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Abstract Several numbers of controllers are developed and
implemented to enhance the performance of rotary single
inverted pendulum (RSIP). This paper addresses a new two-
degree-of-freedom (2-DOF) fractional control strategy for
RSIP, which is a composition of feedback and feed-forward
paths. Primary controller relates the perturbation attenua-
tion, while the secondary controller is accountable for set
point tracking. The pole placement technique is used for
the design of 2-DOF proportional integral derivative (2-
DOF PID) controller. In order to intensify the potentiality
of 2-DOF PID controller, it is supplemented with fractional
calculus. The tuning of fractional parameters is done by
frequency domain analysis using the Nyquist plot. The pro-
posed 2-DOF fractional-order PID controller is materialized
on RSIP system which out turns the outstanding experimen-
tal results for both stabilization and trajectory tracking tasks.
The system is investigated for stability, sensitivity and robust-
ness, which confirms the ability of the proposed controller to
reject the external random perturbations.
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1 Introduction

RSIP is fairly a distinct type of tunable mechanical oscilla-
tory system which is intrinsically nonlinear, underactuated,
single-input multiple-output system with unstable equilib-
rium point. These inherent characteristics induce complexity
in controlling the system. Therefore, designing a controller
for the stabilization of pendulum is a challenging task.
This design becomes more complex because of the physical
limitations of applied voltage (V), rotational angle (θ1), pen-
dulumangle (θ2) and two sensor outputs.Aprototype ofRSIP
shows similitude to the attitude control of a space booster
rocket and a satellite, in which rocket assembly should be in
a particular position with some angle. The controlling func-
tion of RSIP is very similar to an underactuated robotic arm,
stabilization of a cabin in a ship, aircraft stabilization in the
turbulent air flow, walking of biped animals and robots, etc.
Three key aspects have been explored in the literature to
control an inverted pendulum. The first aspect explains the
swinging up of the pendulum from the original position to
functioning position. Second is to stabilize the pendulum link
of RSIP system (balancing) at the unstable equilibrium point,
and the last aspect is to track control of RSIP (tracing). The
main focus in the study is on balancing and tracking of RSIP
because of its serviceability in industrial applications.

Numerous control strategies have been proposed in the
literature to design a controller for stabilizing RSIP at
unstable equilibrium point such as sliding mode control,
advanced nonlinear approaches, fuzzy-based compensation,
linear feedback stabilization and different conventional-type
controllers [1–3]. Each of these methodologies demands
complex computations owing to their manifold structure.
Conventional PID also known as one-degree-of-freedomPID
(1-DOF PID) controller has been universally established for
its efficiency to enhance the transients as well as steady-state
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performance of RSIP. It has been transpired in the recent
years that with the mathematical tools of fractional calculus
(FC), numerous phenomena of engineering and other sci-
ences even finance and social sciences can be defined very
effectively [4–7]. The necessity of defining a differential
operator with an arbitrary order (real, fractional or complex
order) is the reason behind the growth of FC. FC provides
surplus flexibility for effective treatment of the system in
terms of improved performance and stability. The peculiar-
ity of FC in mathematics gives an opportunity to substitute
the conventional PID with fractional-order PID (FOPID) in
the topology of two-loop PID Controller. Podlubny [8] pre-
sented for the first time a FOPID controller with an improved
shape of closed-loop response in comparison with PID con-
troller owing to its higher degrees of freedom. Indeed, FOPID
is a generalization of traditional PID controller with two sup-
plementary tuning parameters, namely fractional integrator
order λ and a fractional differentiator order μ. Because of
this advantage, design and performance analysis of a FOPID
controller becomes a novel research topic for the researchers.
However, the performance of FOPID immensely depends on
the tuning procedure. Numerous tuning concepts have been
noted in [9–11] to design a FOPID controller. This paper puts
forward a tuning technique based on frequency domain spec-
ifications, i.e., phase margin (PM) and gain margin (GM).

However, large overshoot has been detected in FOPID
controller by virtue of design setback of 1-DOF which holds
single feedback loop (set point-to-output transfer function)
as it is ineffectual to lockup good tracking and perturbation
rejection concurrently. To get rid of these setbacks, another
feed-forward loop (disturbance-to-output transfer function)
as a pre filter can be blend with feedback FOPID controller
for smooth set point tracking. The strategy 2-DOF FOPID
controller boosts the disturbance rejection of the closed-loop
system while upholding the satisfactory set point response.
2-DOF FOPID controllers for different industrial plants have
been investigated by quite a few authors in [12–15]. Here it is
a need to mention that 2-DOF FOPID controller is designed
and tested on RSIP system for the first time. No related lit-
erature is reported earlier.

The paper is authored as follows. Section 2 provides
dynamics of RSIP. The design of proposed controllers and
tuning method are provided in Sect. 3. Discussion and anal-
ysis of experimental results of proposed controllers are
covered in Sect. 4. Section 5 presents the concluding remarks.

2 Rotary Inverted Pendulum

The inceptive inverted pendulum model was introduced as a
cart type. However, to compensate the limitation of the cart
length, RSIP was invented. The benchmark framework of
RSIP is shown in Fig. 1a. It is a nonlinear system having

two degrees of freedom of motion. Considering the ease of
modeling with Lagrangian formulation, it is adopted. The
motion of rotating arm is given in (1),

θ̈1(J1+m2L
2
1) = Tout − m2l2L1(θ̈2cosθ2 − θ̇22 sinθ2) − β1θ̇1

(1)

The angular position of the pendulum is described as in
(2),

θ̈2(J2 + m2l
2
2) = −m2l2gsinθ2 − m2l2L1θ̈1cosθ2 − β2θ̇2

(2)

Equations (1) and (2) are linearized around small deviation
of angle δ as given below.

θ2 ∼= π + δ, θ̇22
∼= 0, sinθ2 ∼= −δ, cosθ2 ∼= −1

The reduced equations are given in (3) and (4),

θ̈1(J1 + m2L
2
1) = Tout + m2l2L1θ̈2 − β1θ̇1 (3)

θ̈2(J2 + m2l
2
2) = m2l2gθ2 + m2l2L1θ̈1 − β2θ̇2 (4)

Above linearized equations in state space are expressed as
in (5) and (6),

⎡
⎢⎢⎣

θ̇1
θ̇2
θ̈1
θ̈2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
0 FB

A −β1
A − FC

A
0 B+EFB

A − Eβ1
A − EFC+AC

A

⎤
⎥⎥⎦

⎡
⎢⎢⎣

θ1
θ2
θ̇1
θ̇2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0

1.005
A

1.005E
A

⎤
⎥⎥⎦ Vm (5)

y =
[
1 0 0 0
0 1 0 0

]
⎡
⎢⎢⎣

θ1
θ2
θ̇1
θ̇2

⎤
⎥⎥⎦ (6)

where A = J1 + m2L2
1 − m2

2l
2
2 L

2
1

J2+m2l22
; B = m2l2g

J2+m2l22
; C =

β2
J2+m2l22

; E = m2l2L1
J2+m2l22

; F = m2l2L1 using the physical

parameters given in Table 1 [16], the state space is obtained
as in (7) and (8),

⎡
⎢⎢⎣

θ̇1
θ̇2
θ̈1
θ̈2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
0 0 1 0
0 0 0 1
0 52.78 −0.66 −0.65
0 97.98 −0.65 −1.21

⎤
⎥⎥⎦

⎡
⎢⎢⎣

θ1
θ2
θ̇1
θ̇2

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

274.45
273.92

⎤
⎥⎥⎦ Vm

(7)
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Fig. 1 a Investigational setup,
b 2-DOF control scheme, c
realization of 2-DOF structure
and d 1-DOF control structure

123



5124 Arab J Sci Eng (2017) 42:5121–5145

Table 1 Physical parameters of
inverted pendulum

Parameters description Notations Experimental value Units

Viscous damping coefficient of arm β1 0.0024 N-m-s/rad

Viscous damping coefficient of pendulum β2 0.0024 N-m-s/rad

SRV-02 system gear ratio Kg 70 –

Back emf constant Km 0.00767 V/(rad/s)

Half-length of pendulum l2 0.1675 m

Mass of the pendulum m2 0.125 Kg

Rotating arm length L1 0.2159 m

Mass of rotary arm M 0.2570 Kg

Armature resistance Rm 2.6 �

Gearbox efficiency ηg 0.9 –

Motor efficiency ηm 0.69 –

Acceleration owing to gravity g 9.8 m/s2

Motor torque constant Kt 0.00767 N -m/A

Moment of inertia of the SRV02 motor Jeq 0.0035842 kg-m2

y =
[
1 0 0 0
0 1 0 0

]
⎡
⎢⎢⎣

θ1
θ2
θ̇1
θ̇2

⎤
⎥⎥⎦ (8)

Considering the output variable as rotational arm posi-
tion θ1 and pendulum link angle θ2, the transfer function is
obtained as given in (9) and (10),

θ1(s)

Vm(s)
= 274.5s2 + 154s − 12430

s4 + 1.87s3 − 97.61s2 − 26.69s
= P1 (9)

θ2(s)

Vm(s)
= 273.9s

s3 + 1.87s2 − 97.61s − 26.69
= P2 (10)

3 Proposed 2-DOF FOPID Controller

3.1 Realization of Fractional-Order Elements

Numerous approximation methods are available in the litera-
ture to realize a fractional-order term [17–21]. To implement
a fractional-order differentiator and integrator in FOMCON
toolbox [22], the Oustaloup’s approximation method [18] is
used. The slope of the magnitude plot (±α20dB/dec) and
phase angle (±α90◦) for any fractional-order transfer func-
tion can be attained by placing an alternate sequence of
real poles and zeros on the negative real axis. By fixing a
frequency band of interest (ωb, ωh) and the error band (ε)
around the desired phase angle φreq = ±α90◦, a finite order
of approximation can be achieved. The Oustaloup’s approx-
imation model for a fractional-order differentiator sα can be
written as in (11),

Ĥ(s) =
(

ωu

ωh

)α N∏
k=−N

1 + s/ω′
k

1 + s/ωk
(11)

where

ω′
k = ωb

(
ωh

ωb

) k+N+1/2−α/2
2N+1

(12)

and

ω
′
k = ωb

(
ωh

ωb

) k+N+1/2+α/2
2N+1

(13)

are, respectively, the zeros (12) and poles (13) of rank k and
2N + 1 is the total number of zeros or poles. Here, ωb and
ωh are the low and high transitional frequencies and ωu is
the unit gain frequency/transitional frequency.

3.2 Structure and Advantage

Here the author has proposed a novel method of 2-DOF-
based controller, because of its competency to improve the
quality of set point tracking and disturbance rejection. Block
diagramof proposed 2-DOFFOPIDcontroller to be clustered
with RSIP system and its realization are shown in Fig. 1b,
c, respectively, where C1 and C2 are FOPID controllers and
written as in (14) and (15),

C1(s) = Kp1 + sμ1Kd1 + Ki1

sλ1 (14)

C2(s) = Kp2 + sμ2Kd2 + Ki2

sλ2 (15)
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The characteristic equation for the control structure pre-
sented in Fig. 1b is expressed as in (16),

1 − P1C1 + P2C2 = 0 (16)

1-DOF FOPID control scheme for the same system is
shown in Fig. 1d. The characteristic equation of both the con-
trol scheme is found to be same as in (16). Therefore, the loop
robustness of both the schemes for a set of the tuned param-
eters kp1, ki1, kd1, kp2, ki2, kd2, λ1, λ2, μ1 and μ2 are same.
The response of 1-DOF FOPID shows large overshoot due
to two additional zeros introduced in the closed-loop transfer
function because of PID terms. In 2-DOF FOPID controller,
locating the PID controller in the feedback path removes the
zeros from closed-loop transfer function. To augment this,
four more parameters for gain q1, q2, q3 and q4 (gain of the
feed-forward loop) assist in adding a zero at desired position
to achieve the refined performance.

3.3 Design

The first step in the design of 2-DOF PID is to initialize all
the feed-forward parameters to zero. Next, the gain param-
eters of two-loop FOPID controllers are determined using
pole placement technique deploying LQR method. Consid-
ering the angle of a pendulum with extreme vitality, given
weightage of θ2 is 100. Therefore, an appropriate combina-
tion was taken of Q = diag[1, 100, 0, 0] and R = 10 for
finding the gain matrix K . The obtained parameters of state
feedback matrix K are as below:

K1 = −0.31623, K2 = 4.5308, K3 = −0.24353,

K4 = 0.40985

Therefore, closed-loop poles of the modified system are
as follows:

s = −22.0779 ± j19.7108,−1.5705 ± j1.422

To retain the robustness behavior of LQR in two-loop PID
design, use above four poles with choosing the fifth pole at
s = −α (six times away from the real part of dominant pole to
confirm the loop robustness and better disturbance rejection),
the characteristic equation of integer-order PID (IOPID)-
compensated closed-loop system can be represented as (17),

s5 + 56.7s4 + 1465s3 + 12550s2 + 31720s + 37050 = 0
(17)

Substituting the terms P1, P2, C1, C2 as defined earlier in
(9), (10), (14), (15) and λ1 = λ2 = μ1 = μ2 = 1 in (16),

the expression reduces to characteristic equation of IOPID-
compensated closed-loop system presented in (18),

s5 + s4(1.87 − 274.5kd1 + 273.9kd2)

+ s3(−97.61 − 154.1kd1 − 274.5kp1

+ 273.9kp2) + s2(−29.69 + 12430kd1

− 154.1kp1 − 274.5ki1 + 273.9ki2)

+ s(12430kp1 − 154.1ki1) + 12430ki1 = 0 (18)

Here for two-loop PID controller, the dominance of the
poles is retained as in LQR method, and two Eqs. (17) and
(18) can be compared. After comparing, five equations are
obtained with six unknowns. On choosing kd2=1, the follow-
ing PID parameters are obtained

kp1 = 2.588, ki1 = 2.9806, kd1 = 0.798

kp2 = 8.7476, ki2 = 14.15722, kd2 = 1.0

To reduce the complexity for tuning the fractional param-
eters λ1, λ2,μ1 andμ2, frequency domain technique is used.
Here, the author proposes a tuning algorithm to tune the four
unknown parameters λ1, λ2 , μ1 and μ2. Assumptions made
in tuning algorithm are as follows:

– In order to reduce the complexity in tuning procedure of
fractional-order operators, it is assumed that fractional
operators λ1 and λ2 are equal to λ.

– Operator λ does not affect the PM, and it reduces the
steady-state error.

– ±3% variation in GM of PID-compensated plant is
acceptable.

Algorithm for tuning the unknown parameters is given in
flowchart shown in Fig. 2. The uncompensated open-loop
RSIP has four poles with one pole in right side of s-plane.
According to Nyquist stability criterion, the Nyquist plot
must encircle the critical point (−1 + j0) of the q(s) plane
once in the counterclockwise direction for the system to be
stable. Figure 3 shows the Nyquist plot of PID-compensated
plant with encirclement in anticlockwise direction. It is
clearly noted that system is stable with PM and GM being
63.3◦ and −13.7dB, respectively.

As given in step 2 of flowchart, vary the value of μ1 ∈
(0, 2) and plot against PM as shown in Fig. 4a. It is noted
from Fig. 4a that the maximum PM = 95.3◦ is achieved at
μ1 = 0.86. As per step 4 using the value of μ1 = 0.86
and λ = 1, vary μ2 ∈ (0, 2) and plot the variation in PM
as shown in Fig. 4b. Using the empirical relation PM

100 = ζ ,
PM ≥ 100◦, gives ζ ≥ 1 which leads the system to be over-
damped and sluggish. Therefore, from Fig. 4b it is noted that
for μ2 > 1, PM becomes more than 100◦, which will make
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Fig. 2 Flowchart of tuning algorithm for fractional controller
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Fig. 3 Nyquist plot of PID-compensated plant

system sluggish. In order to make the system faster, μ2 is
chosen as 1 whose corresponding PM is 95.3◦. In this case,
GM = −11.9dB which is less than 3% of PID-compensated
GM as observed from Fig. 4c.

To compensate the decrease inGM, the value of λ is varied
between 0 and 2 as shown in Fig. 4d (step 9). It is observed
that at λ = 0.75, ±14.1dB, GM is achieved which is within
the desired tolerance. Variation in fractional parameters and
corresponding changes in stability margins and sensitivity
peak are presented in Table 2. Therefore, from step 11 the
tuned values of FOPID controller are obtained as follows:

λ = 0.75 = λ1 = λ2, μ1 = 0.86 and μ2 = 1

Nyquist plot of FOPID-compensated system with these
tuned values is shown in Fig. 5. From Fig. 5, it is noted that
GM of PID-compensated system and FOPID-compensated
system is nearly equal to each other. However, there is an
increment of 32◦ in PM of the overall system with FOPID
controller. It makes the system more robust. This is verified
with the experimental results, phase trajectories and stability
analysis, discussed further in Sect. 4.

However, for robust steady-state tracking feed-forward
parameters of 2-DOF FOPID need to be tuned accurately.
When θ1

r = θ2
r = 1 at, s = 0, the feed-forward gains q1 and

q3 are obtained as

q1 = 2.9806 and q3 = 0

Further to obtain the desired speed of response, q2 and q4
are required to be tuned. The system performed satisfactory

for q2 = 2.65 and q4 = 0.5 after many trials. Here it should
be noticed that in proposed topology, 14 parameters have to
be tuned for a robust system. Therefore, using pole placement
technique, integer-order parameters have been computed. A
sophisticated graphical method based on Nyquist criterion
has been used to tune the fractional-order parameters. The
variables described in feed-forward path have been obtained
for precisely tracking the input. Thus, the derivations and
computationsmentioned in this section clearly show the com-
plexity of the obtained parameters.

4 Results and Discussion

In this section, an experimental analysis and performance
assessment of the proposed 2-DOF fractional controller are
put forward using RSIP system. Several types of PID con-
trollers have been successfully implemented for RSIP prior
to this. Here author claims that this is the first attempt for an
experimental demonstration using a novel concept of 2-DOF
FOPID with successful implementation for RSIP system.
This section is divided into five subsections. At first, exper-
imental framework and software tools are explained. The
second subsection addresses the experimental demonstra-
tion of 1-DOF FOPID. In the third subsection, 2-DOF PID
is discussed with the experimental response, and in fourth
subsection, observations of 2-DOF FOPID are given. At the
end, robustness and stability have been discussed. In order
to visualize the superiority of 2-DOF FOPID controller over
1-DOF FOPID and 2-DOF PID controller, their comparison
is presented. In all the cases, pendulum swung up manually
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Fig. 4 Variation in a PM versus μ1, b PM versus μ1 and μ2, c GM
versus μ1 and μ2 and d GM versus λ

Table 2 Variation in fractional parameters and corresponding changes
in stability margins

Controller μ1 μ2 λ PM GM Mp (dB)

PID 1 1 1 63.3 ±13.7 1

FOPID 0.9 1 1 94.6 ±13.1 −0.00095

0.86 1 1 95.3 ±11.9 −0.00085

0.8 1 1 94.9 ±9.12 −0.00061

0.86 0.9 1 66.2 ±14.6 −0.0713

0.86 1 0.8 95.2 ±13.3 −0.00085

0.86 1 0.75 95.2 ±14.1 −0.00085

0.86 1 0.7 95.2 ±14.6 −0.00085

to bring it to stabilization region. Therefore, the response of
the same starts from −3.14 rad or −180◦.

4.1 Experimental Framework

The experimental setup of RSIP consists of amechanical unit
(Quanser model SRV-02 ROTPEN) as shown in Fig. 6a. This
unit is equipped with a Faulhaber coreless DC motor model
2338S006, two optical encoders, one potentiometer and one
tachometer. The control interface between the mechanical
unit and computer has been made using an analog control
interface (Quanser Q4 DAQ board). The position of the rota-
tional arm and pendulum link sensed by the optical encoder
is converted to a digital signal using the Q4 DAQ board,
which is connected to the Q4 terminal board through SCSI
cable. The terminal board provides connectors for the input
and output of the Q4 DAQ board in the computer. Since
the analog out ports of the terminal board are not efficient
enough to drive the DC motor, it is mandatory to amplify
the signal. A 5-pin-DIN to RCA connector is used to con-
nect the DAQ terminal board from power module Quanser
1503 for proper power amplification. However, the gain of
a power amplifier is unity, but the amplifier provides much
higher current than the DAQ board. To implement the con-
trol law in the computer, MATLAB is used as the application
host environment. It includes MATLAB/Simulink, FOM-
CON toolbox [22], real-time workshop (RTW) and QuaRC
Simulink development environment. Here Simulink provides
the well-structured GUI to realize the control algorithm.
RTW generates and executes C++ code from Simulink dia-
gram, state flow charts and MATLAB functions. Quansers
rapid prototyping and production system for real-time con-
trol (QuaRC) integrates seamlessly with Simulink to allow
Simulink models to run in real time in windows as shown in
Fig. 6b.
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Fig. 5 Nyquist plot of PID- and FOPID-compensated plant with sensitivity circle

4.2 Experimental Results of 1-DOF FOPID

In this section, authors proceed to demonstrate the exper-
imental outcomes of the real RSIP system, when 1-DOF
FOPID controller is employed. Figure 1d shows the closed-
loop control scheme used in this trial. The sampling time
is 0.001s. Figure 7a renders the trajectory tracking of the
rotational arm position. It is noticed that rotational arm fol-
lows the desired path with sustained oscillations. Figure 7b
shows the experimental results of pendulum angle. It is
observed that the pendulum link shows the stable behav-
ior with tracking of the required path. Figure 7c shows the
required control signal. The IAE values for the angular devi-
ation of the rotational arm and pendulum link are 0.0443 and
0.07, respectively. The ISE values for the same are 0.0293
and 0.0143, respectively. The peak value of sensitivity func-
tion and sensitivity of the system are −0.00085 and 0.97dB,
respectively.

Figure 8a describes a two-dimensional phase portrait
which contains the information of rotational position arm
and derivative of it. It is found that without loss of controlla-
bility, the pendulum is driven to the equilibriumpoint through
a disturbance track and remains at zero position with oscil-
lations. The distance between the points of phase trajectory
and equilibrium point specifies the amount of energy in the
system at that moment. Here, manually the pendulum link is
lifted from−180◦ to 0◦ and is seen from Fig. 8b. Later due to
controller action, the trajectory converges on the equilibrium
point.

Further, the same controller is tested with sawtooth input
to check the effect at the time of sudden change in refer-

ence trajectory as shown in Fig. 9. All the three variables
θ1, θ2 and control voltage V show consistent oscillations
and large overshoot at the time of sudden change in refer-
ence track. It is also observed that the control voltage (V)
reached the saturation limit at every sudden change in input.
The observed IAE values for the angular deviation of both
the links are 1.8 and 2.174 and ISE values are 0.1345 and
0.1589.

4.3 Experimental Results of 2-DOF PID

In this subsection, 2-DOF PID controller is employed to mit-
igate the oscillations. In Fig. 10a, an astonishing reduction
is observed in the oscillations during steady state with ref-
erence to 1-DOF FOPID controller. Nonetheless, it is also
noted that the difference still persists between the desired
set point and experimental position. The observed IAE and
ISE values for the angular deviation of the rotational arm are
0.0181 and 0.0093, respectively. Pendulum link position and
control voltage show minor changes from the one observed
in 1-DOF FOPID controller as shown in Fig. 10b, c. The
IAE and ISE values noted for the angular deviation in pen-
dulum links are 0.047 and 0.01807, respectively. Figure 11a,
b illustrates the phase trajectories of the rotational arm and
pendulum link, respectively.

The response of the sawtooth input as seen in Fig. 12
confirms the potentiality of feed-forward loop in 2-DOF PID
controller. Here, the amplitude of the sustained oscillations
in the steady state has been reduced as seen in Fig. 12a. The
spikes observed during sudden change in the angular position
of rotational arm, pendulum link and control voltage in 1-
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Fig. 6 a Experimental
framework and b control scheme
development flow diagram

DOFFOPID got subsided in the responsewith 2-DOFPID as
seen in Fig. 12a–c. The IAE values of 2-DOF PID controller
for the angular deviation in rotational arm and pendulum link
are 0.2807 and 0.3112, respectively. The ISE values for the
same are 0.1176 and 0.031, respectively.

4.4 Experimental Results of 2-DOF FOPID

To ameliorate the regulation of RSIP system, a novel 2-DOF
FOPID controller is proposed as shown in Fig. 1b. Figure 13
shows the experimental outcomes of RSIP system when 2-
DOF FOPID controller is employed. Figure 13a shows that
arm position θ1 has remarkably reduced oscillations, as com-
pared to 1-DOF FOPID controller and deviations have been
diminished between the desired set point and experimental
position as compared to 2-DOF PID. This response validates
the statement mentioned in Sect. 3.2 that “the improvement

in the quality of set point tracking, as well as the distur-
bance rejection, is a unique feature of the 2-DOF controller.”
The initial overshoot occurring due to sensor offset is seen
in all the cases. Pendulum link position and control volt-
age show minor change while employing 2-DOF FOPID as
shown in Fig. 13b, c. To avoid actuator saturation, here back-
calculation anti-windup technique is used. The IAE values
for the angular deviation of rotational arm and pendulum link
are 0.0087 and 0.0152, respectively. The ISE values for the
same are 0.0017 and 0.0074, respectively.

Figure 14a, b illustrates the phase trajectories of rotational
arm and pendulum link, respectively. Note that the reduced
amplitude of the oscillations is the outcome of the applied
control strategy. The lesser distance between the points of
phase trajectory and equilibrium point as compared to 1-
DOF FOPID and 2-DOF PID indicates that the less amount
of energy is required at that moment.
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Fig. 7 Experimental results of
1-DOF FOPID controller with
sine wave as reference trajectory
a rotational position θ1, b
pendulum link position θ2 and c
control voltage
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Fig. 8 Phase portrait of 1-DOF
FOPID a rotational arm and b
pendulum link

As mentioned in Sect. 3.2, the 2-DOF control scheme
reduces the large overshoot owing to absence of zeros in
closed-loop transfer function. To authenticate this ability of
feed-forward block in 2-DOF FOPID controller, a sawtooth
reference input is applied to system as shown in Fig. 15.
Here it is noteworthy that sustained oscillations mostly died
out as seen from Fig. 15a. Further spikes have been reduced
in case of rapid change in the reference trajectory, which is
shown in Fig. 15a, b. The same changes are also observed in
Fig. 15c, which shows the response of required control volt-
age. The observed IAE values of 2-DOF FOPID controller
for the angular deviation in the rotational arm and pendu-
lum link are 0.1707 and 0.1903, respectively. The ISE values
for the same are 0.00489 and 0.01, respectively. Referring to
Table 3, it is observed that there is a significant improvement

in the response of rotational arm and pendulum link. Fig-
ures 9c, 12c and 15c show that the average voltage consumed
by plant (when 2-DOF FOPID employed) is comparatively
less. The observed performance indices IAE and ISE for
angular deviation in rotational arm and pendulum link are
given in Table 4. In Table 4, it is inferred that the variations in
IAE and ISE values of rotational arm (link 1) and pendulum
link (link 2) for 2-DOF FOPID controllers remain smaller
as compared to 2-DOF PID as well as FOPID controllers.
Table 5 presents the changes in performance indices (IAE
and ISE) with variation in feed-forward parameters q1, q2,
q3 and q4. When q1, q2, q3 and q4 values are either increased
or decreased, the performance indices (IAE and ISE) val-
ues increased; this implies the efficient choice of the tuned
parameters.
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Fig. 9 Experimental results of
1-DOF FOPID controller with
sawtooth wave as reference
trajectory a rotational position
θ1, b pendulum link position θ2
and c control voltage
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Fig. 10 Experimental results of
2-DOF PID controller with sin
wave as reference trajectory a
rotational position θ1, b
pendulum link position θ2 and c
control voltage
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Fig. 11 Phase portrait of
2-DOF PID a rotational arm and
b pendulum link
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4.5 Robustness and Stability

4.5.1 Robustness

The robustness is measured using the sensitivity function
and its complimentary sensitivity function. Sensitivity func-
tion expresses the amount of rejection to the disturbance,
and complimentary function is related to the set point track-
ing performance. The mathematical representations of these
functions are given in (19),

S∞ = 1

1 + L
and T∞ = L

1 + L
(19)

where L is the loop transfer function, which is expressed as
in (20),

L = P2C2 − P1C1 (20)

Peak value of sensitivity function Mp is used further for
determining the robustness and describes in (21),

Mp = sup
ω

|S( jω)| (21)

Practically to ensure acceptable robust design, the sen-
sitivity value attained is expected to be less than 2. This
restriction when referred to the frequency response means
GM and PM should be ≥2dB and ≥30◦, respectively [23].
The robustness is determined in Fig. 5 by sketching the
Nyquist plot and adding the circle using the information
of sensitivity function. The minimum distance from criti-
cal point (−1+ j0) to Nyquist plot is denoted as dmin = 1

Mp
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Fig. 12 Experimental results of
2-DOF PID controller with
sawtooth wave as reference
trajectory a rotational position
θ1, b pendulum link position θ2
and c control voltage
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Fig. 13 Experimental results of
2-DOF FOPID controller with
sine wave as reference trajectory
a rotational position θ1, b
pendulum link position θ2 and c
control voltage
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Fig. 14 Phase portrait of
2-DOF FOPID a rotational arm
and b pendulum link

where Mp is defined in (21). The circle is drawnwith a radius
of dmin for determining the robustness of the compensated
plant. The plant becomes robust after employing the con-
troller for the external disturbance as seen in Fig. 13. To
ensure the robustness, the pendulum was hit manually as
an external perturbations at 11, 23.2, 34.2 s, etc. The exten-
sive perturbations are seen at 65 s as shown in Fig. 16a. The
pendulum resets within 1.5 s even against the largest ampli-
tude disturbance as shown in Fig. 16b. This establishes the
robust nature of the FOPID controller. Corresponding con-
trol voltage shows the spikes up to ±6V at largest external
disturbance shown in Fig. 16c.

The robustness is also discussed using experimental phase
trajectory shown in Fig. 17. When the pendulum is perturbed
externally, the system contains instantaneously more energy

to reset the equilibrium point shown in Fig. 17a, b. This more
energy shows the large distance between the phase point and
the equilibrium point in phase trajectory. After perturbations,
trajectory tried to converge at the equilibrium point. How-
ever, it contracts into a small confined space rather than a
point because stabilizing the pendulum link in upright posi-
tion system needs continuous energy input. The amount of
energy taken by the system depends upon the employed con-
troller.

4.5.2 Stability

Root locus can be used to examine the stability of a given
closed-loop system when k is increased from 0 to infin-
ity. Note that for k = 0, the open-loop and closed-loop
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Fig. 15 Experimental results of
2-DOF FOPID controller with
sawtooth wave as reference
trajectory a rotational position
θ1, b pendulum link position θ2
and c control voltage
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Table 3 Maximum deviation in angular position of RSIP by various controller

Controller Reference input Rotational arm (◦) Pendulum link (◦) Control voltage (V)

1-DOF FOPID Sine waveform 1.4 0.4 ±2.35

Sawtooth waveform 6.3 6 ±10

2-DOF PID Sine waveform 0.66 0.08 ±2

Sawtooth waveform 1.67 1.582 ±3.012

2-DOF FOPID Sine waveform 0.2 0.08 ±2

Sawtooth waveform 1.5 1.2 ±2.5

Table 4 Performance indices of error in angular position of rotational arm, pendulum link using 1-DOF FOPID, 2-DOF PID and 2-DOF FOPID
controllers

1-DOF FOPID 2-DOF PID 2-DOF FOPID

Rotational arm Pendulum link Rotational arm Pendulum link Rotational arm Pendulum link

IAE

Sine waveform 0.0443 0.07 0.0181 0.047 0.0087 0.0152

Sawtooth waveform 1.8 2.174 0.2807 0.3112 0.1707 0.1903

ISE

Sine waveform 0.0293 0.0143 0.0093 0.01807 0.0017 0.0074

Sawtooth waveform 0.1345 0.1589 0.1176 0.031 0.00489 0.01

Table 5 Effect of variation in
feed-forward parameters on
deviation in angular position of
rotational arm and pendulum
link

Parameter variation IAE ISE

Rotational arm Pendulum link Rotational arm Pendulum link

Increase in parameters

q1 = 4 0.012 0.04695 0.0095 0.0217

q2 = 3 0.0088 0.01505 0.0018 0.0074

q3 = 0.5 0.0192 0.047 0.00513 0.0201

q4 = 1 0.00883 0.0157 0.002 0.00793

Decrease in parameters where q3 = 0

q1 = 2 0.0232 0.048 0.0163 0.0294

q2 = 2 0.009016 0.0152 0.001806 0.0087

q4 = 0 0.00877 0.0154 0.0018 0.0078

poles coincide. Here, open-loop transfer function of the sys-
tem is pseudo-polynomials with non-integer order instead
of integer order. Hence, it is difficult to find stability by
simply examining roots. In [24], root locus of commensu-
rate fractional-order open-loop transfer function is plotted
in transformed w-plane and again transformed back to the
s-plane for analysis purpose. In this, only primary Rie-
mann sheet is analyzed. The issues of root locus branches
in secondary Riemann sheets are not addressed. Patil et
al. [25] addressed this issue and presented a method of
plotting root locus in which all the Riemann sheets are plot-
ted in the same plane (w-plane). Hence, analysis becomes
simple and straightforward. Here for determining the sta-
bility and robustness, the author is using the same approach.

Fractional-order open-loop transfer function of inverted pen-
dulum system given in Eq. (20) can be represented as
in (22),

G(s)H(s) = z f o

s4.7 + 1.87s3.7 − 97.61s2.7 − 26.69s1.7

(22)

where z f o = s4.7 + 275.77s3.7 − 219.05s3.6 + 1588s2.7 −
122.97s2.6+3059.4s2−428.5s1.7+9919.1s1.6−459.31s+
32169s0.7 + 37049.

Transform the above fractional-order transfer function
into w-plane by replacing s1/10 = w. Therefore, integer-
order transfer function is given in (23),
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Fig. 16 Experimental response
in presence of external
perturbation a rotational arm
position θ1, b pendulum link
position θ2 and c control voltage
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Fig. 17 Experimental phase
portrait in the presence of
external perturbation a
rotational arm and b pendulum
link
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G(w)H(w) = zio

w47 + 1.87w37 − 97.61w37 − 26.69w17

(23)

where zio = w47 + 275.77w37 − 219.05w36 + 1588w27 −
122.97w26 + 3059.4w20 − 428.5w17 + 9919.1w16

− 459.31w10 + 32169w7 + 37049.
The open-loop zeros, poles and their arguments are given

in Tables 6 and 7. With this transformation, we have the
following observations:

1. The Riemann surface has 10 Riemann sheets shown in
Fig, 18a.

2. Principal Riemann sheet (PRS): −pi/10 < arg(w) <

pi/10.
3. Unstable region: −pi/20 < arg(w) < pi/20.

The root locus of the system is shown in Fig. 18b. It shows
that the system has 4 poles on the principal Riemann sheet.
Out of 4 poles, 2 poles are in the unstable region, but at
k = 0.2078, the root locus branches on primary Riemann
sheet moves out of the unstable region. The enlarged view
of root locus is shown in Fig. 18c. It shows that all root
locus branches are completely outside the unstable region;
hence, it is stable for all values of gain k > 0.2078. Here it is
noteworthy that sufficiently high value of gain is required to
moves out the root locus branches from secondary or higher
Riemann sheets to primary Riemann sheet (stable or unstable
region). Therefore, more no. of poles are in higher no. of
Riemann sheet, which means fractional-order PID controller
willmore robust. This validates the robust nature of controller
mentioned in Sect. 4.5.1.
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Table 6 Open-loop zeros and
the corresponding arguments of
system

Open-loop zeros Arguments in radians Open-loop zeros Arguments in radians

−1.7315±0.5446j 2.8363 −0.6026±0.8051j 2.21

−1.0983±1.4274j 2.2262 −0.0125±1.24j 1.5805

−0.0755±1.7692j 1.6131 −0.1881±1.0872j 1.7417

0.9405±1.4415j 0.9925 1.2543±0.2612j 0.2052

1.5522±0.5611j 0.3468 1.1034±0.2591j 0.2305

−1.1674±0.3969j 2.81 1.0933±0.4778j 0.4119

−1.0971 3.14 0.7660±0.9856j 0.9099

−1.0575±0.1219j 3.0262 0.8697±0.8288j 0.7162

−0.9836±0.5693j 2.6164 0.8879±0.4860j 0.5007

0.8364±0.7374j 2.2773 0.2726±1.1629j 1.3402

0.7007±0.9646j 2.1986 0.5288±0.9836j 1.077

0.4730±1.0866j 1.9810 0.2070±0.9631j 1.3588

Table 7 Open-loop poles and
the corresponding arguments of
system

Open-loop poles Arguments in radians Open-loop poles Arguments in radians

0 (19 Repetative poles) 0 −1.2087±0.3927j 2.8260

−1.2432 3.14 −1.0058±0.7307j 2.5120

−0.7470±1.0282j 2.199 −0.3842±1.182j 1.8849

±1.2709j 1.570 0.3842±1.1823j 1.2566

0.7470±1.0282j 0.9429 1.2432 0

1.2087±0.3927j 0.3141 1.0058±0.7307j 0.62828

−0.8884 3.14 −0.7187±0.5222j 2.5132

−0.2745±0.8449j 1.8849 0.2745±0.8449j 1.2566

0.884 0 0.7187±0.5222j 0.6283

5 Conclusion and Future Work

Various techniques with traditional PID controller have been
found in the literature to control the RSIP system. Generally
speaking, these techniques provide good results; nonethe-
less, improvement is aught in the smooth tracking (negligible
oscillations) and reducing the peaks at sudden changes in
reference trajectory. The 2-DOF FOPID controller helps to
mitigate the said difficulties. The advantages of this control
scheme are stated:

– 2-DOF controller magnified the robustness of the system
toward perturbations and trajectory tracking, whereas the
incorporation of fractional-order operators has increased
the flexibility in selection of controller parameters.

– The sustained oscillations in steady-state response of
angular displacement in rotational armhave been reduced
up to 76%.

– The required average control voltage has been reduced.
– The intensity of spikes has lessened during a sudden
change in the reference trajectory.

– Total 10 Riemann sheets were found in Riemann surface,
and out of 47 poles, only 4 poles were found in the prin-

ciple Riemann sheet. All poles have moved out of the
stable region for any value of k > 0.2078, which shows
the more stable and robust nature of the controller.

– The values of IAE and ISE have been found smaller for
the angular deviation in the rotational arm and pendulum
link for 2-DOF FOPID controller as compared to 2-DOF
PID and 1-DOF FOPID controllers.

This study analyzes and synthesizes a fractional-order-based
2-DOF controller for a nonlinear RSIP system. Based on
the literature survey, some related issues for future research
works are outlined as follows:

– It is noteworthy that no fractional-ordermodeling or frac-
tional identification of RSIP system has been found in the
literature. Therefore, fractional identification should be
further carried out.

– The results in the study were obtained mainly for balanc-
ing the pendulum link, andhere, the pendulumwas swung
upmanually. However, nonlinear control techniques such
as fractional slidingmode, T–S-based fuzzy logic control,
piecewise H∞ control, Lyapunov function-based nonlin-
ear control andpredictive control, etc. [26–31] can further
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Fig. 18 Root locus of inverted pendulum with fractional-order controller a Riemann surface for w = s1/10, b root locus of transformed w-plane
and c close view of root locus of transformed w-plane
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be tried to swing up the pendulum. The insights from
these experiments will also provide some guidelines for
practical applications of the proposed approaches.

– In the present study, linearized control scheme has been
used to design a controller. However, some typical non-
linear control schemes such as fuzzy logic model-based
nonlinear networked control strategy, networked indus-
trial processes based on optimal control, networked mul-
tiple mobile robots, etc., might be further used to design
a fractional controller [32,33]. In this way, strengths and
weaknesses of the proposed methods would be critically
assessed.

– Further, a standalone unit of a digital fractional controller
using any nonlinear control methods such as sliding
mode topology based on microprocessor or FPGA can
be designed for RSIP system.

By taking the cognizance of the advantages of these experi-
ments, the proposed fractional schemewill also provide some
guidelines for practical applications such as robotic arms,
mobile wheeled inverted pendulum (Segway) and humanoid
robots.
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