al. [10] proposed an efficient workflow scheduling
algorithm which distributes the task to the servers such a
manner that all tasks of a workflow should complete their
execution within time using a minimum number of servers.

Fito et al. [11] developed an economicweb hosting system
called as CHP. The CHP endows with scalable web services

123

Arab J Sci Eng (2018) 43:645–660 647

(a) (b)

(c) (d)

Fig. 3 Scientific workflows. a Epigenomics, b Montage, c LIGO, d Cybershake

bymeans of diverse cloud resources. The aimof the algorithm
is to capitalize on the profit of the service provider.

Wu et al. [12] extended a PSO-based near-optimal work-
flow scheduling technique. The objective of the algorithm is
to minimize the execution time of the tasks while meeting
the scheduling constraints such as deadline and budget using
some heuristic approaches. The algorithm uses a fixed set of
VMs which shrinks elasticity of the cloud resources and is
deficient in the deployment of resources.

Zhu et al. [13] expanded a multi-tire-based web appli-
cations using some virtualization technology in cloud data
centers. The purpose of the algorithm is to satisfy users SLA
matrices and maximize the overall profit of the providers.

Mao and Humphrey [14] proposed a dynamic workflow
scheduling algorithmon cloud computing environment. Here
cloud provider contains various types of VMs as a leased

manner based on the requirements of the user applications.
The key idea of the algorithm is to reduce the execution time
of the tasks using some heuristic approaches, but it fails to
produce a near-optimal solution.

Byun et al. [15] suggested an online-based workflow
scheduling algorithm to minimize the execution time of the
tasks using an optimal number of resources. The provider
contains same types of VMs as a leased manner based on
the requirement of the application. The schedule and the
resources are updated periodically every time interval based
on the current status of the running VMs. This algorithm
takes the advantage of elasticity of cloud but fails to consider
the heterogeneity nature of computing resources.

Sharma et al. [16] advised a workload scheduling algo-
rithm to select an appropriate resource for each task based
on pricing and elasticity mechanism to optimize the cost of

123

648 Arab J Sci Eng (2018) 43:645–660

Fig. 4 Example of multi-workflow combination with two scientific
workflows

the server. This algorithm is applicable to single workflow
application without considering the SLA matrices but not to
mixed workload application.

Bonvin et al. [17] widened a decentralized algorithm
in public cloud environment for allocating cloud resources
dynamically for different applications while meeting their
SLA requirements. This algorithm is worked over web-based
application only.

Abrishami et al. [18] offered a QoS-based workflow
scheduling algorithm based on partial critical path approach
to minimizing the cost of the tasks while meeting a deadline.
This algorithm takes the advantage of the elasticity of the
cloud but fails to consider heterogeneous nature of the com-
puting resources by assuming only one type of VM present
in the cloud.

Abrishami et al. [19] designed a static workflow schedul-
ing algorithm in a cloud environment. The algorithm is based
on workflow’s partial critical paths, and it considers the basic
cloud features such as VM heterogeneity, pay-as-use and
time interval pricing model. The algorithm minimizes the
execution cost based on heuristic approaches over all tasks
present in a partial critical path on a single VM which can
finish the tasks before their latest finish time. The algorithm
produced a task-level optimization but fails to produce a near
optimization technique and to utilize the whole workflow
structure and characteristics to generate a better solution.

Malawski et al. [20] devised various types of dynamic and
static algorithms to maximize the amount of work completed
while meeting QoS constraints such as deadline and budget.

The algorithm is robust in nature that the estimated execution
time of task may vary based on uniform distribution of tasks
and cost safety margin to avoid generating a schedule that
goes over budget. However, this algorithm considers only
a single type of VM ignoring the heterogeneous nature of
clouds.

Xiao et al. [21] make a blueprint of a dynamic resource
provisioning algorithm which optimizes the resource allo-
cation to the virtual machines based on the application
demands.

Antonescu et al. [22] intended a prediction-based alloca-
tion mechanism for allocating the virtual machines to the
data center in order to maximize the profits and meets all
SLA metrics.

Rodriguez et al. [23] planed another PSO-based work-
flow scheduling algorithm to minimize the overall workflow
execution cost while meeting with the scheduling constraint
such as user-defined deadline. The algorithm produces task
to resource mapping with higher accuracy in terms of meet-
ing deadline. The solution considers the heterogeneity of
resources present in the cloud that can be dynamically
acquired and released resources and charged on a pay-per-use
basis.

3 Proposed Work

This proposed work describes the main idea of dynamic
reusability for virtual machines for different kind of tasks.
Here, mathematical expressions and the algorithms are used
to prove the above said. A single task is showing with its
subtasks in parallel. Independent tasks can reuse the VMs
which had previously been used by some other task.

3.1 Problem Statement

A multi-workflow (WFm) application WFm = {Wj , j =
1, 2, 3, . . . , n} consists of a set of workflow applications
which arrive at a time to the service provider. Let WF (T k,
De) be a workflow, which is represented by a direct acyclic
graph (DAG), where Tk is the set of tasks and De is the set of
directed edges between the tasks. The directed edges of the
DAG represent the dependency among the tasks which also
represent the communication cost among them.

An edge Dei j T ki, T k j exists if there is a dependency
between task T ki and T k j . Task T ki is said to be the pre-
decessor of T k j and T k j is said to be the successor of T ki.
Based on this organization, a successor task cannot be exe-
cuted until its entire predecessor tasks are completed their
execution. LetDl be the deadline of workflowWF. Note that
the deadline of each individual task is not available. Figure 1
shows the set of four sample workflows with a set of some
independent tasks and a deadline for each of the workflows.
The arriving time of all the four workflows must be same.

123

Arab J Sci Eng (2018) 43:645–660 649

Fig. 5 Multi-workflow scheduling over Epigenomics and Montage workflow. a Average CPU utilization, b average VM utilization, c average
makespan-to-deadline ratio

From the set of simple workflows, we create a simple
workflow with the help of another two dummy tasks—one is
called pseudo entry task T kEN and another one is pseudo exit
task T kEX . The execution time of these two tasks and com-
munication cost between those tasks with other tasks must
be zero. Those tasks only help to create a multi-workflow
DAG using the help of a set of some simple workflow DAGs.
Figure 2 shows the multi-workflow DAG which combines
the four workflows as shown in Fig. 1. In Fig. 2, task Tk0 is
pseudo entry task and Tk20 is pseudo exit task. Tk0 helps to
combine all root nodes of the DAGs, and Tk20 helps to com-
bine all the leaf nodes of the DAG. From Fig. 2, we observe
that there exist nine possible paths, each path having set of
tasks, e.g., (path labeled: 0-1-4-6-20). Note that the deadline
of each workflow is Dei = Dek, k = 1, 2, 3 . . . N }. Tasks

are also categorized into levels; tasks belonging to each level
can be executed in parallel, e.g., Level 1: (labeled 1, 2, 3, 7,
8, 11 and 15). The size of each task is represented in the form
of αMI (million instructions).

3.2 Proposed Algorithm

The proposed algorithm is divided into two phases, update
and task-VMmapping. The objective of the update phase is to
set execution time for each task with the help of the deadline
of the workflow and the communication cost between the
tasks and to find a required capacity VM to execute each task.
In task-VM mapping phase, the tasks are scheduled to the
VMs dynamically and reuse the VMs for those tasks which
required same capacity VM to execute. The VM reusability

123

650 Arab J Sci Eng (2018) 43:645–660

Fig. 6 Multi-workflow scheduling over LIGO and Epigenomics workflow. a Average CPU utilization, b average VM utilization, c average
makespan-to-deadline ratio

technique of task-VM phase reduces the system overhead
and power consumption. They are discussed as follows.

Update Phase Pt1, Pt2, Pt3, . . ., Ptq are the q paths that
exist inWFm and T ki1, T k

i
2, T k

i
3, . . . , T k

i
t are the set of tasks,

and Dei12, De
i
22, De

i
32,…, Deit (t−1) are the edges belonging

to a path Pti , and the deadline of each path is Dek which
depends on the workflow of the multi-workflow application.
The size of a task T kij is represented by αMI

i
j andCi (T ki x ;

T ki y) is the communication cost between the tasks T kix and
T kiy where T k

i
x , T k

i
y ε Pti . Let us consider that all the tasks

belong to the path Pti as a single virtualized task, i.e., T ki ,
whose size is αMI

i which is computed as follows:

αMI i =
t∑

j=1

αMI ij (1)

The execution time Ex(T i) of task T i is calculated as
follows:

Ex(T ki) =
⎛

⎝Dek −
t−1∑

j=1

Ci (T kij , T k
i
j+1) + (T koh × t)

⎞

⎠

(2)

where T koh is the overhead time during task-VM mapping.
Let CPti be the capability (in terms of MIPS) of a VM that
requires to execute each task belonging to the path Pti in
order to execute all the tasks within Dek depending on the
workflow of the multi-workflow application. The capability
CPti is calculated as follows:

CPti = αMI i

Dek(T ki)
(3)

123

Arab J Sci Eng (2018) 43:645–660 651

Fig. 7 Multi-workflow scheduling over Epigenomics and Cybershake workflow. a Average CPU utilization, b average VM utilization, c average
makespan-to-deadline ratio

Initially, the execution time of each task is initial-
ized to −1. In other words, the execution time of tasks
is not available. If the execution time αET

i
j of a task

T kij is −1, the αET
i
j is estimated as per the following

equation:

ET i
j = αMI ij

C Pti
(4)

Consider a situation, T kai ε Pta and T kbi ε Ptb where
T kai = T kbi . The capability of VMs requires to execute T kai
and T kbi which are CPta and CPtb, respectively, such that

T kai and T kbi have execution having ET a
i and ET b

i . Then,
the execution time of task T kai (T k

a
i = T kbi) is updated as

follows:

ET a
j = ET b

j =
⎧
⎨

⎩

αMIai
C Pta iff CPta > CPtb

αMIbi
C Ptb

iff CPtb > CPta
(5)

Task-VM Mapping Here, tasks are mapped onto the VMs
level wise. Let multi-workflow WFm organized into levels l
levels, L0, L1, L2. . . Ll−1. The number of tasks belonging
to a level Li is labeled as |Li |. Therefore, the number of

123

652 Arab J Sci Eng (2018) 43:645–660

Fig. 8 Multi-workflow
scheduling over LIGO and
Montage workflow. a Average
CPU utilization, b average VM
utilization, c average
makespan-to-deadline ratio

VMs required to execute all the tasks (in parallel) belong-
ing to the level Li is |Li |. Let us consider level L0 first and
T k10, T k

2
0, T k

3
0 . . . T k|Li |

0 are the tasks belonging to the level.
Using Eqs. (3), (4) and (5), the VMM creates and assigns a
corresponding VM to all the tasks. But if the task required
T kbi a CPtb capacity VM which is already created for the
task T kai with capacityCPta whereCPta = CPtb and then
the VMM assigned the task T kbi to the earlier VM without
creating a new VM. This reduces the overhead of the VMM
as well as the DC. Once the execution all the tasks are com-
pleted, the VMM starts creating and scheduling VMs for the
execution tasks belonging to the next level. The VMM halts
only after completion of all task in all the levels. Let Pt(Tk)
and St(Tk) be the set of predecessor and successor of task Tk.
Using the following equations, starting time (ST) and com-
pletion time (CT) of a task are calculated. The starting time
ST j of task T k j is computed as

STj =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, iff T k j ∈ L0

CT i + T koh, iff ∀ k �= i,CTi > CT k, T kk,

T ki ∈ P(T k j)
(6)

Note that the overhead time Toh is added only when a new
VM is created to execute the task Tj ; otherwise, its value
is zero. The completion time CT j of task Tj is derived as
follows

CTj =

⎧
⎪⎪⎨

⎪⎪⎩

ETj , iff Tj ∈ L0

CT i + ETj , iff ∀ k �= i,CTi > CT k, Tk,

Ti ∈ P(Tj)

(7)

123

Arab J Sci Eng (2018) 43:645–660 653

Fig. 9 Multi-workflow scheduling over Montage and Cyber Shake workflow. a Average CPU utilization, b average VM utilization, c average
makespan-to-deadline ratio

4 Performance Evaluation

In this section, we present the simulation results of proposed
CDMWS algorithm.

We assess the proposed algorithm using a combination
of some popular scientific workflows, such as Montage,
Epigenomics, LIGO and Cybershake [19]. Deadline of
each workflow is set as 100. Figure 3 provides detailed
structure of scientific workflows, and Fig. 4 shows one exam-

ple of multi-workflow which combines with two scientific
workflows—Montage and Epigenomics. To the best of our
knowledge, we are first to estimate the execution time of the
tasks dynamically and create VMs dynamically inside DC
according to the requirement of the tasks. But if the task
required a same capacity VM which already exists inside
DC, then it reuses the VM without creating a new one which
saves the system overhead and time. There is no such existing
algorithm solving the problem in a similar way.

123

654 Arab J Sci Eng (2018) 43:645–660

Fig. 10 Multi-workflow scheduling over LIGO and Cybershake workflow. a Average CPU utilization, b average VM utilization, c average
makespan-to-deadline ratio

Here,we adapted a staticmulti-workflow scheduling algo-
rithm and a dynamic multi-workflow scheduling algorithm
without VM reusability concept for the sake of comparison.
In the static algorithm, VMs are pre-configured and execu-
tion time of the task is estimated based on these VMs, and the
algorithm has adopted a best-fit strategy to schedule VMs. In
the case of dynamic scheduling, the VMs are created dynam-
ically for each task according to their requirement without
reusing them.

4.1 Performance Metrics

The simulation programs are written in Dev C++ andMatlab.
To evaluate the performance of the proposed algorithm, we
use few performance metrics elaborated as follows:

(a) Completion time: The completion time of a workflow
W is defined as the complete execution time of tasks. In
other words, when all tasks of the workflow are com-
pleted their execution, it is called the completion time
of W. It is also called makespan, denoted by MW.

(b) VM utilization: This parameter indicates that howmany
times VMs are rescheduled to execute the different tasks
after their creations. In other words, rescheduling VMs
may lead to minimizing the number of VMs. If VM
utilization is higher, it also results in saving computing
resources which can be utilized for executing few more
application.

(c) CPU utilization: This parameter indicates the maximum
CPU utilization at any instance of time while execut-

123

Arab J Sci Eng (2018) 43:645–660 655

Fig. 11 Multi-workflow scheduling over LIGO, Montage and Cybershake workflow. a Average CPU utilization, b average VM utilization, c
average makespan-to-deadline ratio

ing the task. This basically depends on the maximum
number of active VMs.

(d) Makespan–deadline ratio: This parameter indicates how
close themulti-workflow application completes its work
to its deadline.

Therefore, the ultimate objective of the proposed algorithm
is to maximize themakespan–deadline ratio, VMs utilization
and overall CPU utilization.

4.2 Performance Evaluation

Assessment method contains the comparison results of the
proposed algorithm as well as existing algorithms like

enriched workflow scheduling algorithm (EWSA) [24] and
round robin (RR), bymeans ofmulti-workflowwhichmingle
with different scientific workflows. Figures 5, 6, 7, 8, 9, 10,
11, 12, 13 and 14 illustrate the performance of the proposed
algorithm (CDMWS) with static scheduling and dynamic
scheduling in terms of VM utilization, CPU utilization and
makespan–deadline ratio using ten differentmulti-workflows
blends with some scientific workflows.

Commencing through multi-workflow scheduling like
Epigenomics and Montage workflow (Fig. 5a), we exam-
ine that the CPU utilization is higher for CDMWS as
compared to EWSA and RR. In Fig. 5b, we observe
that the VM utilization is advanced than the used algo-
rithms. From Fig. 5c, it is scrutinized that the average

123

656 Arab J Sci Eng (2018) 43:645–660

Fig. 12 Multi-workflow scheduling over LIGO, Montage and Epigenomics workflow. a Average CPU utilization, b average VM utilization, c
average makespan-to-deadline ratio

makespan-to-deadline ratio is privileged than other algo-
rithms.

As of multi-workflow scheduling resembling LIGO and
Epigenomics workflow (Fig. 6a), we inspect the CPU utiliza-
tion is higher for CDMWS as compared to EWSA and RR.
Figure 6b portrays the VM utilization is superior to the used
algorithms. Figure 6c depicts average makespan-to-deadline
ratio is advantaged than other algorithms.

The multi-workflow scheduling as Epigenomics and
Cybershake described earlier (individually) in Fig. 7a expres-
ses the CPU utilization is higher for CDMWS as measured
up to EWSA andRR. Figure 7b represents theVMutilization
is greater to the used algorithms. Figure 7c shows a picture

of average makespan-to-deadline ratio is providential than
other algorithms.

Figure 8a–c proves the comparison outcome of the pro-
posed and existing algorithms in terms of CPU utilization,
VM utilization and average makespan-to-deadline ratio for
LIGO and Montage workflow.

Here it can be noted two multi-workflow scheduling algo-
rithms combination of Montage and Cybershake describes
the proposed algorithm is at its best in terms of average CPU
utilization, average VM utilization and average makespan-
to-deadline ratio from Fig. 9a–c.

Figure 10a–c shows a picture of higher CPU, VM utiliza-
tion and makespan-to-deadline ratio on an average basis for

123

Arab J Sci Eng (2018) 43:645–660 657

Fig. 13 Multi-workflow scheduling over Epigenomics, Montage and Cybershake workflow. a Average CPU utilization, b average VM utilization,
c average makespan-to-deadline ratio

different multi-workflow scheduling algorithms like LIGO
and Cybershake.

At this time origination all the way through multi-
workflow scheduling like LIGO, Montage and Cybershake
workflow (Fig. 11a) is being examined that the CPU uti-
lization is higher for CDMWS as compared to EWSA and
RR. From Fig. 11b, we detect that the VM utilization is
highly developed than the used algorithms. From Fig. 11c,
it is analyzed that the average makespan-to-deadline ratio is
advantaged than additional algorithms. Here, we have used
three different algorithms.

Now the multi-workflow scheduling resembling like
LIGO, Montage and Epigenomics workflow (Fig. 12a) is

being examined that the CPU utilization is higher for
CDMWS as compared to EWSA and RR. From Fig. 12b,
we become aware of that the VM utilization is extremely
developed than the used algorithms. From Fig. 12c, it is ana-
lyzed that the averagemakespan-to-deadline ratio is fortunate
than supplementary algorithms. At this instant also, we have
drawn on three different algorithms.

At this moment of multi-workflow scheduling similar to
Epigenomics,Montage andCybershakeworkflow (Fig. 13a),
we give something the once-over the CPU utilization is
privileged for CDMWS as judge against to EWSA and
RR. Figure 13b renders the VM utilization is bigger to the
used algorithms. Figure 13c represents average makespan-

123

658 Arab J Sci Eng (2018) 43:645–660

Fig. 14 Multi-workflow scheduling over LIGO, Epigenomics, Montage and Cybershake workflow. a Average CPU utilization, b average VM
utilization, c average makespan-to-deadline ratio

to-deadline ratio is advantaged than other algorithms. Once
more three different multi-workflow scheduling algorithms
are utilized.

At this juncture, we use four different multi-workflow
scheduling algorithms like LIGO, Epigenomics, Montage
and Cybershake. The best part is once again we find average
CPU utilization, VM utilization and average makespan-
to-deadline ratio much higher than others. Figure 14a–c
describes the whole theory as proven one.

Finally, we observe that the performance of the proposed
algorithm is better than the existing algorithms, in terms
of VMs utilization, CPU utilization and makespan-deadline

ratio, using scientific multi-workflows as well as sample
multi-workflows. The superior performance of the proposed
algorithm is summarized as follows:

1. Estimating execution time of the tasks on the fly which
helps in creating suitable VM without wasting comput-
ing resources.

2. Creating suitable VMs helps in executing the tasks and
reuses them when required so that the entire application
completes within its deadline.

3. Scheduling sameVM to execute the different tasks leads
to minimization of a number of active VMs.

123

Arab J Sci Eng (2018) 43:645–660 659

Table 1 The pseudo code of the proposed CDMWS algorithm

Algorithm: CDMWS
/*Update phase*/

1: For each path Pi
2: Find αMIi, ET(Tki), and CPi using Eq. (1),

Eq. (2), and Eq. (3) respectively
3: For each task in the path
4: Calculate and set ET using Eq. (4)

and Eq. (5) respectively.
5: End for
6: End for

/*Task-VM mapping*/
7: For each level
8: For each task Tki in the level
9: If existing VM is available

/* Required capacity VM
already present in DC*/

10: Reuse the VM and schedule
the VM so that the execution of the task
Tki is ETki

11: Else
12: VMM creates a new VM and

schedule it so that the execution of the
task Tki is ETki

13: End if
14: End for
15: End for
16: For each level
17: For each task in the level
18: Calculate ST and CT, using Eq.

(6) and Eq. (7) respectively.
19: End for
20: End for

The execution of workflow with a minimum number of
active VMs results in efficient computing utilization of data
centers.

5 Conclusion

The most important endeavor of the proposed algorithm
called CDMWS is to take full advantage of the resource
utilization of the DC using VM reusability technique and
complete the execution of the workflows of the multi-
workflow application within their deadline correspondingly.
To assess the proposed algorithm, it is executed over multi-
workflows which combine with various scientific workflows
and compare with other two different workflow scheduling
algorithms.We have considered various performancemetrics
such as CPU utilization, makespan–deadline ratio and VM
utilization to judge the performance of the proposed algo-
rithm. From the simulation result, it is clear that the proposed
algorithm successfully maximizes the VM utilization and
CPU utilization as well as improves the makespan–deadline
ratio while meeting the user-defined deadline of the corre-
sponding multi-workflow applications.

Our future research plan is to extend the proposed algo-
rithm for rescheduling tasks in response to changes in VMs
and network loads.

References

1. Xiong, K.; Perros, H.: Service Performance and Analysis in Cloud
Computing, 978-0-7695-3708-5/09 $25.00© 2009 IEEE, pp. 693–
700 (2009)

2. Sotomayor, B.; Montero, R.S.; Llorente, I.M.; Foster, I.: Virtual
Infrastructure Management in Private and Hybrid Clouds, 1089-
7801/09/$26.00 © 2009 IEEE (2009)

3. Chatterjee, T.; Ojha, V.K.; Banerjee, S.; Biswas, U.; Snasel, V.:
Design and implementation of a new datacenter broker policy to
improve the QoS of a Cloud. In: Springer International Publish-
ing Switzerland 2014, Proceedings of ICBIA 2014, Advances in
Intelligent Systems and Computing, vol. 303, pp 281–290 (2014)

4. Banerjee, S.; Kar, S.; Biswas, U.: Development and analysis of
a new cloudlet allocation strategy for QoS improvement in cloud.
Arab. J. Sci. Eng. 40(5), 1409–1425 (2014). (Springer, ISSN: 1319-
8025)

5. Yeo, C.; Buyya, R.: Service level agreement based allocation of
cluster resources: handling penalty to enhance utility. In: Proceed-
ings of the 7th IEEE international conference on cluster computing,
Boston, USA (2005)

6. Sousa, T.; Silva, A.; Neves, A.: Particle swarm based data mining
algorithms for classification tasks. Parallel Comput. 30(5), 767–
783 (2004)

7. Garg, S.K.; Toosi, A.N.; Gopalaiyengar, S.K.; Buyya, R.: SLA-
based virtual machine management for heterogeneous workloads
in a cloud datacenter. J. Netw. Comput. Appl. 45, 108–120 (2014)

8. Koley, S.; Singh, N.: Cdroid: used in Fujitsu server for mobile
cloud. GE Int. J. Eng. Res. 2(7), 1–14 (2014). (ISSN: 2321-1717)

9. Paton, N.W.; Aragão, M.A.T.; Lee, K.; Fernandes, A.A.A.; Sakel-
lariou, R.: Optimizing utility in cloud computing through auto-
nomic workload execution. IEEE Data Eng. Bull. 32(1), 51–58
(2009)

10. Hu, Y.; Wong, J.; Iszlai, G.; Litoiu, M.: Resource provisioning
for cloud computing. In: CASCON’09: Proceedings of the 2009
conference of the Center for Advanced Studies on Collaborative
Research, Ontario, Canada (2009)

11. Fito, J.O.; Goiri, I.; Guitart, J.: SLA-driven elastic cloud hosting
provider. In: Proceedings of the 18th Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing
(PDP), Pisa, Italy (2010)

12. Wu, Z.; Ni, Z.; Gu, L.; Liu, X.; A revised discrete particle swarm
optimization for cloudworkflow scheduling. In: Proceedings of the
IEEE International Conference on Computational Intelligence and
Security (CIS), pp. 184–188 (2010)

13. Zhu, Z.; Bi, J.; Yuan, H.; Chen, Y.: SLA based dynamic virtualized
resources provisioning for shared cloud data centers. In: Proceed-
ings of 2011 IEEE International Conference on Cloud Computing
(CLOUD), Washington DC, USA (2011)

14. Mao, M.; Humphrey, M.: Auto-scaling to minimize cost and meet
application deadlines in cloud workflows. In: Proceedings of the
International Conference on High-Performance Computing, Net-
working, Storage and Analysis (SC), pp. 1–12 (2011)

15. Byun, E.K.; Kee, Y.S.; Kim, J.S.; Maeng, S.: Cost optimized provi-
sioning of elastic resources for application workflows. Future Gen.
Comput. Syst. 27(8), 1011–1026 (2011)

16. Sharma, U.; Shenoy, P.; Sahu, S.; Shaikh, A.: A cost-aware elas-
ticity provisioning system for the cloud. In: Proceedings of the

123

660 Arab J Sci Eng (2018) 43:645–660

31st International Conference on Distributed Computing Systems
(ICDCS), Minneapolis, Minnesota, USA (2011)

17. Bonvin, N.; Papaioannou, T.G.; Aberer, K.: Autonomic SLA-
driven provisioning for cloud applications. In: Proceedings of the
11th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, Newport Beach, CA, USA (2011)

18. Abrishami, S.; Naghibzadeh, M.: Deadline-constrained workflow
scheduling in software as a service Cloud. Sci. Iran. Trans. D Com-
put. Sci. Eng. Electr. Eng. 19(3), 680–689 (2011)

19. Abrishami, S.; Naghibzadeh, M.; Epema, D.: Deadline- con-
strained workflow scheduling algorithms for IaaS Clouds. Future
Gen. Comput. Syst. 23(8), 1400–1414 (2012)

20. Malawski, M.; Juve, G.; Deelman, E.; Nabrzyski, J.: Cost-and
deadline-constrained provisioning for scientific workflow ensem-
bles in IaaS clouds. In: Proceedings of the International Conference
on High-Performance Computing, Networking, Storage and Anal,
(SC), 22 (2012)

21. Xiao, Z.; Song, W.; Chen, Q.: Dynamic resource allocation using
virtual machines for cloud computing environment. IEEE Trans.
Parallel Distrib. Syst. 24(6), 1107–1117 (2013)

22. Antonescu, A.-F.; Robinson, P.; Braun, T.: Dynamic SLA man-
agement with forecasting using multi-objective optimization. In:
Proceeding of 2013 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM 2013), Ghent, Belgium (2013)

23. Rodriguez,M.A.; Buyya, R.: Deadline based resource provisioning
and scheduling algorithm for scientific workflows on clouds. IEEE
Trans. Cloud Comput. 2(2), 222–235 (2014)

24. Saxena, S.; Saxena, D.: EWSA: an enriched workflow scheduling
algorithm in cloud computing (2015). DOI:10.1109/CCCS.2015.
7374202

123

http://dx.doi.org/10.1109/CCCS.2015.7374202
http://dx.doi.org/10.1109/CCCS.2015.7374202

	Cloud Computing: A Multi-workflow Scheduling Algorithm with Dynamic Reusability
	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Work
	3.1 Problem Statement
	3.2 Proposed Algorithm

	4 Performance Evaluation
	4.1 Performance Metrics
	4.2 Performance Evaluation

	5 Conclusion
	References

