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Abstract Accurate localization of sensor nodes has a strong
influence on the performance of a wireless sensor network.
In this paper, a node localization scheme using the applica-
tion of nature-inspiredmetaheuristic algorithm, i.e., butterfly
optimization algorithm, is proposed. In order to validate the
proposed scheme, it is simulated on different sizes of sensor
networks ranging from 25 to 150 nodes whose distance mea-
surements are corrupted by gaussian noise. The performance
of the proposed novel scheme is compared with performance
of some well-known schemes such as particle swarm opti-
mization (PSO) algorithm and firefly algorithm (FA). The
simulation results indicate that the proposed scheme demon-
strates more consistent and accurate location of nodes than
the existing PSO- and FA-based node localization schemes.

Keywords Wireless sensor networks (WSN) · Node
localization · Butterfly optimization algorithm (BOA) ·
Particle swarm optimization (PSO) algorithm · Firefly
algorithm (FA)

1 Introduction

Wireless sensor network (WSN) is an emerging technology
that has potential applications in various fields like health-
care, surveillance, astronomy, military, and agriculture [1].
WSN has wide application prospects due to its fast and easy
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deployment, and self-organization. WSN consists of a large
number of tiny, inexpensive autonomous sensor nodes (either
homogenous or heterogeneous) to observe physical and envi-
ronmental conditions [2]. These autonomous nodes sense,
process and pass the gathered data from the environment over
wireless ad hoc network to the base station or the sink node
which act as the final destination [3]. The different optical,
biological, chemical, magnetic sensors can be appended to
the nodes to compute environmental properties. The features
of WSN like self-organization and rapid deployment makes
it promising for most of the WSN applications. In the appli-
cation of WSN, sensor nodes sense and report the events of
interest which can be examined when the position of target
nodes reporting the event is known. The estimation of the
sensor nodes is one of the most important issues of the WSN
and is known as localization problem [4].

The technology of node localization can locate and track
nodes, so that the monitoring data are more meaningful, i.e.,
data gathered at sink node will be meaningless to the user
without localization information of the nodes in the sensor
field. The localization can be defined as determination of
the position of the unknown sensor nodes called as target
nodes using the known position of the sensor nodes called as
anchor nodes based on the measurement such as time differ-
ence of arrival, time of arrival, angle of arrival, triangulation
and maximal likelihood etc. [5]. The localization issue of
WSN can be resolved by using global positioning system
(GPS) with each sensor node, but this is not favored due to
energy, cost and size issues. It even does not work properly
indoor and underwater. So, efficient and better alternative is
required to localize the sensor nodes.Various non-GPS-based
localization algorithms can be used which is categorized
into range-based and range-free algorithms [6]. Range-based
localization algorithms use point-to-point distance estima-
tion or angle-based estimation between sensor nodes. In this,
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location is estimated with the help of trilateration of anchor
nodes (whose position is known). Range-free localization
algorithms do not require range information between target
node and anchor node, but depends on the topological infor-
mation. Range-based algorithms provide more accuracy as
compared to range-free localization algorithms, but they are
not so economic [7].

A WSN consists of n nodes which are distributed in two-
dimensional field. Each node has a communication range of
r . The WSN can be represented as a Euclidean graph G =
(V, E), where V is the set of sensor nodes and (i, j) ∈ E ,
if the distance between i th sensor node and j th sensor node
is r . Target nodes are the set T of nodes which do not know
their position in the network, whereas localized nodes are
the set L of nodes which estimated their position using some
localization technique. Now, consider a WSN G = (V, E),
and a set of anchor nodes A and their positions (xa, ya), for
all a ∈ A, it is desired to find the position (xt , yt ) of as
many t ∈ T as possible, transforming the target nodes into
localized nodes L [8].

The range-based localization of sensor nodes is attained
with the help of two phases: ranging and position estimation
phase. In first phase, each target node measures its distance
from the anchor nodes using the intensity of received signal
or the signal propagation time. Accurate distance measure-
ment is not possible because of noise. In second phase, the
location of the sensor nodes is estimated using the informa-
tion obtained from the ranging phase. It can be done by using
either geometric approach or optimization algorithm.

In the past, several interesting approaches have been used
to tackle the problem of WSN node localization. In [9], a
detailed survey of various localization systems for ubiquitous
computing is presented. In [5], different localization tech-
niques along with a detailed study of various measurement
techniques for WSNs are described. In [10], a novel local-
ization scheme in which all anchor nodes flood their location
position to all target nodes present in the network. In this tech-
nique, every target node estimates its position by making the
use of position of three ormore anchor nodes. Further, in [11],
an enhancement to the same technique is proposed, in which
each target node makes use of the neighbors’ location to
improve their location accuracy. In [12], Kalman filter-based
least-square estimation technique is used to address the issue
of error accumulation. In [13], convex optimization-based on
semi-definite programming is used to address the node local-
ization problem in WSN. In [14] and [15], the semi-definite
programming approach is extended to non-convex inequality
constraints and to a gradient-search, respectively.

The optimization algorithms are really good in solving
optimization problems like decision subset sum problem,
feature selection, traveling salesman problem. Localization
issue can be considered as an unconstrained optimization
problem and can be approached with the optimization algo-

rithms [16]. The analytical methods of optimization are not
efficient in solving the localization problem because of time
and complexity factors [17]. It motivated the researchers to
use effective and robust nature-inspired metaheuristic algo-
rithms [18] to solve the issue. These algorithms are inspired
from the nature and help in solving various optimization
problems by keeping the perfect balance among its compo-
nents. The algorithms like genetic algorithm (GA), particle
swarm optimization (PSO) [19], firefly algorithm (FA) [20]
have been used to locate the position of the sensor nodes.
There are various optimization algorithms available which
can help to minimize the localization error and localize the
maximum number of target nodes [21].

The primary contributions of this paper are the proposal of
butterfly optimization algorithm for node localization in the
WSN. A comparative analysis of the performance of BOA
with FA and PSO is presented. The simulation results demon-
strate that the BOA-based node localization scheme is better
in terms of computing time and accuracy. The rest of this
paper is organized as follows. In Sect. 2, brief review of
nature-inspired metaheuristics is presented and in Sect. 3,
iterative node localization is discussed. InSect. 4, simulations
and results obtained using BOA, FA and PSO are presented.
Section 5 presents the concluding remarks and outlines direc-
tion for further research.

2 Nature-Inspired Metaheuristic Algorithms: A
Brief Review

In various disciplines of engineering, real-world problems
are formulated as optimization problems. In the past, these
optimization problems are tackled by traditional methods;
however, these problems require huge computational efforts,
which increase with the increase in problem size. This
motivated researchers to use optimization methods, which
produce better results and use less computational resources
[22]. Researchers have used nature-inspired metaheuristic
algorithms as computationally better alternatives to tradi-
tional methods [23].

Examples of nature-inspired metaheuristic algorithms
include particle swarm optimization (PSO) algorithm [24],
genetic algorithm (GA) [25], butterfly optimization algo-
rithm (BOA) [26], firefly algorithm (FA) [27,28], surrogate
based optimization (SBO) [29] and many more [22,30].
Various hybrid algorithms have been developed by the
researchers to improve the solution quality and convergence
[31,32].

However, these optimization algorithms may not work in
the best possible manner with resource-constrained compu-
tational units, like wireless sensor nodes, because of some
additional computational overheads. So, BOA and the vari-
ants of PSOandFAare employed forWSNsnode localization
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in this study. The underlying reason behind the selection of
these algorithms is the ability of these algorithms to produce
better results when applied to various real-world problems.
Moreover, FA and PSO are easy to implement and have good
convergence rate, while BOA produces superior quality of
solutions and uses very less memory.

2.1 Butterfly Optimization Algorithm

Butterfly optimization algorithm (BOA) is a new nature-
inspired metaheuristic algorithm developed by Arora [26]. It
is based on food-foraging strategy of butterflies. Butterflies
use sense receptors to locate the source of their food/nectar.
These sense receptors, also called chemoreceptors, are able
to sense fragrance and are scattered all over butterfly’s body
parts. In BOA, these butterflies are the search agents which
perform optimization. In this algorithm, it is assumed that
every butterfly generates fragrance having some intensity and
this fragrance is propagated and sensed by other butterflies
in the region. The emitted fragrance of the butterfly is cor-
related with the fitness of the butterfly. This means when a
butterfly changes its position, its fitness/fragrance will vary
accordingly [26]. When a butterfly senses greater amount of
fragrance emitted by some other butterfly in the region, that
particular butterfly will move toward that latter butterfly and
this phase is termed as global search. In another scenario,
when a butterfly is not able to sense fragrance greater than
its own fragrance, it will move randomly and this phase is
termed as local search phase.

The main strength of BOA lies in its mechanism to mod-
ulate fragrance in the algorithm. In order to understand the
modulation, first it should be discussed that how any sense
like sound, smell, heat, light is processed by a stimulus of
a living organism. The whole concept of sensing and pro-
cessing the modality is based on three important terms viz.
sensory modality (c), stimulus intensity (I ) and power expo-
nent (a). Sensorymodality is the concept related tomeasuring
the form of energy and processing it. Stimulus intensity
is the magnitude of the physical/actual stimulus. In BOA,
the stimulus intensity is correlated with the fitness of the
butterfly/solution. This means that when a butterfly is emit-
ting greater amount of fragrance, the other butterflies in that
surrounding can sense it and gets attracted toward it [33].
Power is the exponent to which the intensity is raised. The
natural phenomenon of butterflies is based on two important
issues: the variation of I and formulation of f . For simplicity,
I of a butterfly is associated with encoded objective func-
tion. However, f is relative i.e., it should be sensed by other
butterflies. Using these concepts, in BOA, the fragrance is
formulated as a function of the physical intensity of stimulus
as follows:

f = cI a (1)

where f is the perceived magnitude of the fragrance, i.e.,
how stronger the fragrance is perceived by other butterflies,
c is the sensory modality, I is the stimulus intensity, and a is
the power exponent dependent on modality, which accounts
varying degree of absorption.

There are two key steps in the algorithm, they are
global search phase and local search phase. In global search
phase, the butterfly takes a step toward the most fittest
butterfly/solution g∗ which can be represented as:

xi
t+1 = xi

t + Lévy(λ) × (g∗ − xi
t ) × fi (2)

where xi t is the solution vector xi for i th butterfly in iteration
number t . Here, g∗ represents the current best solution found
among all the solutions in the current iteration. Fi represents
the fragrance of i th butterfly, and λ is the step size.

Local search phase can be represented as:

xi
t+1 = xi

t + Lévy(λ) × (x j
t − xk

t ) × fi (3)

where x j and xk are randomly chosen butterflies from the
solution space. If x j and xk belong to the sub-swarm and λ

is the step size, then Eq. (4) becomes a stochastic equation
for random walk.

Lévy ∼ u = t−λ, (1 < λ <= 3), (4)

The steps of butterfly essentially form a randomwalk pro-
cess according to power-law step-length distribution with
a heavy tail which has an infinite variance with an infinite
mean. The use of Lèvy flights in the movement of butter-
flies speeds up the local search by generating new solutions
around the best solutions generated so far. However, some
solutions should be generated by far fields randomization
and positions of those solutions should be distant from cur-
rent best solution which makes sure that solutions will not
be trapped in local optima.

Search for food andmating partner by butterflies can occur
at both local and global scales. Considering physical proxim-
ity and various other factors like rain, wind, search for food
can have a significant fraction p in overall food- or mating
partner-searching activities of butterflies. So a switch prob-
ability p is used in BOA to switch between common global
search to intensive local search. The above two key steps plus
the switch condition can be summarized in the pseudo code
shown in Algorithm 1.
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Algorithm 1 Pseudo code of the Butterfly Optimization Algorithm (BOA)

1: Objective function f(x), x=(x1……xdim)
2: Generate population of n Butterflies xi= (i=1,2,…n)
3: Define c, a and p
4: while stopping criteria not met do
5: for each butterfly bf in population do
6: Calculate fragrance for bf using Eq. (1)
7: end for
8:    Find the best bf
9: for each butterfly bf in population do
10: Generate a random number r from [0, 1]
11: if r < p then
12: Move towards best butterfly using Eq. (2)
13: else
14: Move randomly using Eq. (3)
15: end if
16: end for
17: end while
18: Output the best solution found.

2.2 Firefly Algorithm

Firefly algorithm (FA) is a nature-inspired metaheuristic
algorithmwhichmimics the social behavior of fireflies found
in the tropical region. Basically, fireflies produce several
types of flashing patterns in order to communicate, search
and find their mating partner. These flashing characteristics
of fireflies were idealized by Yang [27] in order to develop a
firefly inspired algorithm. In FA, three rules were idealized,
which are:

(i) All the fireflies are assumed as unisexual by which any
firefly can get attracted toward other firefly present in
the surrounding, irrespective of their sex.

(ii) Attractiveness of each firefly is directly proportional to
their brightness. It means any firefly with less bright-
ness will move toward that butterfly which displays
more brightness.

(iii) The brightness of a firefly is calculated using the objec-
tive function.

The main algorithm of FA is focused on two important
issues, i.e., how the light intensity is to be varied and how
the attraction is formulated. For easiness, the attractiveness
of each firefly is calculated by its brightness which is further
correlated with the determined objective function. In a gen-
eral case of maximization problem, at a particular position
the brightness I of a firefly can be assumed as I (x) ∝ f (x).
However, the attractiveness β is relative which means it
should be visualized by other fireflies in the region. There-

fore, it should differ with the change in the distance between
the fireflies. According to the basic laws of physics, the light
intensity and henceforth attractiveness should decrease with
the increase in the distance from the source, which means
the modification of light intensity and attractiveness should
be monotonically decreasing functions. The combined effect
of both the inverse square law and absorption can be defined
as:

I = I0 exp(−γ r2) (5)

where I is the light intensity, I0 is the initial light intensity
and γ is the coefficient which accounts for varying degree
of light absorption factors. The attractiveness of a firefly is
proportional to the light intensity visualized by other fireflies
in the region, so the attractiveness β can be defined as:

β = β0 exp(−γ r2) (6)

where β0 is the attractiveness at distance r = 0 and γ is
light absorbtion coefficient. The distance ri j between any
two fireflies i th and j th located at Xi and X j , respectively,
is determined using the Euclidean norm, and movement of
a less brighter firefly i th toward brighter firefly j th is deter-
mined by

xi = xi + β
−γ r2i j
0 (x j − xi ) + α

(
rand − 1

2

)
(7)

where the second term is due to the attraction and third term
is a randomization with the vector of random variable. The
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basic steps of FA are summarized as the pseudo code shown
in Algorithm 2.

Algorithm 2 Pseudo code of Firefly Algorithm (FA)

1: Objective Function f(X), X= (x1, x2,…xd)
2: Generate population of n fireflies, Xi, i = 1,2,…,n
3: Light intensity Ii at Xi is determined by f(Xi)
4: Define the light absorption coefficient γ
5:while (t < MaxGeneration)
6: for i = 1: n, all n fireflies
7: for j = 1: n, all n fireflies (inner loop)
8: if (Ii < Ij),
9:               Move firefly i towards j using Eq. (7)
10:       end if
11:      Vary attractiveness with distance i via exp[- γr2]
12: end for j
13: end for i
14: Rank the fireflies and find the global best solution
15:end while
16: Post-process the results

2.3 Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is a swarm
intelligence-based algorithm which simulates the social
behavior of bird flocks [34]. PSO is among the most power-
ful algorithms for optimization. The PSO algorithm employs
a set of individuals which populated in the search space
with random initial locations. Each individual, i , in a particle
swarm is composed of three vectors, with a dimensionality
equal to that of the problem space. These are the current posi-
tion, previous best position and associated velocity denoted
as xi , pi , and vi , respectively. The position, xi , represents a
set of coordinates describing a point in solution space. In

each iteration, the current position is evaluated as a prob-
lem solution and, if the particle finds better result than its
previous best one, then it substitutes the one stored in pi .
The best fitness result found by each particle is stored in
pbesti , whereas the best result encountered by the entire pop-
ulation is stored in gbesti to use it for comparisons in later
iterations. Let xi = (xi1, xi2 . . . xiN ) be the N -dimensional
vector representing the position of the i th particle in the
swarm, pbest = [p1, p2, . . . pN ] be the position vector of
the i th particle’s personal best, gbest = [g1, g2, . . . gN ] be
the position vector of the best particle in the swarm and
vi = [vi1, vi2 . . . vi N be the velocity of the i th particle.
The movement of the particle is mathematically modeled
as:

vid = wvid + c1r1(pid − xid) + c2r2(gd − xid) (8)

xid = xid + vid (9)

where i = 1, 2, . . . K ; d = 1, 2, . . . N ; where K repre-
sents the population size of the swarm. w is the inertial
weight, and c1 and c2 are the cognitive and social scaling
parameters, respectively. r1 and r2 represent random num-
bers drawn from a uniform range of [0, 1]. The parameters
c1 and c2 play vital role in the convergence character-
istics of PSO as c1 determines how much a particle is
influenced by the memory of its best solution, whereas c2
determines the impact of swarm on the particle. Another
important parameter is w as its small value will result in
premature convergence and larger value will result in slow
convergence. The basic steps of the PSO algorithm can
be summarized as the pseudo code shown in Algorithm
3.

Algorithm 3 Pseudo code of Particle Swarm Optimization (PSO) algorithm

1: Objective Functionf (X), X= (x1, x2,…xd)
2: Generate initial population of n particles, Xi,i =1,2,.,n
3: while (t< MaxGeneration)
4: for each particle 
5: Calculate fitness value
6: Update best fitness value (pBest) in history
7: Set current value as the new pBest
8: end for
9: Choose the particle with the best fitness value as gBest
10: for each particle 
11: Calculate particle velocity according Eq. (8)
12: Update particle position according Eq. (9)
13: end for
14: end while
15: Post-process the results
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3 Iterative Node Localization

The distributed range-based localization technique is used to
estimate the coordinates of sensor nodes. The main objective
of node localization in WSN is to determine the coordinates
of the most of the target nodes by minimizing the objec-
tive function. The localization issue of WSN is considered
as an optimization problem which is approached by various
metaheuristic algorithms. The following process is used to
localize the sensor nodes in WSN:

1. InitializeM target nodes and N anchor nodes randomly in
the sensor field. Each anchor node has location awareness
to find its location. Each anchor node and target node has
transmission range R.

2. The distance between each target node and anchor nodes
is evaluated which is altered by the additive Gaussian
noise. Each target node calculates the distance by using
equation d̂i = di +ni where di is the real distance which
is calculated between the positionof the target node (x, y)
and the position of the beacon (xi ,yi ) by using the fol-
lowing equation :

di =
√

(x − xi )2 + (y − yi )2 (10)

The variable ni is the noise affecting the measured dis-
tance distributed in the range di ± di

( Pn
100

)
where Pn is

the percentage of noise in measured distance.
3. The target node is known as localizable node if there

are at least three anchor nodes within the transmission
range of the target node. The underlying reason behind
this requirement is that according to the trilateral posi-
tioningmethod, the coordinates of the three anchor nodes
A (x1, y1), B (x2, y2), and C (x3, y3), and the distance
between the target node di and three anchor nodes are
known. Then, by using the trigonometric laws of sines
or cosines, the coordinates of the target node are calcu-
lated. Similarly, in multilateration target node estimation
method, distance measurements of three or more anchor
nodes are used to minimizing the error between actual
distance and estimated distance. The method of calcula-
tion can be seen from Fig. 1.

4. For each localizable node, metaheuristic algorithm is run
independently to find the position of the target node. The
butterflies or agents are initialized with the centroid of
the anchor nodes that are within transmission range by:

(xc, yc) =
(
1

N

N∑
i=1

xi ,
1

N

N∑
i=1

yi

)
(11)

where N is the total number of anchor nodeswithin trans-
mission radius of the localizable target node.

Fig. 1 Principle of trilateral positioning method

5. Themetaheuristic algorithm helps to find the coordinates
(x, y) of the target node that minimizes the localization
error. The objective function of localization problem is
themean square distance between target node and anchor
node which is minimized using an algorithm and it is
described mathematically as:

f (x, y) = 1

N

(
N∑
i=1

√
(x − xi )2 + (y − yi )2 − d̂i

)2

(12)

where N ≥ 3 is the number of anchor nodes within trans-
mission range of the target node.

6. The optimal value (x, y) is estimated by metaheuristic
algorithm after number of generations by minimizing the
objective function.

7. The total localization error is computed after the position
of all localizable target nodes NL is estimated. It is cal-
culated as the mean of square of the distance between the
estimated node coordinates (Xi ,Yi ) and the actual node
coordinates (xi , yi ) which is given as:

El = 1

Nl

N∑
i=1

√
(xi − Xi )2 + (yi − Yi )2 (13)

8. The steps from 2 to 6 are iterated until all the target
nodes get localized or no more nodes can be localized.
The localization algorithm’s performance depends on
the average localization error El and the number of un-
localized nodes NNL which can be evaluated by using the
equation NNL = M − NL. The smaller values of El and
NNL make the localization more efficient.
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Fig. 2 Flowchart for BOA-based node localization in WSN

The number of localized nodes increases as the iteration pro-
gresses. It also increases the number of anchor nodes within
the transmission range of the localizable target node as the
estimated position of target node behaves as a anchor node
in the next iteration. It helps to reduce the problem of flip
ambiguity which produces large localization error. However,
computation time to obtain localization information of the
target node increases as the iteration increments. The overall
flowchart is shown in Fig. 2.

4 Numerical Simulation and Results

The simulations and performance analysis of the proposed
node localization scheme are conducted in QT Creator 2.4.0.
For simulations, a sensor network with static target and
anchor nodes is deployed in a 100m×100m area. As shown
in Fig. 3, the positions of the sensor nodes are represented
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Fig. 3 Node localization using BOA

by random generated coordinates (x, y) within the bound-
ary. The total number of target nodes in the given area is
fixed to 50 for the simulations. Any particular ranging tech-
nique is not considered in this study. In these simulations, it is
assumed that the range measurement is blurred with additive
white gaussian noise only, i.e., d̂i = di + ni as mentioned
in Eq. (10) where ni is zeromean gaussian variable with vari-
anceσ 2

d . The standard deviation of themeasured distanceσd
is the parameter affecting the performance of the localization.
The density of anchor nodes (per m2) and the transmission
range of sensor nodes are the important parameters influenc-
ing the localization error. Each point in the simulation result
is the average of 30 replication and is plotted with a con-
fidence interval of 95%. The transmission range of anchor
nodes is set as 30U. The size of population n and number
of generations are fixed to 30 and 200, respectively. Simi-
lar techniques have been used by various researchers in the
past [7,18,35]. The strategic settings and parameter values
of BOA, PSO and FA are discussed below:

4.1 Case Study 1: Node Localization Using BOA

In this case study, each localized node runs BOA to estimate
the location. In BOA, the initial value of modular modality c
is taken as 0.01, whereas the initial value of power exponent
a is set to 0.1. In this study, pseudorandom numbers are
used instead of lévy flights. The reason behind choosing the
pseudorandom numbers over lévy flights is that it increases
the convergence rate as well the chances to gain the global
optimality. The localization of 50 target nodes using BOA is
depicted in Fig. 3.

4.2 Case Study 2: Node Localization Using FA

In this case study, each localized node runs FA to estimate
the location. In FA, the value of randomization parameter α

is taken as 0.25, whereas the absorption coefficient γ is set
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Fig. 5 Node localization using PSO

to 1.0. The initial attractiveness parameter β is set to 1 [36].
FA is run for each target node till the maximum number of
generations to localize target nodes. FA-based localization
for 50 target nodes is represented in Fig. 4.

4.3 Case Study 3: Node Localization Using PSO

For PSO, initial values ofw = 0.7 and c1 = c2 = 1.494were
recommended for faster convergence after experimental tests
[37,38]. In this study, gbest PSO algorithm with adaptable
weight methods is used [39]. The PSO algorithm is executed
using above parameters for specified number of iterations to
find the optimal value. The localization of 50 target nodes
using PSO is depicted in Fig. 5.

Results ofBOA-, FA- andPSO-based localization summa-
rized in Table 1 demonstrate that all the algorithms used here
have performed fairlywell inWSN localization. The effect of
Pn , percentage noise in distance measurement, on localiza-
tion accuracy is evident. Average localization error in all the
algorithms is reduced for Pn = 2. The performance metric

doublet (NNL, El ) for BOA is less than that for FA and PSO,
thus indicting superior performance of BOA. Moreover, the
computing time required for BOA is also significantly less
than that for FA and PSO.

The detailed observations made in the five trial runs
out of the 30 experiments are summarized in Table 2. As
shown in Table 2, the number of localized nodes is repre-
sented by NL, in each iteration. The proposed localization
scheme is stochastic, so same results are not produced in all
runs or experiments. Due to this, the results of various trial
experiments are averaged and are summarized in Table 1.
According to the simulation results demonstrated in Tables 1
and 2, the proposed localization scheme usingBOAperforms
better in terms of localization error and un-localized nodes.
PSO performs worst, but its computation time is less than
all other algorithms used in this study. The initial deploy-
ment of sensor nodes is random due to which the localization
accuracy and the total computing time may vary in different
trials. The anchor nodes, target nodes and the position esti-
mated by the algorithms like BOA, FA and PSO are shown in
Figs. 3, 4 and 5. The critical parameters which effect the
localization error of nodes are number of anchor nodes,
transmission range and number of iterations of optimization
algorithms.

4.4 Effect of Anchor Node Density

Location estimation accuracy and the number of localized
nodes increase with the increase in anchor node density. It
is difficult to locate position of nodes if sufficient number of
anchor nodes (N ≥ 3) are not available. The performance of
the localization algorithm depends on the density of anchor
nodes. A less number of anchor nodes localize very few num-
ber of target nodes. The percentage of the localized nodes
depends on the number of anchor nodes for BOA, PSO and
FA as shown in Fig. 6. The percentage of localized node
increases with an increase in number of anchor nodes.

4.5 Effect of Transmission Range

The increase in transmission range of anchor nodes helps in
improving the performance as the number of anchor nodes
within range will be more. This will also increase the num-
ber of localized nodes. The percentage of localized nodes
relies on the transmission range for BOA, PSO and FA as
shown in Fig. 7. According to the simulation results, it can
be analyzed that using smaller transmission range will result
in localization of very less number of sensor/target nodes.
Gaussian additive noise is also an important parameter that
really affects the localization accuracy. As noise in distance
measurement increases, El increases which leads to decrease
in localization accuracy. Due to this, all the experiments are
conducted by considering Gaussian noise Pn = 2. The local-
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Table 1 Summary of results of 30 trial runs of BOA-, FA- and PSO-based node localization

Algorithms Pn = 5 Pn = 2

Mean NNL Mean EL Computing time (in secs) Mean NNL Mean EL Computing time (in secs)

BOA 4.7 0.28 0.65 4.5 0.21 0.53

FA 6.6 0.72 2.15 6.2 0.69 1.94

PSO 5.9 0.81 0.54 5.6 0.78 0.49

M = 40, N = 8, and r = 30U and the sensor field size = 100 × 100 square units
∗ All the experiments are conducted on the same computer

Table 2 Summary of results of BOA-, FA- and PSO-based node localization

Target node Anchor node Trial BOA FA PSO

NL El Tl NL El Tl NL El Tl

25 10 1 23 0.207908 0.40 19 0.335551 1.44 22 0.807158 0.36

2 24 0.188224 0.33 20 0.246423 1.44 17 0.728214 0.39

3 25 0.224510 0.38 21 0.296398 1.70 18 0.797650 0.40

4 25 0.19963 0.38 20 0.256168 1.65 17 0.739102 0.39

5 24 0.212247 0.31 19 0.278459 1.57 19 0.799164 0.36

50 15 1 46 0.235326 0.77 50 0.505511 2.50 48 0.578797 0.74

2 49 0.260490 0.81 49 0.326980 4.42 50 0.753254 0.85

3 48 0.361080 0.92 49 0.254824 1.63 47 0.587004 0.75

4 50 0.323910 0.86 48 0.227842 3.90 46 0.438748 0.76

5 49 0.351415 0.91 49 0.2476413 4.19 47 0.486784 0.85

75 20 1 75 0.328310 1.68 74 0.703964 2.97 75 0.67414 1.31

2 75 0.219680 1.52 75 0.291862 2.73 75 0.720123 1.35

3 68 0.178960 1.52 72 0.279126 5.84 73 0.771325 1.30

4 75 0.183942 1.43 71 0.284865 4.70 72 0.798457 1.32

5 73 0.196781 1.69 73 0.2907846 3.97 73 0.697814 1.31

100 25 1 100 0.218838 2.29 100 0.779716 5.66 100 0.668227 2.49

2 100 0.295008 2.27 100 0.299194 6.33 100 0.614843 2.10

3 100 0.216414 2.32 100 0.385758 3.55 100 0.608155 2.20

4 100 0.235804 2.37 100 0.589494 4.56 100 0.627197 2.35

5 100 0.259312 2.45 100 0.513591 4.93 100 0.653258 2.16

125 30 1 124 0.615712 3.12 122 0.938894 2.707 119 0.600957 3.90

2 123 0.437651 3.65 123 0.651459 5.995 123 0.662322 3.87

3 125 0.568754 4.26 123 0.831683 2.709 125 0.593421 4.90

4 124 0.657499 3.76 125 0.950842 3.11 125 0.608412 3.98

5 125 0.545789 3.87 125 0.912666 5.894 125 0.744193 4.90

150 35 1 150 0.743780 5.67 149 0.957818 3.386 149 0.657679 5.03

2 150 0.887561 4.87 150 0.973891 3.459 149 0.773764 5.16

3 150 0.765347 5.65 150 0.854096 5.894 150 0.620403 4.22

4 149 0.665348 4.12 150 0.672451 4.87 150 0.766621 5.21

5 150 0.787689 4.76 150 0.632727 3.356 150 0.625278 4.43

NL = number of localized nodes El = localization error Tl = computing time (in seconds)

ization accuracy also improves with the increase in number
of iterations as shown in Fig. 8. As the number of iteration
progresses, the localization error declines. BOA shows more
decline in the error as compared to other two algorithms.

4.6 Effect of Number of Iterations

The increase in number of iterations helps in localizing more
number of nodes. This increases the number of references
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Fig. 8 Error versus number of iterations

available for already localized nodes,which further decreases
the probability of the flip ambiguity. On the other hand, if a
node has more references in iteration k + 1 than in iteration
k, the time required for localization increases. This claim is
supported by our simulation results shown in Fig. 8. It can be
seen from Fig. 8 that the localization accuracy improves with
the increase in number of iterations. Particularly, in the case
of BOA, there is significant decline in the error as compared
to other two algorithms.

BOA-based node localization estimated the location of
nodes with minimum localization error. Node localization
results based on BOA, PSO and FA algorithms by varying

number of anchor and target nodes are summarized inTable 2.
In order to better investigate the performance of proposed
algorithm, all the experiments are conducted with different
configurations. The BOA-based localization algorithms pro-
vide less localization error in estimating the target nodes,
whereas PSO estimates the position in less computing time,
but it has high localization error. All the optimization algo-
rithms performed well to determine the location of nodes in
WSN. BOA has better localization accuracy to estimate the
position than FA and PSO in terms of mean square error.

5 Conclusion and Future Work

Localization of sensor nodes is really important for the per-
formance of WSN as many applications of WSN require
localization information. The main objective of this opti-
mization problem is to minimize the localization error with
the help of nature-inspired optimization algorithms. In this
paper, BOA-based node localization algorithm is proposed
to estimate the position of the sensor nodes in WSN. This
paper has described the BOA-based localization technique
and provides the summary of results by comparing the algo-
rithm with the others like PSO algorithm and FA in terms of
localization error, localized nodes and computing time. The
simulation results show that the proposed technique is an
effective refinement technique in nodes localization. BOA
clearly outperforms other algorithms used in this study in
terms of accuracy and computing time.

Future work will investigate the performance of the pro-
posed method for centralized method and distributed method
to solve the energy issues in WSN. Further, BOA can be
hybridize with other optimization algorithm to further mini-
mize the location estimation error.
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