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Abstract Several variable step-size strategies have been
suggested in the literature to improve the performance of the
least-mean-square (LMS) algorithm. Although they enhance
performance, amajor drawback is the complexity in the theo-
retical analysis of these algorithms. Researchers use several
assumptions to find closed-form analytical solutions. This
work presents a unified approach for the analysis of variable
step-size LMS algorithms. The approach is then applied to
several variable step-size strategies, and theoretical and sim-
ulation results are compared.

Keywords Variable step-size · Least-mean-square algo-
rithms · Mean-square analysis · Steady-state analysis

1 Introduction

Many algorithms have been proposed for estimation/system
identification, with the LMS algorithm being the most pop-
ular as it is simple and effective [1]. However, a limiting
factor of LMS is a trade-off between convergence speed
and steady-state misadjustment. Various variable step-size
(VSS) strategies have been proposed to rectify this prob-
lem. These strategies exhibit a high step-size initially for
fast convergence but then reduce the step-size with time
in order to achieve a low error performance [2–25]. Some
algorithms proposed in literature are for specific applica-
tions [12,14,15,20–25]. There are several algorithms that are
derived from a constraint on the cost function [2,7,8,10,14].
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In general, all VSS algorithms aim to improve perfor-
mance at the cost of computational complexity. This trade-off
is generally acceptable due to the improvement in perfor-
mance. However, the additional complexity also results in
difficulty in analyzing the algorithm. Authors use several
assumptions to find closed-form solutions for the analysis
of these algorithms. However, until now, each algorithm has
been dealt with individually in order to find the steady-state
misadjustment, leading to the steady-state excess-mean-
square-error (EMSE). Similarly, the mean-square analysis
for each algorithm has to be performed individually. An
exact method of analysis has been proposed in [26,27]. Even
though the results are very accurate, this method is highly
complex as well as algorithm specific.

Inspired from the similarity of the assumptions used for
the analyses of these algorithms, this work presents a unified
approach for the analysis of VSS LMS algorithms. The pro-
posed generalized analysis can be applied to most existing
as well as any forthcoming VSS algorithms.

The rest of the paper is divided as follows. Section 2
presents a working system model and problem statement.
Section 3 details the complete theoretical analysis for VSS
LMS algorithms. Simulation results are presented in Sect. 4.
Section 5 concludes this work.

2 System Model

The unknown system is modeled as an FIR filter in the form
of a vector, wo, of size (M × 1). The input to the unknown
system at any given time i is a (1 × M) complex-valued
regressor vector, u(i). The observed output of the system is
a noise corrupted scalar, d(i), given by

d(i) = u(i)wo + v(i), (1)
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where v(i) is the complex-valued zero-mean additive noise.
The VSS LMS algorithm iteratively estimates the

unknown system with an update equation given by

w(i + 1) = w(i) + μ(i)e(i)u∗(i), (2)

μ(i + 1) = f {μ(i)}, (3)

where w(i) is the estimate of the unknown system vector at
time i , e(i) = d(i)−u(i)w(i) is the instantaneous error and
(.)∗ is the complex conjugate transpose operator. The step-
size is denoted by μ(i), and f {.} is a function that defines
the update equation for the step-size and is different for every
VSS algorithm.

While performing the analysis, the input regressor is
assumed to be independent of the estimated vector. For the
VSS algorithms, the control parameters are chosen such that
the step-size and the input regressor vector are assumed to be
asymptotically independent of each other. This helps in form-
ing a closed-form steady-state solution that closely matches
with the simulation results. For some VSS algorithms, the
analytical and simulation results closely match during the
transient stage as well but this is not always the case. The
results are still acceptable for all algorithms as a closed-form
solution is obtained.

Themain objective of this work is to provide a generalized
analysis for VSS algorithms, in lieu with the assumptions
mentioned above. The results of this analysis can be applied
to VSS algorithms in general as will be shown through spe-
cific examples.

3 Proposed Analysis

The weight-error vector is given by

w̃(i) = wo − w(i). (4)

Using (4) in (2) results in

w̃(i + 1) = [IM − μ(i)u∗(i)u(i)]w̃(i)

−μ(i)u∗(i)v(i), (5)

where IM is an identity matrix of size M . Before beginning
the analysis, another assumption is made, without loss of
generality. The input data are assumed to be circular Gaus-
sian. The autocorrelation matrix of the input regressor vector
is given by Ru = E[u∗(i)u(i)], where E[.] is the expecta-
tion operator. Using the Gaussian data assumption, Ru can
be decomposed into its component matrices of eigenvalues
and eigenvectors. Thus, Ru = T�T∗, where T is the matrix
of eigenvectors such that T∗T = IM and � is a diagonal
matrix containing the eigenvalues. Using the matrix T, the
following transformations are made

w̄(i) = T∗w̃(i), ū(i) = u(i)T

The weight-error update equation thus becomes

w̄(i + 1) = [IM − μ(i)ū∗(i)ū(i)]w̄(i) − μ(i)ū∗(i)v(i). (6)

3.1 Mean Analysis

Applying the expectation operator to (6) results in

E [w̄(i + 1)] = E
[{
IM − μ(i)ū∗(i)ū(i)

}
w̄(i)

−μ(i)ū∗(i)v(i)
]

= {
IM − E

[
μ(i)ū∗(i)ū(i)

]}
E [w̄(i)] , (7)

where the data independence assumption separates E[w(i)]
from the rest of the variables. The second term is 0 as additive
noise is independent and zero-mean. Using the assumption
that the step-size control parameters are chosen in such away
that the step-size and the input regressor data are asymptoti-
cally independent, (7) is further simplified as

E [w̄(i + 1)] = {IM − E [μ(i)]�}E [w̄(i)] , (8)

where � = E
[
ū∗(i)ū(i)

]
. The sufficient condition for sta-

bility is evaluated from (8) and is given by

0 < E [μ (i)] <
2

βmax
, (9)

where βmax is the maximum eigenvalue of �.

3.2 Mean-Square Analysis

Taking the expectation of the squared weighted l2-norm of
(6) yields

E
[
‖w̄(i + 1)‖2�

]

= E
[
w̄∗(i)�′w̄(i)

] + E
[
μ2(i)v2(i)ū(i)�ū∗(i)

]

−E
[
μ(i)v(i)ū(i)�

{
IM − μ(i)ū∗(i)ū(i)

}
w̄(i)

]

−E
[
w̄∗(i)

{
IM − μ(i)ū∗(i)ū(i)

}
�μ(i)v(i)ū∗(i)

]
,

(10)

where‖.‖ is the l2-normoperator and� is aweightingmatrix.
The weighting matrix �′ is given by

�′ = {
IM − μ(i)ū∗(i)ū(i)

}∗
�

{
IM − μ(i)ū∗(i)ū(i)

}

= IM − μ(i)ū∗(i)ū(i)� − μ(i)�ū∗(i)ū(i)

+μ2(i)ū∗(i)ū(i)�ū∗(i)ū(i) (11)

The last two terms in (10) are zero due to independence of
additive noise. Using the data independence assumption, the
remaining two terms can be simplified as
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E
[
‖w̄(i + 1)‖2�

]
= E

[
‖w̄(i)‖2

�′
]

+ σ 2
v E

[
μ2(i)

]
Tr {��} , (12)

where σ 2
v is the additive noise variance, Tr {.} is the

trace operator and E
[
u(i)�uT (i)

] = Tr {��}. Once
again invoking the data independence assumption, we write

E
[‖w̄(i)‖2

�′
] = E

[
‖w̄(i)‖2

E[�′]

]
. Further, takingE

[
�′] =

�′ and simplifying, (11) is rewritten as

�′ = IM − 2E [μ(i)]�� + E
[
μ2(i)

]
�Tr [��]

+E
[
μ2(i)

]
���. (13)

Using the diag{.} operator, (12) is simplified as

E
[
‖w̄(i + 1)‖2σ

]
= E

[
‖w̄(i)‖2F(i)σ

]

+ σ 2
v E

[
μ2(i)

]
λT σ (14)

where σ = diag {�}, λ = diag{�} and the weighting matrix
�′ is replaced with diag

{
�′} = σ ′ = F(i)σ , where F(i) is

given by

F(i) = IM − 2E [μ(i)]� + E
[
μ2(i)

] [
�2 + λλT

]
. (15)

Now, using (14) and (15), the analysis iterates as

E
[
‖w̄(0)‖2σ

]
= ‖wo‖2σ ,

F(0) = IM − 2μ(0)� + μ2(0)
[
�2 + λλT

]
,

where E [μ(0)] = μ(0) and E
[
μ2(0)

] = μ2(0) as this is
the initial step-size value. The first iterative update is given
by

E
[
‖w̄(1)‖2σ

]
= E

[
‖w̄(0)‖2F(0)σ

]
+ σ 2

v μ2(0)λT σ

= ‖w̄o‖2F(0)σ + σ 2
v μ2(0)λT σ

F(1) = IM − 2E [μ(1)]�

+E
[
μ2(1)

] [
�2 + λλT

]
,

where the updatesE [μ(1)] andE
[
μ2(1)

]
are obtained from

the particular step-size update equation of the VSS algorithm
being used. Similarly, the second iterative update is given by

E
[
‖w̄(2)‖2σ

]
= E

[
‖w̄(1)‖2F(1)σ

]
+ σ 2

v E
[
μ2(1)

]
λT σ

= ‖w̄o‖2F(0)F(1)σ + σ 2
v μ2(0)λTF(1)σ

+ σ 2
v E

[
μ2(1)

]
λT σ

= ‖w̄o‖2F(0)F(1)σ

+ σ 2
v λT

{
μ2(0)F(1) + E

[
μ2(1)

]
IM

}
σ

F(2) = IM − 2E [μ(2)]�

+E
[
μ2(2)

] [
�2 + λλT

]
.

Continuing, the third iterative update is given by

E
[
‖w̄(3)‖2σ

]
= E

[
‖w̄(2)‖2F(2)σ

]
+ σ 2

v E
[
μ2(2)

]
λT σ

= ‖w̄o‖2A(2)F(2)σ + σ 2
v E

[
μ2(2)

]
λT σ

+ σ 2
v λT

{
1∑

k=0

E
[
μ2 (k)

] 2∏

m=k+1

F (m)

}

σ

F(3) = IM − 2E [μ(3)]�

+E
[
μ2(3)

] [
�2 + λλT

]
,

where the weighting matrix A(2) = F(0)F(1). The fourth
iterative update is then given by

E
[
‖w̄(4)‖2σ

]
= ‖w̄o‖2A(3)F(3)σ + σ 2

v E
[
μ2(3)

]
λT σ

+ σ 2
v λT

{
2∑

k=0

E
[
μ2 (k)

] 3∏

m=k+1

F (m)

}

σ

F(4) = IM − 2E [μ(4)]�

+E
[
μ2(4)

] [
�2 + λλT

]
,

where the weighting matrix A(3) = A(2)F(2). Now, from
the third and fourth iterative updates, we generalize the recur-
sion for the i th update as

E
[
‖w̄(i)‖2σ

]
= ‖w̄o‖2A(i−1)F(i−1)σ

+ σ 2
v E

[
μ2(i − 1)

]
λT σ (16)

+ σ 2
v λT

{
i−2∑

k=0

E
[
μ2 (k)

] i−1∏

m=k+1

F (m)

}

σ

F(i) = IM − 2E [μ(i)]�

+E
[
μ2(i)

] [
�2 + λλT

]
. (17)

Similarly, the recursion for the (i + 1)th update is given by

E
[
‖w̄(i + 1)‖2σ

]
= ‖w̄o‖2A(i)F(i)σ

+ σ 2
v E

[
μ2(i)

]
λT σ (18)

+ σ 2
v λT

⎧
⎨

⎩

i−1∑

k=0

E
[
μ2 (k)

] i∏

m=k+1

F (m)

⎫
⎬

⎭
σ

F(i + 1) = IM − 2E [μ(i + 1)]�

+E
[
μ2(i + 1)

] [
�2 + λλT

]
. (19)
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Subtracting (16) from (18) and simplifying the terms gives
the final recursive update equation

E
[
‖w̄(i + 1)‖2σ

]
− E

[
‖w̄(i)‖2σ

]

= ‖w̄o‖2A(i)F(i)σ − ‖w̄o‖2A(i−1)F(i−1)σ

+ σ 2
v E

[
μ2(i)

]
λT σ − σ 2

v E
[
μ2(i − 1)

]
λT σ

+ σ 2
v λT

{
i−1∑

k=0

E
[
μ2 (k)

] i∏

m=k+1

F (m)

}

σ

− σ 2
v λT

{
i−2∑

k=0

E
[
μ2 (k)

] i−1∏

m=k+1

F (m)

}

σ . (20)

Simplifying (20) and rearranging the terms gives the final
recursive update equation

E
[
‖w̄(i + 1)‖2σ

]
= E

[
‖w̄(i)‖2σ

]
+ ‖w̄o‖2A(i)[F(i)−IM ]σ

+ σ 2
v E

[
μ2(i)

]
λT σ

+ σ 2
v λTB(i) {F(i) − IM } σ , (21)

where

B(i) =
{

E
[
μ2(i − 1)

]
IM +

i−2∑

k=0

E
[
μ2 (k)

] k+1∏

m=i−1

F (m)

}

.

(22)

The final set of iterative equations for the mean-square
learning curve is given by (21), (17) and

A(i + 1) = A(i)F(i) (23)

B(i + 1) = E
[
μ2(i)

]
IM + B(i)F(i). (24)

Taking the weighting matrix � = IM results in the mean-
square-deviation (MSD) while taking the weighting matrix
� = � gives the EMSE.

It should be noted here that unlike the analysis given in
[1] for the LMS algorithm, the weighting matrix F(i) is not
constant. As a result, the Cayley–Hamilton theorem is not
applicable. In this context, (17) and (21)–(24) are very sig-
nificant contributions of this work.

3.3 Steady-State Analysis

At steady state, the recursions (14) and (15) become

E
[
‖w̄ss‖2σ

]
= E

[
‖w̄ss‖2Fssσ

]
+ σ 2

v μ2
ssλ

T σ (25)

Fss = IM − 2μss� + μ2
ss

[
�2 + λλT

]
, (26)

Table 1 Step-size update equations for the VSSLMS algorithms

Algorithm Step-size update equation

KJ [4] μ (i + 1) = αk jμ (i) + γk j e2 (i)

NC [10] θnc(i + 1) = (1 − αnc)θnc(i) + αnc
2

(
e2(i) − σ 2

v

)

μ (i + 1) = μ0 (1 + γncθnc(i + 1))

Aq (i) = aq Aq (i − 1) + e2(i)

VSQ [18] Bq (i) = bq Bq (i − 1) + e2(i)

μ (i + 1) = αqμ (i) + γq
Aq (i)
Bq (i)

Sp [22] μ (i + 1) = αspμ (i) + γsp |e (i)|

where the subscript ss denotes steady state. Simplifying (25)
further gives

E
[
‖w̄ss‖2σ

]
= σ 2

v μ2
ssλ

T [IM − Fss]
−1 σ , (27)

which defines the steady-state MSD if � = IM and steady-
state EMSE if � = �.

3.4 Steady-State Step-Size Analysis

The analysis presented in the above section has been generic
for any VSS algorithm. In this section, 4 different VSS algo-
rithms are chosen to present the steady-state analysis for the
step-size. These steady-state step-size values are thendirectly
inserted into (27) and (26). The 4 different VSS algorithms
and their step-size update equations are given in Table 1. The
first algorithmdenotedKJ is thework ofKwong and Johnston
[4]. The NC algorithm refers to the noise-constrained LMS
algorithm [10]. The VSQ algorithm is the variable step-size
quotient LMS algorithm [18]. Finally, Sp refers to the Sparse
VSSLMS algorithm of [22].

The expectation operator is applied to each of the VSS
algorithms. For the KJ algorithm, the resultant equation is
given by

E [μ (i + 1)] = E
[
αk jμ (i) + γk j e

2 (i)
]

= αk jE [μ (i)] + γk jE
[
e2 (i)

]

= αk jE [μ (i)] + γk j

[
ζ(i) + σ 2

v

]
, (28)

where ζ(i) denotes the EMSE. At steady state, (28) becomes

μss = αk jμss + γk j

[
ζss + σ 2

v

]
. (29)

Assuming, without loss of generality, that the EMSE value
at steady state is small enough to be ignored, and rearranging
(29) gives the final steady-state equation

μss ≈ γk j

1 − αk j
σ 2

v . (30)
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Next, the expectation operator is applied to the set of equa-
tions defining the NC algorithm, which gives

E [θnc(i + 1)] = E
[
(1 − αnc) θnc(i) + αnc

2

(
e2(i) − σ 2

v

)]
,

(31)

E [μ (i + 1)] = E
[
μ0 (1 + γnc θnc(i + 1))

]
. (32)

Simplifying (31) and (32) gives

E [θnc(i + 1)] = (1 − αnc)E [θnc(i)]

+αnc

2

(
E

[
e2(i)

]
− σ 2

v

)

= (1 − αnc)E [θnc(i)]

+αnc

2

(
ζ(i) + σ 2

v − σ 2
v

)

= (1 − αnc)E [θnc(i)] + αnc

2
ζ(i) (33)

E [μ (i + 1)] = μ0 (1 + γncE [θnc(i + 1)]) . (34)

At steady state, (33) and (34) become

θnc,ss = (1 − αnc) θnc,ss + αnc

2
ζss (35)

μss = μ0
(
1 + γnc θnc,ss

)
. (36)

Using the assumption that the EMSE value at steady state is
small enough to be ignored, (35) simplifies to give θnc,ss = 0.
Thus, (36) simplifies to

μss ≈ μ0. (37)

Now we apply the expectation operator to the set of the
equations for the VSQ algorithm that gives

E
[
Aq(i)

] = E
[
aq Aq(i − 1) + e2(i)

]

= aqE
[
Aq(i − 1)

] + E
[
e2(i)

]

= aqE
[
Aq(i − 1)

] + ζ(i) + σ 2
v , (38)

E
[
Bq(i)

] = E
[
bq Bq(i − 1) + e2(i)

]
,

= bqE
[
Bq(i − 1)

] + E
[
e2(i)

]

= bqE
[
Bq(i − 1)

] + ζ(i) + σ 2
v , (39)

E [μ (i + 1)] = E
[
αqμ (i)

] + γq
Aq(i)

Bq(i)
. (40)

Rearranging and simplifying, we get the final equation as

E [μ (i + 1)] = αqE [μ (i)]

+ γq
aqE

[
Aq(i − 1)

] + ζ(i) + σ 2
v

bqE
[
Bq(i − 1)

] + ζ(i) + σ 2
v

. (41)

At steady state, (38)–(40) become

Aq,ss = aq Aq,ss + ζss + σ 2
v , (42)

Bq,ss = bq Bq,ss + ζss + σ 2
v , (43)

μss = αqμss + γq
Aq,ss

Bq,ss
. (44)

Since the EMSE value is assumed to be small enough to be
ignored at steady state, (42) and (43) are simplified as

Aq,ss = σ 2
v

1 − aq
, (45)

Bq,ss = σ 2
v

1 − bq
. (46)

Inserting (45) and (46) into (44) and simplifying, we get

μss ≈ γq(1 − bq)

(1 − αq)(1 − aq)
. (47)

Finally, we apply the expectation operator to the step-size
update equation for the Sp algorithm to get

E [μ (i + 1)] = E
[
αspμ (i) + γsp

∣
∣∣e2(i)

∣
∣∣
]

= αspE [μ (i)] + γspE
[∣∣∣e2(i)

∣∣∣
]

= αspE [μ (i)] + γsp

√
2σ 2

v

π
, (48)

whereE
[∣∣e2(i)

∣∣] = √
2σ 2

v /π . At steady state, (48) becomes

μss = αspμss + γsp

√
2σ 2

v

π
. (49)

Simplifying (49) gives

μss = γsp
√
2σ 2

v /π

1 − αsp
. (50)

The set of equations after applying the expectation opera-
tor and simplifying is presented in Table 2. The approximate
steady-state step-size equations are given in Table 3.

4 Results and Discussion

In this section, the analysis presented above will be tested
upon the 4VSSalgorithms listed inTable 1. These algorithms
are used in two different experiments to test the validity of the
analysis. In the first experiment, MSD is plotted using (21)
and compared with simulation results. The second experi-
ment compares the steady-state simulation results with the
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Table 2 Expectations of the update equations from Table 1

Algorithm Expectation of update equation

KJ [4] E [μ (i + 1)] = αk jE [μ (i)] + γk j
[
ζ(i) + σ 2

v

]

NC [10] E [θnc(i + 1)] = (1 − αnc)E [θnc(i)] + αnc
2 ζ(i)

E [μ (i + 1)] = μ0 (1 + γncE [θnc(i + 1))
]

VSQ [18] E [μ (i + 1)] = αqE [μ (i)]

+γq
aqE[Aq (i−1)]+ζ(i)+σ 2

v

bqE[Bq (i−1)]+ζ(i)+σ 2
v

Sp [22] E [μ (i + 1)] = αspE [μ (i)] + γsp
√
2σ 2

v /π

Table 3 Steady-state step-size values for equations from Table 1

Algorithm Steady-state step-size value

KJ [4] μss ≈ γk j
1−αk j

σ 2
v .

NC [10] μss ≈ μ0.

VSQ [18] μss ≈ γq (1−bq )

(1−αq )(1−aq )
.

Sp [22] μss ≈ γsp
1−αsp

√
2σ 2

v /π.

Table 4 Step-size control parameters for the VSSLMS algorithms

Algorithm SNR (dB) Parameters

All γk j = 1e − 3

KJ [4] 0 αk j = 0.95

10 αk j = 0.97

20 αk j = 0.99

NC [10] All γnc = 1, αnc = 1e − 2

All aq = 0.99, bq = 1e − 3, γq = 1e − 3

VSQ [18] 0 αq = 0.95

10 αq = 0.96

20 αq = 0.97

All γsp = 1e − 3

Sp [22] 0 αsp = 0.95

10 αsp = 0.96

20 αsp = 0.99

theoretical results obtained using (27). The length of the
unknown vector is M = 4. The signal-to-noise ratio (SNR)
is varied between 0, 10 and 20dB. The input regressor vec-
tor is a realization of a zero-mean Gaussian random variable
with unit variance. The step-size control parameters used are
given in Table 4. The values are slightly different in some
cases in order to maintain the same convergence speed.

For the first experiment, the results are shown separately
for each algorithm in Figs. 1, 2, 3 and 4. The results for theKJ
algorithm of [4] show a slight mismatch during the transient
stage, but this mismatch disappears at steady state. Since the
parameters are chosen such that the step-size is asymptoti-
cally independent, this result is justified. The results for the
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Fig. 1 Theory (21) v simulationMSDcomparison for theKJ algorithm
[4]
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Fig. 2 Theory (21) v simulation MSD comparison for the NC algo-
rithm [10]
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Fig. 4 Theory (21) v simulationMSDcomparison for the Sp algorithm
[22]

Table 5 Theory v simulation comparison for steady-state MSD for the
different VSSLMS algorithms

Algorithm SNR (dB) MSD (dB) MSD (dB)
Eq. (27) sim.

0 −13.76 −13.74

KJ [4] 10 −31.72 −31.55

20 −46.98 −46.98

0 −16.88 −16.84

NC [10] 10 −26.88 −26.93

20 −36.88 −36.85

0 −23.96 −24.00

VSQ [18] 10 −32.98 −33.01

20 −41.72 −41.72

0 −14.78 −14.64

Sp [22] 10 −27.65 −27.53

20 −37.88 −37.84

remaining algorithms show an almost exact match during the
transient state as well as at steady state.

The results for the second experiment are given in Table 5.
It can be seen that there is an excellent match between theory
and simulation results.

5 Conclusion

Thiswork presents a unified approach for the theoretical anal-
ysis of LMS-based VSS algorithms. The iterative recursions
presented here differentiate this work from previous analyses
in that this set of equations provides a generic treatment of
the analysis for this class of algorithms for the first time. This
work provides an excellent tool for the analysis of any future
VSSLMS algorithm. Several algorithms have been tested
thoroughly to verify the results of this work under differ-

ent SNR conditions. Simulation results confirm the generic
behavior of the presented work, for both the transient state
as well as steady state.
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