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Abstract The process capability indices (PCIs) Cp and Cpk

are commonly used in industry to measure the process per-
formance. The implementation of these indices required that
process should follow a normal distribution. However, in
many cases the underlying processes are non-normal which
influence the performance of these indices. In this paper,
median absolute deviation (MAD) is used as a robustmeasure
of variability in two PCIs, Cp and Cpk . Extensive simulation
experiments were performed to evaluate the performance of
MAD-based PCIs under low, moderate and high asymmetric
condition ofWeibull, Log-Normal andGamma distributions.
The point estimation of MAD-based estimator of Cp and
Cpk is encouraging and showed a good result in case of Log-
Normal and Gamma distributions, whereas these estimators
perform very well in case of Weibull distribution. The com-
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parison of quantilemethod andMADmethod showed that the
performance of MAD-based PCIs is better for Weibull and
Log-Normal processes under low and moderate asymmetric
conditions, whereas its performance for Gamma distribution
remained unsatisfactory. Four bootstrap confidence intervals
(BCIs) such as standard (SB), percentile (PB), bias-corrected
percentile (BCPB) and percentile-t (PTB) were constructed
using quantile andMADmethods under all asymmetric con-
ditions of three distributions under study. The bias-corrected
percentile bootstrap confidence interval (BCPB) is recom-
mended for a quantile (PC)-based PCIs, whereas CIs were
recommended for MAD-based PCIs under all asymmetric
conditions of Weibull, Log-Normal and Gamma distribu-
tions. A real-life example is also given to describe and
validate the application of proposed methodology.

Keywords Nonparametric confidence intervals · Process
capability index · Median absolute deviation (MAD) ·
Percentile-t bootstrap (PTB) method

1 Introduction:

One of the important applications of statistical tools inmanu-
facturing industries is to determine the process performance
numerically, whose measures are known as process capa-
bility indices (PCIs). Among numerous PCI’s, the most
applicable indices are Cp,Cpk,Cpm and Cpmk [1–3]. All
other indices can be viewed as further modification of the
above four indices [4]. The four basic PCIs are summarized
by [5] in a single measure using two nonnegative parameters
(η, κ). The resulting measure is known as superstructure for
the four basic indices and can be defined as

Cp (η, κ) = d − η |μ − m|
3
√

σ 2 + κ (μ − T )2
(1)
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where d = USL − LSL/2, m = USL + LSL/2 and T is the
target value. Here,μ and σ 2 represent the mean and variance
of the process and the values of (η and κ) lie between 0 and 1.
The correct interpretation of the four PCIs dependsmainly on
the assumption that process follows a normal distribution [6].

However, in practice many processes are non-normal due
to the involvement of various factors [7]. Therefore, the
conventional PCIs defined in Eq. (1) are not appropriate
for handling non-normal processes because both mean and
standard deviation are not efficient estimator to deal with
non-normality. Moreover, in non-normal distributed pro-
cesses, the magnitude of the error varies substantially which
makes mean and standard deviation non-appropriate estima-
tors [8,9]. Also Hosseinifard et al. [10] pointed out that the
performance of conventional methods is ineffective when
normality assumption fails. Therefore, dealing with non-
normality in PCIs is a core issue and is gettingmore attention
by the researchers [6,7,9,11,12].

The literature reveals that the non-normality issues in PCIs
can be resolved by applying five major approaches, but these
approaches have been criticized by the researchers because
of their variable performance under different situations [11].
This is an evidence that no single method has been recom-
mended yet that works accurately in all situations [7].

Among five approaches, one most popular direction is
to use the quantiles estimator introduced by Clements [13].
Based on this idea, the generalization of Cp (η, κ) was pro-
posed by Pearn and Chen (PC) [14], which is defined as

CNp (η, κ) = d − η |M − m|
3

√[
Q99.865−Q0.135

6

]2 + κ (M − T )2

(2)

where M is the sample median and Q (0.9985) and
Q (0.00135) are the 99.865th and 0.135th quantiles, respec-
tively. The basic idea is to use the normal distribution prop-
erty to yield only 0.27% of nonconforming products. Hence,
the process variability (6σ) is replaced by Q (0.9985) −
Q (0.00135) and the process mean is replaced by the median
of the distribution.

But it is well established that the use of these PCIs, for
heavily skewed distributions, did not provide accurate results
[15]. Instead of using quantiles, there are other measures that
weremore suitablewhenmedian is used asmeasure of central
tendency [16]. Thesemeasures are known as robustmeasures
and have ability to provide more accurate results than the tra-
ditional statistical measures especially under non-normality.
In the literature, it has been argued that the median abso-
lute deviation (MAD) is a good robust estimator of standard
deviation (σ ) in case of a non-normal distribution [17–21].

There are some studies on the efficiency of MAD in cal-
culating the PCI. Shu et al. [18] investigated the performance
of Cp and Cpk for non-normal data using four different

estimators. They have used classical, smooth adaptive esti-
mator, MAD and Clements estimators for normal, student
t and Gamma distributions. On the basis of mean square
error (MSE) and bias, they suggested that MAD-based and
Clements-based indices do not provide reliable estimates of
Cp andCpk as compared to the other indices. Recently,Adek-
eye [21] measures four PCI using MAD and compares their
performance with quantile-based estimators. He conducted
a simulation study using Weibull and exponential distribu-
tions. He concluded that MAD-based estimators gave better
performance under heavily skewed process data compared to
the quantile-based estimators.

However, Shu et al. [18] ignored the other commonly used
distributions like Weibull and Log-Normal distributions in
their research. Therefore, a more comprehensive study on
using MAD as a measure of variability for Weibull and Log-
Normal distributions is still required.

Beside the point estimation, the construction of confidence
intervals for non-normal PCIs is also among major inter-
ests of researchers [14]. Though a point estimation is very
common in PCIs, a confidence interval provides more com-
prehensive picture of the characteristics of interest than a
point estimation [2]. Confidence intervals are useful in the
correct interpretation of PCIs [22]. The construction of confi-
dence intervals for PCI has beenfirst studied by [23].Over the
years researchers have developed quite many techniques to
construct confidence intervals for the PCIs. At the beginning,
most of the confidence intervals for the PCIs were con-
structed for a normally distributed process. But later on, there
have been some efforts to develop estimation techniques free
from the normal assumption. The PCIs for non-normal dis-
tributions have been studied, for example, by [2,11,22,24].
For this purpose, a nonparametric statistical method called
a bootstrap method introduced by [25] is frequently used.
The main attraction in the use of this method is that it does
not require the assumption of normality for calculating the
confidence intervals.

In this work, our objectives are (1) to propose a com-
prehensive methodology for the construction of bootstrap
confidence intervals using MAD as measure of variability
for estimatingCp (η, κ), (2) to investigate the behavior of the
proposed estimator for low, moderate and high asymmetric
non-normal distributions and (3) to compare its performance
with quantile-based estimator proposed by [14]. The article
is organized as follows: In Sect. 2, the methodology and rel-
evant terminologies are introduced to describe PCICp (η, κ)

and their bootstrap confidence intervals under three com-
monly used non-normal distributions. Section 3 presents the
results of the Monto Carlo simulation study to demonstrate
the above methodology. In Sect. 4, a real-world data set is
used to illustrate the application of the proposed approach.
We conclude in a Sect. 5 with a brief discussion of the results
of the study.
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2 Methodology:

2.1 PCIs Using Median Absolute Deviation:

Suppose that the sample median (MD) is computed from a
random sample (x1, x2, . . . , xn). Then, MAD from the sam-
ple median is defined as [19,26,27]

MAD = b ∗ median {|xi − MD|} (3)

The value of constant b in (3) is used tomake the parameter
of interest as a consistent estimator. In the case of an unbi-
ased estimator of σ , we need to set b = 1.4826 if a random
sample is taken from a normal distribution. For a non-normal
distribution, this value changes to b = 1/ Q (0.75), where Q
(0.75) is the 0.75 quantile of the underlying distribution. In
case of normality, 1/Q (0.75) = 1.4826 [28]. Thus, the unbi-
ased estimator of σ is

σ̂ = 1.4826 (MAD)

Using the above relationship, the superstructure defined
in (1) can be modified by

CMAD (η, κ) = d − η |M − m|
3
√

(1.4826 (MAD))2 + κ (M − T )2
(4)

The PCIs of Cp and Cpk can be derived from Eq. (2) or
Eq. (4) based on PC andMAD estimators by letting (η, κ) =
[(0, 0) , (1, 0)] and T = 0, which are given in Table 1.

2.2 Comparison of PCIs for Three Non-Normal
Distributions

The performance of the MAD- and PC-based PCIs Cp and
Cpk was compared by using significantly different tail behav-
ior distributions, i.e., Log-Normal, Weibull and Gamma
[7,24,29–31]. The skewness is calculated by using differ-
ent shape and scale parameters of each distribution which
are categorized as low, moderate and high asymmetric levels
as shown in Fig. (1) by plotting their PDF.

2.3 The method of bootstrap:

The complete bootstrap procedure is given for proposed
study by following [30–32] in Sect. 2.3–2.6. The bootstrap

procedure for independent and identically distributed ran-
dom variables can be explained in the following way [32].
Let z1, z2, z3, · · · zn be a random sample of size n drawn from
any distribution of interest say F ., i.e, z1, z2, z3, · · · zn ∼ F .
Let γ̂ represent the estimator of PCI say Cp and Cpk based
on PC or MAD method. Then,

1. Draw a bootstrap sample of size n, i.e., z∗
1, z

∗
2, z

∗
3 · · · z∗

n
fromoriginal sample byputting1/n asmass at eachpoint.

2. Let M∗
m where 1 ≤ m ≤ B be the mth bootstrap sample,

then mth bootstrap estimator of γ is computed as

γ̂m
∗ = γ̂

(
z∗1, z∗2, z∗3 · · · z∗n

)
(5)

3. Since there are total nn resamples, there are total nn val-
ues of γ̂m

∗. Each of these would be estimate of γ̂ . The
ascending arrangement of the entire collection would
constitute an empirical bootstrap distribution of γ̂ .

The construction of three bootstrap confidence intervals
of the PCI γ̂ ε

(
Cp and Cpk

)
based on B = 1000 bootstrap

resamples is described as follows:

2.4 Standard Bootstrap (SB) Confidence Interval:

From B = 1000, bootstrap estimates of γ̂ ∗, calculate the
sample average and standard deviation as

γ ∗ = (1000)−1
∑1000

i−1
γ̂ ∗ (i) (6)

S∗
γ̂ ∗ =

√(
1

999

) ∑1000

i=1
(γ̂ ∗ (i) − γ ∗)2 (7)

The SB (1 − α) 100% confidence interval is

C ISB = γ ∗ ± Z1− α
2
S∗
γ̂ ∗ (8)

where Z1− α
2
is obtained by using

(
1 − α

2

)
th quantile of the

standard normal distribution.

2.5 Percentile Bootstrap (PB) Confidence Interval:

From the ordered collection of γ̂ ∗ (i), choose 100
(

α
2

)
% and

the 100
(
1 − α

2

)
% points as the end points to calculate PB.

Then, confidence interval would be

Table 1 Two PCIs using PC
and MAD estimators for
bilateral specifications

Estimator Cp Cpk

Pearn and Chen (PC) Ĉ p = USL−LSL
Q99.865−Q0.135

̂Cpk = min

{
USL−M

Q99.865−Q0.135
2

, M−LSL
Q99.865−Q0.135

2

}

MAD Ĉ p = USL−LSL
8.9MAD

̂Cpk = min
{ USL−M
4.45MAD , M−LSL

4.45MAD

}
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Fig. 1 PDFsof three distributionswith selected shape and scale param-
eters

C IPB =
(
γ̂ ∗
B( α

2 )
, γ̂ ∗

B(1− α
2 )

)
(9)

For a 95% confidence interval with B = 1000, it is:

C IPB =
(
γ̂ ∗
(25), γ̂

∗
(975)

)
(10)

2.6 Bias-Corrected Percentile Bootstrap (BCPB)
Confidence Interval:

This method corrects the potential bias. Bias is generated
because the bootstrap distribution is based on a sample from
the complete bootstrap distribution andmay be shifted higher
or lower than what it would be expected. The calculation of
this method is based on the following steps.

1. Using the (ordered) distribution of γ̂ ∗ (i), compute the
probability p0 as p0 = pr

(
γ̂ ∗ ≤ γ̂

)

2. Let∅ and∅−1 represent the cumulative and inverse cumu-
lative distribution functions of standard normal variable
Z, then

Z0 = ∅−1 (p0)

3. The percentiles of the ordered distribution of γ̂ ∗ are
obtained as

PL = ∅
(
2Z0 + z α

2

)

PU = ∅
(
2Z0 + z1− α

2

)

Finally, the BCPB confidence interval is given as

C IBCPB =
(
γ̂ ∗
(PL B), γ̂

∗
(PU B)

)
(11)

The performance of the three confidence intervals: SB, PB
and BCPB was compared using coverage probabilities and
average widths. The coverage probability and average width
of each BCI are calculated as

Coverage Probability =
(
Lw ≤ Ĉ p ≤ Up

)

B
(12)

Average Width =
∑B

i=1 (Upi − Lwi )

B
(13)

3 Simulation Results:

In this section, the simulation results obtained by applying
PC- and MAD-based estimators of two PCIs Cp and Cpk are
reported. The bilateral limits for simulation were calculated,
by fixing target value equal to 1.33, as

USL = (
Cpu ∗ 3σd

) + μd. (14)

LSL = μd − (
Cpu ∗ 3σd

)
. (15)

whereμd and σd are the mean and standard deviation of each
distribution calculated by using different shape and scale
parameters [18]. The upper and lower specification limits
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Table 2 Bilateral specification limits used for each distribution to cal-
culate non-normal PCI

Parameter (shape, scale) USL LSL σ

Log-Normal distribution

(0.45, 1.50) 14.33 −4.42 2.35

(0.50, 1.00) 9.63 −3.47 1.64

(0.95, 0.40) 13.66 −8.97 2.84

Weibull distribution

(2.8, 3.5) 7.924 −1.691 1.21

(1.8, 2.0) 5.858 −2.301 1.02

(1.0, 1.3) 6.487 −3.887 1.30

Gamma distribution

(9.0, 0.45) 46.60 −6.60 6.67

(3.0, 0.75) 13.21 −5.21 2.31

(0.5, 1.0) 3.32 −2.32 0.71

for Log-Normal, Weibull and Gamma distribution are pre-
sented in Table 2. The negative limits are used for simulation
purposes; however, it may be considered as zero because neg-
ative limits sometime have no implementation in real-world
studies. For each distribution, 10,000 replications were per-
formed with a sample size of n=25,50,75 and 100 to study
the performance of PC- and MAD-based estimators of two
PCIs, Cp and Cpk

The simulation results are presented in Tables (3, 4, 5).
The complete simulation was run by using the R software.

These tables depict the mean, SD, simulated bias in stan-
dard units andmean square error (MSE) corresponding to the
target value equal to 1.33 by using both indices. The results
are arranged according to the low, moderate and high asym-
metric behavior of each distribution.

3.1 Results for Log-Normal Distribution :

The mean value of Cp or Cpk using PC-based estima-
tor is smaller than the target value in all cases. The trend
demonstrates that the value of both indices decreases as the
asymmetry and sample size increase. On the other hand, the
values of these indices become higher and get closer to the
target values as the sample size increases for theMAD-based
estimator. Indeed, the values of Cp and Cpk greater than 1.33
allow the user to declare that a process is in highly capable
condition. In general, for high asymmetry both indices of Cp
and Cpk behave in different ways. In case of PC estimator,
both indices of Cp and Cpk perform poorly. In particular,
the index Cpk does not demonstrate a good pattern to deal
with high asymmetry. On the other hand, both indices are
always far above the values of the true Cp and Cpk in the
case of the MAD estimator. So neither of the two estima-
tors of Cp and Cpk can be classified as a good estimator.

Regarding the simulated bias and mean square error, both
decrease as the sample size increases for both estimators. The
negative bias values indicate that PC-based estimator under-
estimates the indices. On the other hand, the direction of bias
of MAD-based estimator is positive in all cases which indi-
cates that it overestimates the indices. However, it is observed
that under high asymmetry both estimators provide higher
bias and MSE especially for the MAD. So we must be very
careful with values of bias and MSE because these values
increase from low to high asymmetry for both estimators.

3.2 Results for Weibull Distribution :

Unlike the Log-Normal distribution, both indices of Cp and
Cpk showed a different pattern in the case of Weibull distri-
bution. From Table 4, it is observed that the performance of
MAD-based estimator is consistently better than that of PC-
based estimator from low to high asymmetry. In the case of
low and moderate asymmetry, PC-based estimator overesti-
mates and underestimates in the case of high asymmetry. On
the other hand, MAD-based estimator of Cp and Cpk yields
values that are very close to the target values except in high
asymmetry using large sample sizes. For high asymmetry,
MAD-based estimator overestimates both indices. The bias
and MSE using PC-based estimator are larger than MAD-
based estimator in case of low and moderate asymmetry and
less in high asymmetry for both indices.

3.3 Results for Gamma Distribution :

In the case of Gamma distribution, the PC-based estimator
gives more accurate and precise estimates of Cp and Cpk

under low andmoderate asymmetry and showed poor perfor-
mance in case of high asymmetry. TheMAD-based estimator
consistently overestimates both indices in all cases.

4 Comparison of Bootstrap Confidence Intervals of
Cp and C pk for Log-Normal, Weibull and
Gamma Distributions

In this section, we compare the performance of four types
of bootstrap confidence intervals using MAD- and PC-based
estimators of Cp and Cpk for all distributions under studies.
For each case B = 1000, bootstrap resamples were drawn
to estimate the coverage probabilities and average width of
above four confidence intervals. The simulated results using
bilateral specifications and different combination of values
for the shape and scale parameters (Table 2) are presented in
Figs. 2, 3, 4 and 5.

Comparison of the average width of four type of confi-
dence intervals for both estimators of Cp and Cpk using three
distributions is presented in Figs. 2 and 3, whereas the cover-
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Table 3 Comparison of
statistical indicators for the
estimators of Cp and Cpk under
three Log-Normal distributions

Cp LGN (1.5,0.45) LGN (1.0,0.50) LGN (0.40,0.95)

Indicator n PC MAD PC MAD PC MAD

Mean 25 1.2619 1.8450 1.2324 1.9332 1.0586 3.4966

50 1.2103 1.7079 1.1861 1.7835 0.9685 3.2390

75 1.1918 1.6659 1.1612 1.7344 0.9364 3.1342

100 1.1865 1.6443 1.1567 1.7171 0.9217 3.0830

SD 25 0.3071 0.6040 0.3244 0.6478 0.4874 1.4060

50 0.2049 0.3752 0.2169 0.4017 0.3142 0.9070

75 0.1660 0.2922 0.1730 0.3089 0.2460 0.7051

100 0.1407 0.2489 0.1478 0.2653 0.2102 0.5918

Bias/σ 25 −0.0290 0.2192 −0.0595 0.3678 −0.1655 1.3211

50 −0.0510 0.1608 −0.0878 0.2765 −0.2204 1.1640

75 −0.0588 0.1429 −0.1029 0.2466 −0.2400 1.1001

100 −0.0611 0.1338 −0.1056 0.2361 −0.2490 1.0689

MSE 25 0.0047 0.2653 0.0096 0.3640 0.0737 4.6940

50 0.0143 0.1428 0.0207 0.2057 0.1307 3.6443

75 0.0191 0.1128 0.0285 0.1636 0.1549 3.2552

100 0.0206 0.0988 0.0300 0.1499 0.1667 3.0729

Cpk

Mean 25 1.1931 1.7510 1.1595 1.8122 0.9688 3.2279

50 1.1480 1.6190 1.1175 1.6769 0.8917 2.9746

75 1.1333 1.5825 1.0992 1.6432 0.8641 2.8871

100 1.1269 1.5620 1.0925 1.6225 0.8539 2.8559

SD 25 0.2824 0.5648 0.2894 0.5923 0.4249 0.6683

50 0.1831 0.3447 0.1941 0.3618 0.2825 0.5791

75 0.1465 0.2719 0.1558 0.2868 0.2222 0.5483

100 0.1261 0.2330 0.1323 0.2423 0.1853 0.5373

Bias/σ 25 −0.0583 0.1792 −0.1040 0.2940 −0.1272 0.6683

50 −0.0775 0.1230 −0.1296 0.2115 −0.1543 0.5791

75 −0.0837 0.1075 −0.1407 0.1910 −0.1641 0.5483

100 −0.0864 0.0987 −0.1448 0.1783 −0.1676 0.5373

MSE 25 0.0188 0.1774 0.0291 0.2326 0.1306 3.6021

50 0.0331 0.0835 0.0452 0.1204 0.1921 2.7048

75 0.0387 0.0638 0.0533 0.0981 0.2171 2.4246

100 0.0412 0.0538 0.0564 0.0855 0.2267 2.3283

age probabilities of these confidence intervals are presented
in Figs. 4 and 5. It is observed that the average width of all
confidence intervals reduces when the sample size increases
in all cases under studies. The asymmetric level affects the
average width. Average width increases as asymmetry level
increases except Weibull distribution. In case of Weibull dis-
tribution, we observed a reverse pattern.

From the results of Log-Normal distribution, we conclude
the followings.

1. For PC-based estimator of both indices, SB and BCBP
methods showed the better coverage probabilities under
all asymmetric levels.However, BCBP performs better

because it provides a smaller average width compared to
SB method.

2. In the case of MAD, PTBmethod is recommended based
on coverage probabilities and average widths.

The results of average widths and coverage probabilities
using Weibull distribution are presented in Figs. 2 (b), 3 (h),
4 (f) and 5 (i). From these results, the following recommen-
dations can be made.

1. Using both estimators of Cp and Cpk, the average width
decreases as sample size and asymmetry level increase.
On the other hand, Log-Normal andGammadistributions
showed wider width as asymmetry level increases.
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Table 4 Comparison of
statistical indicators for the
estimators of Cp and Cpk under
three Weibull distributions

Cp W (2.8,3.5) W (1.8,2.0) W (1.0,1.3)

Indicator n PC MAD PC MAD PC MAD

Mean 25 1.5454 1.4911 1.5327 1.5598 1.3554 2.2423

50 1.5040 1.3768 1.4823 1.4355 1.2837 2.0343

75 1.4946 1.3425 1.4695 1.4059 1.2507 1.9709

100 1.4883 1.3293 1.4640 1.3871 1.2442 1.9399

SD 25 0.2109 0.4430 0.2788 0.4778 0.4309 0.8977

50 0.1413 0.2695 0.1840 0.2872 0.2812 0.5331

75 0.1127 0.2121 0.1482 0.2283 0.2220 0.4137

100 0.0957 0.1805 0.1288 0.1938 0.1939 0.3516

Bias 25 0.1657 0.1240 0.1559 0.1768 0.0196 0.7018

50 0.1338 0.0360 0.1171 0.0811 −0.0356 0.5418

75 0.1266 0.0096 0.1073 0.0583 −0.0610 0.4930

100 0.1218 −0.0005 0.1031 0.0439 −0.0660 0.4691

MSE 25 0.0464 0.0260 0.0411 0.0528 0.0007 0.8324

50 0.0303 0.0022 0.0232 0.0111 0.0022 0.4960

75 0.0271 0.0002 0.0195 0.0058 0.0063 0.4108

100 0.0251 0.0000 0.0180 0.0033 0.0074 0.3720

Cpk

Mean 25 1.4732 1.4250 1.4543 1.4771 1.2501 2.0634

50 1.4582 1.3282 1.4266 1.3804 1.1893 1.8837

75 1.4561 1.3082 1.4124 1.3485 1.1618 1.8238

100 1.4537 1.2942 1.4104 1.3337 1.1494 1.8013

SD 25 0.2077 0.4278 0.2611 0.4473 0.3894 0.7615

50 0.1403 0.2618 0.1758 0.2727 0.2571 0.4698

75 0.1119 0.2074 0.1424 0.2159 0.2037 0.3636

100 0.0965 0.1735 0.1240 0.1825 0.1734 0.3044

Bias 25 0.1101 0.0731 0.0956 0.1132 −0.0614 0.5641

50 0.0986 −0.0014 0.0743 0.0388 −0.1082 0.4259

75 0.0970 −0.0167 0.0634 0.0142 −0.1294 0.3798

100 0.0951 −0.0275 0.0618 0.0029 −0.1390 0.3626

MSE 25 0.0205 0.0090 0.0155 0.0217 0.0064 0.5379

50 0.0164 0.0000 0.0093 0.0025 0.0198 0.3066

75 0.0159 0.0005 0.0068 0.0003 0.0283 0.2438

100 0.0153 0.0013 0.0065 0.0000 0.0326 0.2221

2. Overall, MAD-based estimator provides higher coverage
probabilities as compared to PC.

3. The BCPB method performed better in the case of PC-
based estimator and PTBmethod considered better based
on the smaller width and stable coverage probabilities.

The simulated average widths of both indices in case of
Gamma distribution are presented in Figs. 2 (c) and 3 (j),
and the coverage probabilities are shown in Figs. 4 (g) and
5 (m) which indicate the following.

1. For high asymmetry, MAD estimator showed very large
average widths for small samples sizes especially in the
case of Cp. However, it decreases rapidly when sample

size increases for both Cp and Cpk . Overall PB and PTB
methods provide almost similar probabilities and average
widths, but PB considered superior.

2. The BCBP method showed better performance as com-
pared to other three methods for both indices in case of
PC-based estimators followed by PTB method.

In short, this comparative study showed that the MAD-
based estimator of Cp and Cpk gives very consistent and
accurate results for aWeibull distribution under lowandmod-
erate asymmetry levels. The PC-based estimator gives more
stable results for Gamma distributions except the high asym-
metry case. The performance of both estimators in case of a
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Table 5 Comparison of
statistical indicators for the
estimators of Cp and Cpk under
three Gamma distributions

Cp GA(9.0,0.45) GA(3.0,0.75) GA(0.5,1.0)

Indicator n PC MAD PC MAD PC MAD

Mean 25 1.3956 1.5863 1.3852 1.7058 1.2547 4.0664

50 1.3561 1.4683 1.3347 1.5701 1.1702 3.4832

75 1.3452 1.4399 1.3220 1.5357 1.1493 3.3268

100 1.3391 1.4228 1.3156 1.5187 1.1326 3.2276

SD 25 0.2311 0.4907 0.2706 0.5458 0.4463 2.9245

50 0.1546 0.3025 0.1764 0.3367 0.2796 1.4899

75 0.1234 0.2423 0.1419 0.2664 0.2228 1.1260

100 0.1075 0.2021 0.1228 0.2246 0.1868 0.9197

Bias 25 0.0098 0.0384 0.0239 0.1627 −0.1061 3.8541

50 0.0039 0.0207 0.0020 0.1039 −0.2250 3.0326

75 0.0023 0.0165 −0.0035 0.0891 −0.2545 2.8124

100 0.0014 0.0139 −0.0062 0.0817 −0.2780 2.6727

MSE 25 0.0043 0.0657 0.0031 0.1412 0.0057 7.4879

50 0.0007 0.0191 0.0000 0.0577 0.0255 4.6364

75 0.0002 0.0121 0.0001 0.0423 0.0327 3.9872

100 0.0001 0.0086 0.0002 0.0356 0.0390 3.6010

Cpk

Mean 25 1.3331 1.5238 1.3014 1.6036 0.8317 2.7100

50 1.3079 1.4170 1.2733 1.5022 0.7797 2.3189

75 1.3007 1.3870 1.2586 1.4636 0.7612 2.2047

100 1.2972 1.3772 1.2528 1.4478 0.7549 2.1562

SD 25 0.2135 0.4747 0.2385 0.5072 0.2822 1.8494

50 0.1437 0.2898 0.1594 0.3151 0.1743 0.9648

75 0.1172 0.2309 0.1260 0.2481 0.1394 0.7050

100 0.0997 0.1957 0.1080 0.2086 0.1186 0.5880

Bias 25 0.0005 0.0291 −0.0124 0.1185 −0.7019 1.9437

50 −0.0033 0.0130 −0.0245 0.0745 −0.7751 1.3929

75 −0.0044 0.0085 −0.0309 0.0579 −0.8012 1.2320

100 −0.0049 0.0071 −0.0334 0.0510 −0.8099 1.1636

MSE 25 0.0000 0.0376 0.0008 0.0749 0.2483 1.9045

50 0.0005 0.0076 0.0032 0.0297 0.3028 0.9783

75 0.0009 0.0033 0.0051 0.0179 0.3236 0.7652

100 0.0011 0.0022 0.0060 0.0139 0.3307 0.6826

Log-Normal distribution is not satisfactory as compared to
Weibull and Gamma distributions.

The outcome of our study reveals deviation from the
findings of Shu et al [18] which states that median-based
PCIs are not good estimators of Cp and Cpk due to their
large MSE and bias. Our findings are not surprising because
every method depicts varying performance for a particu-
lar distribution with a different tail behavior [12,33]. To
validate the results in a comprehensive way, performance
comparison of current findings is made with classical esti-
mator in [18]. The results of MAD-based estimator of both
PCIs for Weibull distribution and PC-based estimator of
two PCIs for Gamma distribution under low and moder-

ate asymmetry were included in comparison with classical
estimator only. Moreover, it was noted that there is lit-
tle difference between classical and smooth adaptive index
when there is no outlier in the data set [34]. Therefore,
only classical estimator is taken for comparison in this
study.

A comparison of both indices with classical estimator in
terms of relative bias and MSE is presented in Figs. (6) and
(7). In case of Weibull distribution, it is observed that for
large sample size, under low andmoderate asymmetryMAD-
based PCIs perform better than classical PCIs and showed
less bias and MSE. On the other hand, PC-based indices
dominate classical indices in case of Gamma distribution
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Fig. 2 Comparison of average widths of three distributions for index Cp using both methods
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Fig. 3 Comparison of average widths of three distributions for index Cpk using both methods

especially under low asymmetry. For moderate asymmetry,
it gives good results for small sample sizes.

Among four bootstrap confidence intervals, the results
showed that percentile-t bootstrap (PTB) method has the
upper hand in the average width and coverage probability
comparison over its competitors for MAD-based estima-
tor of both indices. The BCBP method outperforms in all
aspects when considering the results of PC-based estima-
tors. Finally, among two indices Cpk is more sensitive to

departure from normality than Cp in the case of high asym-
metry.

4.1 Example

In this section, we present a real-life example to demon-
strate the application of the proposed methodology for two
process capability indices of Cp and Cpk . We considered
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Fig. 4 Comparison of coverage probabilities of three distributions for index Cp using both methods

the empirical data given by [35–37]. To select the appropri-
ate distribution for the selected data, the different goodness
of fit statistics [38] is used and reported in Table 6. Based
on AIC and BIC values, it is confirmed that two-parameter
Weibull distribution is suitable for these data compared to
other distributions. The basic descriptive statistics of the data
is reported inTable 7.Byfitting two-parameterWeibull distri-
bution, themaximum likelihood estimator for shape and scale

parameters is γ̂ = 5.504809, β̂ = 2.650830, respectively. To
evaluate the adequacy of the data, Kolmogorov–Smirnov (K–
S) goodness of fit test is used. The K–S distance value for
these data is 0.056 with p-value 0.9816, which also shows in
favor of Weibull distribution. The lower and upper specifica-
tion limits used for the calculations of two process capability
indices are (0.3989, 4.4960). The estimates of both indices
usingMAD and PC estimators and their corresponding boot-
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Fig. 5 Comparison of coverage probabilities of three distributions for index Cpk using both methods

strapCIs are reported in Table 8. The estimated values of both
indices are close to target values using the MAD estimator.
This showed good performance of MAD-based estimator of
both indices but with wider width of CI. The comparison

of four bootstrap confidence intervals for Cp and Cpk using
both estimators showed that BCPB is good for Cp and PTB
for Cpk in both cases. For each method, confidence intervals
are presented in brackets.
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Fig. 6 Comparison of Bias and MSE between MAD and classical estimators for Cp and Cpk under low and moderate asymmetry for Weibull
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Fig. 7 Comparison of Bias and MSE between PC and classical estimators for Cp and Cpk under low and moderate asymmetry for Gamma
distribution
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Table 6 Goodness of fit statistics of three distributions

LGN W GA

Kolmogorov–Smirnov (KS)
Statistics

0.072 0.056 0.058

Cramer–von Mises (CvM)
Statistics

0.076 0.034 0.045

Anderson – Darling (AD)
statistics

0.544 0.274 0.334

AIC 106.76 103.19 104.07

BIC 111.24 107.66 108.54

Table 7 Summary statistics of example data

n Min. Max. Q0.00135 Q0.50 Q0.9986 Mean SD MAD Sk Ku

69 1.31 3.58 1.31 2.48 3.58 2.45 0.49 0.33 −0.03 3.03

Table 8 Bootstrap confidence interval widths for example data

MAD Quantile

Cp 1.3987 1.4150

SB 0.9331 0.3898

(0.9264–1.8595) (1.2219–1.6118)

PB 0.9241 0.3876

(1.0056–1.9298) (1.2427–1.6304)

BCPB 0.8215 0.3707

(1.0527–1.8742) (1.2201–1.5909)

PTB 0.9083 0.3889

(0.9760–1.8843) (1.2414–1.6303)

Cpk 1.3601 1.3745

SB 0.9040 0.3813

(0.9013–1.8053) (1.1860–1.5673)

PB 0.8957 0.3794

(0.9771–1.8729) (1.2042–1.5837)

BCPB 0.9118 0.3812

(0.7583–1.6701) (1.2077–1.5890)

PTB 0.8056 0.3807

(1.0576–1.8632) (1.2029–1.5836)

5 Conclusions:

This study demonstrates the application of the median
absolute deviation (MAD) as a measure of variability to
commonly used process capability indices Cp and Cpk.
The effectiveness of these estimators of PCIs was measured
under low, mild and severe asymmetric level for three differ-
ent distributions, and their performance was compared with
Pearn and Chen (PC) estimator under similar conditions. The
results show that the use of MAD approach is very attrac-
tive and it provides better results than PC estimator under
different asymmetric levels of different distributions. In par-

ticular, MAD-based estimator of both indices showed a great
potential for dealing with high asymmetry. It is observed
that both estimators performed variably in different distri-
butions. Under low and moderate asymmetry, in Weibull
distribution, theMAD-based estimators are more close to the
target values, whereas PC-based estimators performed bet-
ter in Gamma distribution. Moreover, the MAD estimators
showed more appropriate results than PC estimators in all
distributions under high asymmetry. After this discussion,
the median absolute deviation is recommended as a useful
measure in dealing with asymmetry where the target value
should not less than 2. So it is recommended thatMADcan be
used as an alternative measure of variability more properly in
PCI especially in low andmoderate asymmetrywhen process
follows Weibull distribution. Along with point estimation,
we also constructed four types of bootstrap confidence inter-
vals using extensive simulation studies. Among four types of
confidence intervals, BCBP and PTB methods provide reli-
able confidence intervals for PC and MAD estimators under
all asymmetry levels and sample sizes. Finally, PTB method
should be used for the construction of bootstrap confidence
intervals when MAD is used as an alternative measure of
variability.
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