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Abstract Accurate determination of the bubble point pres-
sure (BPP) is extremely important in several applications in
oil industry. In reservoir engineering applications the BPP
is an essential input for the reservoir simulation and reser-
voir management strategies. Also, in production engineering
the BPP determines the type of the inflow performance rela-
tionship that describes the reservoir production performance.
Accurate estimation of the BPPwill eliminate the risk of pro-
ducing in two-phase region. Current correlations can be used
to determine the BPP with high errors, and this will lead to
poor reservoir management. Artificial intelligent tools used
in the previous studies did not disclose themodels they devel-
oped, and they stated themodels as black box. The aim of this
research is to develop a new empirical correlation for BPP
prediction using artificial intelligent techniques (AI) such as
artificial neural network (ANN), adaptive neuro-fuzzy infer-
ence system (ANFIS), and support vector machine (SVM).
For the first timewe extracted theweights and the biases from
AI models and form a newmathematical model for BPP pre-
diction. The results obtained showed that the ANN model
was able to estimate the BPP with high accuracy (correlation
coefficient of 0.988 and average absolute error percent of
7.5%) based on the specific gravity of gas, the dissolved gas
to oil ratio, the oil specific gravity, and the temperature of the
reservoir as compared with ANFIS and SVM. The developed
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mathematical model from the ANNmodel outperformed the
previous AI models and the empirical correlations for BPP
prediction. It can be used to predict the BPPwith a high accu-
racy (the average absolute error (3.9%) and the coefficient of
determination (R2) of 0.98).

Keywords Bubble point pressure · Artificial intelligent ·
Reservoir management · Artificial neural network

Abbreviations

BPP The bubble point pressure (psi)
OFVF The oil formation volume factor
GG Gas gravity
RS The dissolved gas to oil ratio (scf/bbl)
API The oil gravity
Tf The temperature of the reservoir (◦F)

1 Introduction

Bubble point pressure is the pressure at which the first bub-
ble of the gas will come out of the liquid oil solution [1].
The determination of the bubble point pressure in oil reser-
voirs is crucial because it will determine several aspects in
the reservoir management strategy. For example, several oil
producers set their production strategy to produce above the
bubble point to avoid multiphase flow in the reservoirs which
will make the reservoir simulation process more complex.
Therefore, the accurate knowledge of the reservoir bubble
point pressure is very important. If the reservoir pressure
declines below the bubble point, the gas will come out of
solutions and form a secondary phase that will flow with the
oil and occupy part of the reservoir volume. This will affect
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the oil effective permeability, and in turn the oil production
will diminish. The gas will form a continuous phase, thereby
leading to a decrease in relative permeability to oil. The pre-
diction/determination of reservoir bubble point pressure is
important because it will help manage the production from
oil reservoirs [2,3].

The inflow performance relationship (IPR) in oil reser-
voirs is a strong function of the BPP. If the bottom hole
pressure is greater than the BPP, the IPR can be described as
straight line between the bottom hole pressure and oil flow
rate. If the bottom hole pressure is lower than the BPP, the
IPR in this case ceases to be straight line and will be curved
and can be described by Vogel’s correlation [4].

1.1 Artificial Intelligent Techniques

1.1.1 Artificial Neural Network Technique

Artificial neural network is the most powerful statistical tool
to recognize and classify complex patterns and systemwhich
human brain cannot do [5,6]. In fact, the artificial neural
network technique is inspired from biological neurons that
are found in human brain [7].

An ANN model consists of fundamental processing unit,
termed as neurons. The neural networkmodels are structured
on three components, learning algorithm, transfer function,
and network architecture [8]. The network model comprises
of at least three layers, input layer, hidden layer, and output
layer. Each layer connects with other layers with the help
of weights. The network performance is solely based on the
adjustment of weights between these layers [9,10]. Hidden
layers are assigned with a transfer function, which is usually
‘log-sigmoidal’ or ‘tan-sigmoidal.’ Output layer is assigned
with a ‘pure linear’ activation function. All the data that go
into the model are normalized between −1 and 1 by default
[11]. The first step of modeling with ANN is the training of
the network; data are processed through the input layer to
hidden layer(s) then all the way to the output layer. In the
output layer, the data are compared with the actual data. The
difference between actual and predicted data is transferred
back to the model to update the individual weights between
each connection and the biases of each layer. This process is
called epoch. In this way, training continues for all the data
set until the average error reduces to certain defined limit
[12].

1.1.2 Adaptive Neuro-Fuzzy Inference System

ANFIS has also gained importance in a petroleum industry.
Many researchers usedANFIS to delineate complex concepts
in the petroleum industry [13,14]. ANFIS is the combina-
tion of neural network and fuzzy logic and its very robust
supervised learning technique. It is the kind of neural net-

work that uses Sugeno fuzzy inference system [15]. ANFIS
has the capability to extract the benefits of both mentioned
AI techniques [artificial neural networks (ANN) and fuzzy
logic (FL)] in a single platform [16]. In order to get best out
of this technique one should use any evolutionary algorithm
to optimize the parameters of ANFIS [16].

Fuzzy logic maps input parameters to input member-
ship functions, followed by converting input membership
functions to set of fuzzy rules and then converting set of
fuzzy rules to output characteristics and followed by convert-
ing output characteristics to output membership functions,
finally this membership function to one valued output or any
classification based on output [17]. In ANFIS, instead of just
fixing the shape of membership function, it automatically
assigns the type and shape of membership function by ana-
lyzing the data [18].

1.1.3 Support Vector Machine

Support vector machine is the type of supervised learning
that is mostly used for regression and pattern recognition
purposes [19,20]. Based on soft margin hyper-plane, support
vectormachinewas introduced as a new artificial intelligence
tool framework for both classification and function approx-
imation [21,22]. Classification is an example of supervised
learning that help indicate whether the system is perform-
ing correctly or not. It somehow acts as clustering, in which
the data are clustered or classified based on their types. The
data can be classified or clustered based on the range; for
example several correlations can be developed for differ-
ent crude oils based on their density range and each range
we call a class or cluster. Instead of sigmoidal type trans-
fer function like in artificial neural network, support vector
machine stands on the kernel neuron function which defi-
nitely allows projection to higher planes and is able to solve
more complicated and complex highly nonlinear problems
[23]. The projection feature in SVM means how similar
or the parameter is and it determines the degree of over-
lap between the different parameters. Also, it affects the
classifications and clustering process based on the degree
of overlap (projections). SVM applications can be found
in many fields like medical, business, civil, and electrical
engineering [24].

1.2 Correlations for Bubble Point Pressure

Several correlations were developed to determine the oil
reservoirs bubble point pressure, most of these correlations
based on Standing’s correlations [25]. One of the common
methods used to obtain the BPP from the laboratory test data
is the Y-function. This function was used by several inves-
tigators to determine the BPP to smoothen the laboratory
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experimental data [26,27]. TheY-function can be determined
as follows:

Y = (BPP − p)(
p

(
V
Vb

− 1
)) (1)

where BPP is the bubble point pressure, p is the pressure at
any point, Vb is the bubble point volume, V is the two-phase
volume, V/Vb is the relative volume.

1.3 Bubble Point Pressure Prediction Using AI
Techniques (Black Box)

Many empirical equations for BPP were developed depend-
ing on the data collected from specific reservoir or regions
such as that developed by Gharbi and Elsharkawy [28]. They
developed a neural networkmodel to predict the bubble point
pressure as a function of the specific gravity of gas, the
dissolved gas to oil ratio, the oil specific gravity, and the
temperature of the reservoir. They tested the developed corre-
lations on Middle East crudes. They used two parallel neural
network models to minimize the prediction error. They used
498 data points to develop their model. They compared the
prediction of the bubble point pressurewith three correlations
[29–33], and their model yielded the least average absolute
relative error (AARE) on the tested data. Their model gave
2.79% AARE, and the other three correlations gave AARE
more than 4%.

Osman et al. [34] establishedANNmodel to predict the oil
formation volume factor (OFVF) using 803 published data
for Middle East, Malaysia, Colombia, and Gulf of Mexico
crude oil. They concluded that the ANN was able to predict
the OFVF with higher accuracy as compared with the empir-
ical equations. The average absolute error was 1.79%, and
the correlation coefficient was 0.988 for the developed ANN
model.

Moghadam et al. [35] concluded that the ANN technique
was able to predict the PVT properties of Iranian crude oils
with a correlation coefficient of 0.990 and the ANN model
outperformed the traditional methods of predicting the PVT
properties.

Al-Marhoun andOsman [36] used the artificial neural net-
work to establish new equations for the crude oils at Saudi
Arabia. They introduced new model to predict the BPP of
the crude oils for a specific field in Saudi Arabia. They
used 283 data points collected from different Saudi reser-
voirs. They found that the established model outperformed
all previous equations in terms of predicting the bubble
point pressure. The average absolute error of the developed
model was 5.8%, and their study supported the develop-

ment of regional correlations rather thandevelopinguniversal
general ones.

El-Sebakhy et al. [37] used support vector machines
framework (SVM) to develop a model for BPP prediction.
They concluded that the SVM model outperformed both
ANNmodels and the common empirical correlations forBPP
prediction.

Moghadassi et al. [38] stated that ANN model is one of
the best model to predict the PVT properties. They opti-
mized the number of neuron to be sixty in the hidden
layer to optimize the minimum mean square error (MSE) of
0.000606.

Numbere et al. [39] used artificial neural network (ANN)
approach to develop an empirical equation for the BPP for
the Niger Delta crude oil. They used 1248 data points to
develop their ANN model to predict the BPP, 60% of the
data was used for training, 20% for validation, and the rest
20% for testing. Their ANNmodel outperformed the existing
empirical correlations in predicting the BPP for the selected
region.

Baarimah et al. [40] develop a model to estimate the BPP
using fuzzy logic (FL). They used the specific gravity of gas,
the dissolved gas to oil ratio, the oil specific gravity, and the
temperature of the reservoir as inputs to build the BPPmodel.
They concluded that the new fuzzy logic model can be used
to predict the BPP with a correlation coefficient of 0.9995.

Adeeyo [41] used neural network to estimate the BPP and
the OFVF factor for Nigerian crude oil samples. They used
2114 data points for the BPP and 2024 for the OFVF. He
used several sets of the neural network design and number of
neurons. He used 60% of the data for testing, 20% for vali-
dation, and 20% for testing. The prediction of his model was
accurate compared to the published correlations estimation
for the BPP.

It is clear from the literature that no one can apply the avail-
able AI models for new data without having these models.
So, the objective of this research is to develop amathematical
model from the AI model that can be used generally without
the need for the code of the AI model.

In this study, we developed a new empirical correlation
to determine the BPP based on the specific gravity of gas
(γg), the dissolved gas to oil ratio (Rs), the oil specific grav-
ity (API), and the temperature of the reservoir (T f ). Three
artificial intelligent techniques will be used to develop the
BPPmodel such as artificial neural network (ANN), adaptive
neuro-fuzzy inference system (ANFIS), and support vector
machine (SVM). The obtained results of the three models
will be compared, and the one that gives the highest accu-
racy will be used to develop the new empirical correlation
for BPP prediction by extracting the weight and biases from
the AI model.

123



2494 Arab J Sci Eng (2018) 43:2491–2500

Table 1 Sample of the collected data (700 data points) for different crude

Sample ID Input parameters Output parameter

Solution gas oil ratio (scf/bbl) Gas gravity Oil gravity (◦API) Reservoir temperature (◦F) Bubble point pressure (psi)

1 494 0.677 44.5 230 2081

2 267 0.884 31.4 174 1220

3 956 0.811 43.2 226 2390

4 242 0.824 31.4 180 1302

5 214 0.664 31.9 180 1195

6 741 0.795 42 234 2562

. . . . . .

. . . . . .

. . . . . .

699 274 1.005 39.8 150 790

700 566 0.817 45.2 185 1530

Fig. 1 Relative importance of input parameters to bubble point pres-
sure (output parameter)

2 Data Description and Analysis

Table 1 lists a sample of the collected data for different crudes
(700 data points). These data were collected from published
papers [11,42–46].

The data include bubble point pressure (BPP), gas specific
gravity (γg), solution gas oil ratio (Rs), oil gravity (API), and
the reservoir temperature (T f ).

The BPP ranges from 126 to 7127 psi. Gas gravity (γg)

changes from 0.589 to 1.367, while the dissolved gas to oil
ratio (Rs) ranges from 9 to 2637 scf/bbl. The API changes
from 15.3 to 59.5, and the reservoir temperature ranges from
74 to 294◦F.

The correlation coefficient (R) was determined in order
to evaluate the importance of each input parameter to the
bubble point pressure. Figure 1 shows that the BPP is a strong
function of the dissolved gas to oil ratio, with the correlation
coefficient 0.88. While the BPP is a moderate function of the
specific gravity of gas, the correlation coefficient is −0.51.

The bubble point pressure is aweak function of the oil gravity
and the reservoir temperature; the correlation coefficient is
0.38 and 0.32 for the oil specific gravity and the temperature
of the reservoir, respectively.

2.1 Building the Artificial Intelligent Models

The first step in building the AI model is to normalize all the
parameters that will be used to build the model. The value of
the parameters (input and output) is normalized between -1
and 1 by using two points slope, Eqs. (2, 3).

Y − Ymin

Ymax − Ymin
= X − Xmin

Xmax − Xmin
(2)

Y = X − Xmin

Xmax − Xmin
(2) − 1 (3)

where Y is the input parameter in the normalized form,
Ymax = 1, Ymin = −1, Xmax is the maximum value of input
data, Xmin is the minimum value of input data, X is the input
parameter to be normalized. For example, theminimumvalue
of the BPP (Xmin) is 126 psi, and the maximum value of BPP
(Xmax) is 7127 psi, so for the value of BPP equal to 2000 psi,
the normalized value will be equal to 0.267.

The second step is to train the model. Seventy percent of
the data (490 data points) was used to train the AI models.
Figure 2 shows that the ANN model was able to predict the
bubble point pressure with a correlation coefficient (R) of
0.988 and an average absolute error of 7.5%when comparing
the actual and predicted value of the BPP. ANFIS was able to
predict theBPPwith a correlation coefficient (R) of 0.986 and
an average absolute error of 11.5 when comparing the actual
and the predicted values of the BPP, while SVM was able to
predict the BPP with a correlation coefficient (R) of 0.977
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Fig. 2 Bubble point pressure prediction using AI techniques for the training data (490 data points)

Fig. 3 Coefficient of determination (R2) for BPP prediction using AI
techniques for the training data

and an average absolute error of 14.9% when comparing the
actual and predicted values of the BPP, Fig. 2.

Figure 3 shows that for the training data (490 data points),
the ANN yielded higher coefficient of determination (R2) of

0.98 for predicting the BPP than ANFIS and SVMwhere the
R2 was 0.97 and 0.95, respectively.

The third step is to assess the developed AI models by
testing the three models using unseen data (210 data points),
which is 30% of the collected data. Figure 4 shows that ANN
model was able to predict the BPP with a correlation coeffi-
cient of 0.987 and an average absolute error of 7.9%. ANFIS
was able to predict the BPP with a correlation coefficient of
0.985 and an average absolute error of 13.1%, while SVM
was able to predict the BPP with a correlation coefficient of
0.965 and an average absolute error of 17.4%, Fig. 4.

It can be concluded that ANN model was able to esti-
mate the BPP based on the specific gravity of gas (γg),
the dissolved gas to oil ratio (Rs), the oil specific gravity
(API), and the temperature of the reservoir (T f ) with higher
accuracy than ANFIS and SVM. Based on these results,
ANN model was selected to develop a new empirical cor-
relation for predicting the BPP by extracting the weights
and the biases from the model to develop the mathematical
model.
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Fig. 4 Bubble point prediction using AI techniques for the testing data (210 data points)

3 Development of Mathematical Model Using
Artificial Neural Network

The mathematical model was driven from the artificial neu-
ral network model by extracting the weights associated with

input layer/hidden layers and hidden layer/outer layer and
the biases of the hidden layer and the output layer. Fig-
ure 5 shows the diagram of the developed ANN model. The
weights between input layer and hidden layer are termed as
w1, the weights between hidden layer and outer layer are
termed as w2, the bias of the hidden layer is termed as b1,
and the bias of the output layer is termed as b2, which are
given in Table 2.

Equation 4 can be used to predict the BPP in normalized
form as a function of the specific gravity of gas (γg), the
dissolved gas to oil ratio (Rs), the oil specific gravity (API),
and the temperature of the reservoir (T f ). To obtain the de-
normalized form of the BPP, Eq. 4 can be used.

BPPn =
⎡
⎣

N∑
i=1

w2i

⎛
⎝ 2

1 + e
−2

(
w1i,1 Rsn +w1i,2GGn +w1i,3APIn +w1i,4T fn+b1i

)

⎞
⎠

⎤
⎦ + b2 (4)

BPP = (7127 − 126) (Pbn + 1)

2
+ 126 (5)

where Rsn is the normalized value of the solution gas oil ratio,
GGn is the normalized value of the gas specific gravity, APIn
is the normalized value of the oil gravity, T fn is the normal-
ized value of the reservoir temperature, N is the number of
neurons (the number of neurons should be optimized to have
good match with less error); w1 is weight of hidden layer;
w2 is weight of the output layer; b1 is bias of the hidden
layer, and b2 is bias of the output layer. Table 2 lists the input
parameters for Eq. (4).
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Fig. 5 ANN diagrams show the inputs, output, hidden layer, and num-
ber of neuron

The number of neuron was optimized to be 20 to give the
highest accuracy between the estimated and actual values of
the bubble point pressure.

Fig. 6 Coefficient of determination (R2) for BPP prediction using
Eq. 5

4 Validation of the Developed Mathematical Model

To assess the developed equation, 30% of the data (210 data
points) which was unseen by ANNmodel was used to calcu-
late the BPP using Eq. 7. Figure 6 shows that the developed
equation (Eq. 5) was able to predict the BPP with a coef-
ficient of determination (R2) of 0.98 when comparing the
actual and calculated values of the BPP.

Table 2 Weights and biases for BPP prediction, Eq. 4

Input layer weight matrix Input layer bias vector Hidden layer weight vector Output layer bias vector
W1 b1 W2 b2

1 2 3 4

−2.3248 2.4608 −2.0104 −5.2317 −0.1354 5.1937 −0.2966

−7.3692 −1.2562 1.3131 −2.3560 0.8256 −1.4706

3.9584 −5.5817 7.7670 3.8646 0.1137 −5.4995

−1.9146 −1.2198 2.2708 0.5839 0.3471 0.3738

3.4328 0.3899 −0.3055 1.5746 −1.3133 2.3265

−10.0962 −1.6637 3.1283 −3.3665 −0.6302 −1.9974

4.7945 −1.3479 2.7555 −4.4916 −0.0972 −3.7194

−2.6018 −0.1854 0.2493 −1.3114 −1.8183 −1.7052

−1.2289 8.2957 5.2978 −0.0575 −1.3804 −0.4322

1.4999 0.0844 −1.3773 −0.3384 0.8569 −0.0429

1.4657 −8.1862 −5.3571 0.1018 −1.3891 0.6172

2.9561 −3.6712 2.1439 −5.6756 −0.0851 1.3972

−0.4082 1.4761 1.0359 2.0513 −1.7523 −0.5735

1.1950 −2.0113 6.3937 1.3641 0.0687 −0.1036

−4.6161 2.0524 −2.7155 4.6920 −0.0773 −2.6209

0.1657 1.4925 −2.5912 −0.5166 −0.2125 −0.7838

−3.4169 0.3328 −1.6494 1.1327 −0.2330 −3.8676

−4.0265 1.4697 3.1386 5.1145 −0.2537 −6.3839

−0.3942 1.5115 0.9122 1.9610 1.8640 −0.6851

0.5939 −1.0508 1.1340 0.2161 −0.3469 1.4986
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Fig. 7 The developed equation yields the highest correlation coeffi-
cient for BPP prediction as compared with the previous models

Fig. 8 Prediction of BPP for the published data [47] using Eq. 5

For further validation, another set of data (21 data points)
was used to compare the developed mathematical equation
with previousANNmodel [47] and other empirical equations
(Standing, [31], Al-Marhoun [29], Glasø [43]) as listed in
Table 3.

Table 3 confirms that the developed mathematical model
for BPP prediction yielded the lowest average absolute error
(3.9%) when compared with the previous models.

Figure 7 shows that the developed equation for BPP pre-
diction (Eq. 5) yields the highest correlation coefficient as
compared with the previous models.

Figure 8 shows that Eq. 5 was able to predict the BPP
with a coefficient of determination (R2) of 0.99 for unseen
published data [47].

5 Conclusions

Three AI models were developed to estimate the BPP as a
function of the specific gravity of gas (γg), the dissolved gas
to oil ratio (Rs), the oil specific gravity (API), and the tem-

perature of the reservoir (T f ). Based on the results obtained,
the following conclusion can be drawn:

1. Artificial neural network is the best AI technique to be
used to predict the bubble point pressure as a function of
the gas specific gravity, the solution gas oil ratio, the oil
gravity, and the reservoir temperature.

2. ANN model has a correlation coefficient of 0.988 and
an average absolute error of 7.5% when it was used to
predict the BPP.

3. The developed mathematical equation from the ANN
model outperformed the previous models for BPP pre-
diction.

4. The developed correlation of the BPP from the ANN
model can be used to predict the BPP with high accuracy
(R2 = 0.98)

Anewempirical correlation for theBPPwas developed based
on the weights and biases from the ANN model. This will
eliminate the need for special software or equipment to run
the model. The developed equation can be run on Excel.
This development will help the reservoir engineer to better
manage the reservoir and predict the BPP.
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