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Abstract In this study, a new approach for detecting dam-
age, its location, and its severity in plate structures using
a genetic–particle swarm optimization, which is a hybrid
algorithm, is presented. To evaluate the proposed approach,
three numerical examples have been simulated; the examples
consist of three different plates including an L-shaped two-
clamped supported plate, one quarter of a plate with a hole,
and a rectangular two-clamped plate. These plate structures
have been modeled using thin plate theory, so they are called
thin plate. Additionally, dynamic method based on modal
data such as natural frequencies and mode shapes is used
to formulate objective function. In order to demonstrate the
effectiveness of the new proposed approach and the hybrid
algorithm, several structures are tested by several different
scenarios with and without noise. Then, the scenarios are
simulatedwith genetic and particle swarmoptimization algo-
rithms separately. Finally, the obtained results are compared
using two sum error indexes which reveal that the results of
the hybrid algorithm have less error.

Keywords Damage detection · Hybrid algorithm ·
GA-PSO · Thin plate · Modal data · Inverse problem

1 Introduction

Changes which take place within utilizing the structure are
called damage. Damage detection is attributed to all methods
and procedures which survey the damage, its location, and its
quantity. Hitherto, several methods for detecting damage in
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structures have been proposed by researchers. Optimization
algorithms and solving inverse optimization problem based
on dynamic modal features are among common approaches.
It is clear that damage brings about changes in structural
properties including mass and stiffness or energy dissipa-
tion in the structure [1,2]. Thereupon, considering that a
structure’s modal parameters, such as natural frequencies
and mode shapes, are subjected to these properties, they can
be suitable criteria for formulating damage objective func-
tion. The purpose of formulating the objective function and
solving optimization problem is to minimize the differences
between dynamic parameters gained from experimental test
and parameters gained from finite element model which rep-
resents the damaged structure. Through review of damage
identification methods based on dynamic parameters is pre-
sented in [3–5].

Among the structures, plates are among the most impor-
tant seismic-resistant components. Hence, evaluating their
conditions is one of the most fundamental aspects of struc-
tural health monitoring.

Rytter [6] has defined four levels of damage detection as
follows:

• Level 1: Determination of existence of damage in struc-
ture

• Level 2: Level 1 plus determination of the geometric
location of the damage

• Level 3: Level 2 plus quantification of the damage sever-
ity

• Level 4: Level 3 plus prediction of the structure’s remain-
ing service life

Lately, many researchers have extensively begun to study
damage detection in plates using techniques based on modal
data. Most researches on detection of a plate’s damage or
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crack can be categorized into two main methods. While the
first methods detect the existence of damage and its location
(level 2), the second methods not only detect the existence
and location of damage, but estimate its severity aswell (level
3). Thus, the latter is more powerful than the former.

Some of the studies applying the first method are as fol-
lows:

To assess damage location in plate structures, Bagheri
et al. [7] have introduced a new method based on curvelet
transform Curvelet transform is used because of its desirable
performance in detecting line feature. Wang and Deng [8]
have studied two-dimensional problems such as steel plate
with a hole subjected to uniform tensile loading. This paper
detects the location of damage by using Haar wavelet coef-
ficient and applying static displacement as input of wavelet
transform.Usingwavelet analysis, amethod for online detec-
tion of initial damage based on energy change of structural
dynamic responses decomposed in composite structures has
been proposed by Yan and Yam [9]. Rucka and Wilde [10]
estimated the damage location in beam and plate structures
usingwavelet transform.They illustrated the location of dam-
age with a peak in the spatial change of the transformed
response. Kim et al. [11] have developed a reference-free
impedance method for crack detection in a plate-like struc-
ture. In the study, the proposed technique uses a signal pair
of PZTs arranged on the opposite surfaces of a structure to
determine mode conversion produced with crack formation.
For identifying the location and approximate shape or area of
the damage in plate structures, Fan and Qiao [12] presented
a newmethod based on two-dimensional continuous wavelet
transform. A new damage indicator based on modal data for
damage detection in plate-like structures is presented in [13].
It uses modal data such as mode shapes, its derivatives, and
simulatednumerical exampleswith andwithout noise to eval-
uate the exact localization of different damage cases. Xiang
et al. [14] presented a newmethod based on operating deflec-
tion shape (ODS) to identify damage locations in plate-like
structures.

Some of the studies which employ the secondmethods are
as follows:

Song et al. [15] proposed a new approachwhich composes
a parameter subset selection process with damage functions.
The study evaluates the damage, its location, and its severity
in complex structures, e.g., a 2D wall. Applying colonial
competition algorithm, Nicknam and Hosseini [16] studied
two kinds of different plate structures. The first one is a two-
story shear wall, and the other one is a four-fixed supported
plate. By this way, they detect the damage, its location, and
its severity.Masoumi et al. [17] using imperialist competitive
algorithm (ICA) have defined new scenarios with different
levels of noise. Using finite element method, he models three
structures including a clamped-free steel beam, a 2D-truss,
and a plate-type structure, which evaluate their procedure in

detecting damage. He also simulated the tested scenarios by
ICA with binary genetic, and particle swarm optimization
algorithms.

Genetic algorithm and particle swarm optimization are
optimization techniques that can be applied to solve the struc-
tural damage identification problem. These techniques and
some other optimization techniques have been applied for
detecting damage in different structures by many researchers
including particle swarm optimization [18,19], genetic algo-
rithm [20], multi-objective optimization [21], cuckoo opti-
mization [22].

The most studies by the second methods have been inves-
tigated by metaheuristics algorithms. The main advantage of
the methods as acknowledged in the literature is its high effi-
ciency for quantifying damage severity (level 3). Also, the
most studied plates are modeled by thick (mindlin) theory.

This paper studies the damage detection in thin plate struc-
tures using a new hybrid algorithm namely genetic–particle
swarm optimization (GA-PSO) based on variation in natural
frequencies and mode shapes.

The sections of this study are as follows: In Sect. 2, dam-
age detection approach is presented. The hybrid algorithm
GA-PSO is presented in Sect. 3. Numerical examples and
comparing the algorithms’ performance are studied inSect. 4.
Finally, conclusions are given in Sect. 5.

2 Damage Detection Approach

The main task of the presented damage detection approach
is solving the optimization problem with objective function
and based on dynamic parameters of structure. The solution
to the inverse optimization problem is performed by applying
the stages shown in Fig. 1.

2.1 Stage 1: Determine the Finite Element Model for
Intact Structure

To provide finite element model, stiffness and mass matri-
ces for each element should be calculated initially. Then
mass matrix,M, and stiffness matrix,K are calculated using
Eqs. (1) and (2) as follows:

K =
NE∑

i=1

ki (1)

M =
NE∑

i=1

mi (2)

where ki and mi are the stiffness and mass matrices of i th
element of the structure, respectively, and NE is the number
of elements of the structure.
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Fig. 1 Damage detection approach

In this study, the plate structures are modeled using thin
plate theory,which is called thin plate. Theplates aremodeled
with constant strain triangle (CST) elements and considering
plane stress condition. Thus, stiffness and mass matrix for
every typical element, shown in Fig. 2, is obtained by Eqs. (3)
and (4) as follows:

ke = teAeBTDB (3)

me = ρteAe

12

⎡

⎢⎢⎢⎢⎢⎢⎣

2 0 1 0 1 0
0 2 0 1 0 1
1 0 2 0 1 0
0 1 0 2 0 1
1 0 1 0 2 0
0 1 0 1 0 2

⎤

⎥⎥⎥⎥⎥⎥⎦
(4)

where te, ρ, and Ae are thickness, mass density, and area of
the element, respectively. B and D are strain–displacement
matrix of dimension 3 × 6 relating the three strains to the
six nodal displacements and material matrix of dimension
3 × 3 for plan stress state, respectively, which can be stated
as follows:

B = 1

detJ

⎡

⎣
y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12

⎤

⎦ (5)

D = E

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 1−ν

2

⎤

⎦ (6)

Fig. 2 Typical element

where xi j and yi j are xi − x j and yi − y j , respectively. ν and
E represent Poisson’s ratio and elasticity modulus, respec-
tively. J is Jacobian of the transformation matrix which can
be expressed as follows:

J =
[
x13 y13
x23 y23

]
(7)

2.2 Stage 2: Define Damage Scenario by Considering
One Vector β

Typically, damage is modeled by reduction in structure’s
properties. In this study, however, the damage is identified
using reduction in element’s elasticity modulus. To model
any damage in a structure, firstly a scenario should be defined.
In fact, each considered scenario is a vector β which is a
column vector of dimension n × 1. Where n is the num-
ber of structure’s elements. Therefore, numerical amount of
i th array of this vector means the damage in i th element of
structure. And the amount is between 0 and 1 for completely
intact and damaged element, respectively. Thus, the relation-
ship between the two conditions, damaged and intact, for i th
element of the structure which is equal to:

Eid = (1 − βi×1) × Eih (8)

where Eid and Eih are the elasticitymoduli of the i th element
for the damaged and intact conditions, respectively.

2.3 Stage 3: Evaluate the Experimental Dynamic
Parameters of the Damaged Structure for
Noise-Free Condition

Considering the supposed vector β in the previous stage, a
reduction in the elasticity modulus induces a decrease in the
stiffness of the structure based on:
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Kd =
NE∑

i=1

(1 − βi×1)ki (9)

whereKd is the stiffness matrix of the structure for damaged
condition.

Finally, by adjusting the i th eigenvalue equation of dam-
aged structure, dynamic parameters, considering the natural
frequencies and mode shapes can be expressed as:

(
Kd − ω2

idM
)

ϕid = 0 (10)

where ωid and ϕid are the i th natural frequency and mode
shape of the structure for damaged condition, respectively.

2.4 Stage 4: Generate Small Deviation in Dynamic
Parameters

Avoiding the noise in real dynamic tests is impossible. There-
upon, by producing small deviation in the experimental
dynamic parameters, this issue is measured as:

ωnoisy = ωid × (
1 + α × noisefreq

)
(11)

ϕi jnoisy = ϕi, jd × (1 + α × noisemode) (12)

where noisy implies a noisy value. α is a uniformly dis-
tributed randomly number between -1 and +1. noisefreq and
noisemode denote deviations of the natural frequencies and
mode shapes which are 1 and 3%, respectively [23,24].

2.5 Stage 5: Formulate the Objective Function

In this stage, using an objective function which formulated
based on the natural frequencies and the mode shapes of
the structure, the minimization of the optimization problem
is solved. The objective function (F) used in this study is
defined as:

F =

√√√√√1

n

⎛

⎝
n∑

i=1

(
ωex
i − ω

gp
i

)2 +
n∑

i=1

nd∑

j=1

(
ϕex
i j − ϕ

gp
i j

)2
⎞

⎠

(13)

where ωi and ϕi j are i th natural frequency and j th mode
shape of i th freedom degree, respectively, whereas n and nd
stand for number of variation modes considered and freedom
degrees involved in the objective function, respectively. The
superscript ex and gp indicate the experimental values and the
results of the finite element model gained from the GA-PSO
algorithm, respectively. Furthermore, prior using the mode
shapes in the objective function, all of them are normalized
to have a unit length [25].

2.6 Stage 6: Apply the GA-PSO Algorithm

In order to obtain the best results, the hybrid algorithm
described in the Sect. 3 should be run ten times and the best
outcome be selected.

2.7 Stage 7: Show the Damage Scenario Found

Finally, the best vector β produced by algorithm is reported
as the best answer and scenario found. Amount of the vector
has the least value of objective function.

3 The Hybrid Algorithm GA-PSO

Metaheuristics classifications can be done by using different
criteria. One of the classifications includes population-
based and single-solution-based classification.Generally, the
single-solution-based metaheuristics are more exploitation-
oriented, while the population-based metaheuristics are
more exploration-oriented [26]. Metaheuristics, totally, are
used to solve complicated optimization problems in dif-
ferent fields from finance to engineering. They are nature
inspired and have random variables. Hence, they do not
use Hessian matrix and gradient of objective function. The
single-solution-basedmetaheuristics startwith a single initial
solution andmove toward from it; however, a single-solution-
based metaheuristic in the search space is concerned with
single-solution, while population-based metaheuristics deal
with a set like population. Population-based metaheuristics
mainly are divided into two general methods related to Evo-
lutionary Computation (EC) and Swarm Intelligence (SI).
While the EC algorithms are derived from Darwin’s evolu-
tionary theory and are modified population by recombining
and mutation operators, the SIs algorithms produce compu-
tational intelligence by exploiting simple analogues of social
interaction. It is worth mentioning that genetic algorithm
(GA) is the subset of EC and particle swarm optimization
(PSO) is SI’s.

3.1 Genetic Algorithm

GA is the most famous and applied evolutionary computa-
tional methods which has been developed in early 1970s by
Holland [27]. GA has many aspects being done in different
ways considering problems such as solution representa-
tion (chromosomes), selection scheme, the crossover type
(recombined algorithm operator), and mutation operators.
Crossover is mainly known as the main variation opera-
tor which is consisted of several individuals (mainly two)
selected by replacing some of their parts with the others.
Furthermore, some strategies such as n-point and uniform
crossover can do this. Parameter pc, which is the crossover
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Table 1 The framework of the GA

GA

1. Generate initial population with random individuals

2. Evaluate the cost of every individual

3. Repeat following steps until a termination condition is met

4. Select parents

5. Crossover (recombine) pairs of parents with probability

6. Apply mutation

7. Evaluate new merged individuals

8. Select individuals for the next generation

9. Go to 2 or termination if termination condition is met

rate, shows the probability of being subject to the crossover
for each individual, and its value is usually between 0.6 and 1
[28]. In the selection process, individuals are evaluated con-
sidering their cost value and are selected to produce offspring
using the objective function of the optimization problem.
Some selection schemes include roulette-wheel selection,
tournament selection, and ranking selection. More informa-
tion about comparisons of selection schemes is provided
in [29]. After applying crossover, the mutation process is
applied to the individuals. Thus, new random variables are
providedwhich prohibits the algorithm from trapping in local
optima. The mutation rate is pm, and its value is typically
determined considering optimization problem. A complete
reference and review of genetic algorithms could be found
in [30–32]. The framework of the GA is shown in Table 1.

3.2 Particle Swarm Optimization

Particle swarm optimization (PSO), a metaphor of flocking
behavior of birds for solving optimization problems,was pre-
sented as a general optimization technique by Kennedy [33].

Lots of autonomousparticles are produced in the search space
randomly that each particle is a representative of solution
and shows a location in the search space by a velocity. A
swarm includes N moving particle around D dimensional of
the search space. Also, each particle has a memory help-
ing it remember its best previous position. A set of particles
in which the particle i is connected topologically to them is
known as i’s neighborhood. The neighborhoodmight include
all the population or some parts of its subset. To identify other
particles for influencing on individuals, various topologies
were used. Initializing is done for all individuals in the algo-
rithm randomly. In every exploration, each particle is updated

by two values. The first one,
→
Pi , belongs to the best position

that the particle has experienced so far and is called personal

best. The second one,
→
Pg , which the algorithm seeks to find

it, is the best position gained in the population called global

best. After finding the two best, the particle’s position,
→
Xi ,

and velocity,
→
Vi , which showparticle’s direction and location,

respectively, are updated as follows:

Vid (t + 1) = χ (Vid (t) + C1r1 (Pid (t) − Xid (t))

+C2r2
(
Pgd (t) − Xid (t)

))
(14)

Xid (t + 1) = Xid (t) + Vid (t + 1) (15)

where i = 1, 2, . . . , N and N is the size of the swarm. r1
and r2 are random numbers uniformly distributed between
0 and 1, whereas C1 and C2 are acceleration coefficients
representing the attraction of a particle toward its own success
and toward success of its neighbors, respectively. χ is the
constriction factor being obtained as follows [34]:

χ = 2

ϕ − 2 + √
ϕ2 − 4ϕ

(16)

Fig. 3 The framework of the
PSO
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Fig. 4 The framework of the
GA-PSO

Table 2 The details of GA
operators

MaxGA Chromosome Selection Crossover Mutation

2 Binary Tournament Two points, Jump,

n = 3 pc = 0.85 ∼ 0.9 pm = 0.02

where ϕ1 and ϕ1 are considered equal to 2.05 and ϕ = ϕ1 +
ϕ2 > 4.

General structure of the PSO algorithm is shown in Fig. 3.
Several survey articles regarding some studies related to the
applications of PSO could be found in [35,36].

3.3 GA-PSO

The outline of hybrid algorithm GA-PSO is summarized in
Fig. 4. The algorithmprocedure is divided into three sections:
The first one is called initializing which includes the lines
first to four; the second one, which consists of GA operators,
includes the lines 6 to 16; and the third one, operating PSO,
includes the lines 17 to 24. According to these three sections,

the operational procedure of the hybrid algorithm could be
explained as the following subsections.

3.3.1 Section 1

It is possible to consider population members either as indi-
viduals in the GA or particles in the PSO. In this study, they
are considered as individuals. These individuals not only have
properties of the individuals in GA, but have particles prop-
erties in PSO as well. Therefore, each individual has velocity
in addition to the position which should be initialized ran-
domly. Then cost values related to each particle (individual)
are evaluated regarding to the objective function researched.
To determine the personal and global best in this category,
the position and cost values of each individual’s personal best
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Table 3 The details of PSO

MaxPSO Velocity range Variable range C1, C2

3 [−0.1, 0.1] [0, 1] χϕ1, χϕ2

are equalized with the same values of initial position and
cost evaluated, respectively. Consequently, the cost value of
global best equals cost value of the best (least) of personal
best.

The main loop of the hybrid algorithm shown in Fig. 4
will work continually until a termination condition, which
is the number of assumed loops for the algorithm, is satis-
fied. Therefore, the steps related to categorys 2 and 3 are
performed for every assumed loop.

3.3.2 Section 2

In this part, the GA operators are implemented on their indi-
viduals. The MaxGA parameter is the number of iteration
of inner GA loop. In other words, this parameter is the iter-
ation number of implementation of the GA on individuals.
Considering the type of assumed scheme selection, a pair of
parents is selected among population. Then, crossover should
be applied to parents, and offspring are produced. Since the
values of the bests and velocity are specific to PSO, they
cannot be determined in a specific way in this section. To
determine offspring’s best personal best cost, the value of the
personal best of the parent, having the lesser cost, is given to
the offspring. On the other hand, a random number between
0 and 1 is produced to determine the offspring’s velocity. If
the number is under 0.5, the velocity of the first and second
parent is given to the first and second offspring, respectively.
Otherwise, the velocity of first and second parent is given
to the second and first offspring, respectively. Considering
the assumed mutation rate, mutation is applied to the main
population (not the offspring produced by crossover). Also,
the velocity and personal best of the chromosomes subjected
to mutation are the same as velocity and personal best of
the main chromosomes that are not mutated. The population
produced by the crossover, mutation, and the initial main
population are merged and then sorted. Therefore, extra indi-
viduals are deleted. Then, the values of personal and global
best are updated for the individuals. All the processes related
to this part are iterated MaxGA times. Ultimately, the final
population produced by this part with its all properties is
inserted to the third section.

3.3.3 Section 3

For all individuals inserted into this part, the following pro-
cesses are repeated MaxPSO times. First of all, the values of
velocity and position are updated using Eqs. (14) and (15).

It is worth mentioning that after updating the two values, the
accuracy of getting the boundary conditions should be con-
trolled. The determined velocity should be kept in the range
of −Vmax to +Vmax [37], and the updated position should be
in defined range for the variables. Second, the evaluated cost
values and the personal and global best should be updated.
Finally, the cost value of obtained global best of every loop
of the main hybrid algorithm is reported, and its position is
identified as the damage detection problem solution.

The details of part 2 (GA) and 3 (PSO) are shown in
Tables 2 and 3, respectively. In addition, the GA’s and PSO’s
details which are commonwith hybrid algorithm’s details are
equal.

4 Numerical examples

In this section, several numerical examples composed of
three different plates including an L-shaped two-clamped
supported plate, one quarter of a plate with a hole, and a
rectangular two-clamped plate are simulated with several
scenarios with and without noise. To investigate the perfor-
mance of the proposed hybrid algorithm, the results of it are
comparedwithGAandPSOalgorithms considering the same
tested scenarios. The number of considered modes in the
objective function is one of the main inputs for the problem.
Although existence of many numbers helps the algorithm
easily converges the right state of damage, it increases the rate
of program running and results inmore time to the algorithm.
Therefore, the number of considered modes in the objective
function should be selected in a way that induces appropriate
balance for the algorithm. The number of assumed modes in
the plates is stated in each example. It is worth mentioning
that the number of freedom degrees in each mode of exam-
ples equals to the total number of freedom degrees involved
in the modes. In all of the tables in this article, ‘*’ and ‘†’
symbols denote the noise-free and noisy conditions, respec-
tively. The results are reported to three decimal places, and
the values less than 0.01 are considered equal to zero. Fur-
thermore, number of successful runs (on ten) for different
scenarios of every example is reported in the tables, and
the misidentified elements found by the proposed approach
are underlined for a better understanding of the results. In
optimization problems, the time of program running is an
important factor. Indeed, the less time for algorithm to get
an appropriate answer, the more effective the method and the
algorithm are. In order to draw a logical comparison between
the results of the mentioned algorithms, time is considered
as a base factor in selecting inputs such as iterations num-
ber and population size in algorithm. Moreover, in order to
obtain an equal running time for the two hybrid algorithms,
the size of population and the number of iterations for GA
and PSO algorithms are selected in three different examples.
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Thus, the population size for the three algorithms GA-PSO,
GA, and PSO is assumed 250, 800, and 850, respectively, for
the first plate. For the second and third plates, the popula-
tion size is supposed to be 350, 1000, and 1100, respectively.
Also, in all examples, the number of iterations for GA-PSO,
GA, and PSO algorithms is selected as 800, 1600, and 1600,
respectively.

The three examples are an L-shaped two-clamped sup-
ported plate, one quarter of a plate with a hole, and a
rectangular two-clamped supported plate which have 32, 36,
and 40 CST elements and 27, 28, and 30 nodes, respectively
(Figs. 5, 6, 7). In this study, the physical properties of the
plates are given in Table 4.

Fig. 5 An L-shaped
two-clamped supported plate

Fig. 6 One quarter of a plate
with a hole

123



Arab J Sci Eng (2017) 42:1251–1263 1259

Fig. 7 A rectangular two-clamped supported plate

4.1 An L-Shaped Two-Clamped Supported Plate

The five first modes are considered, and the four following
damage scenarios are assumed:

Scenario 1: 20% damage in element 16
Scenario 2: 10% damage in element 9, 12% damage in
element 32
Scenario 3: 10% damage in element 9, 7% damage in
element 13, and 12% damage in element 32
Scenario 4: 25% damage in element 15, 22% damage in
element 19, 14% damage in element 20, and 12% damage
in element 32

Table 5 shows the results of applying the hybrid algorithm
to the plate for the four damage scenarios.

The evolutionary process of damage severities of the dam-
aged element corresponding to scenario 1 for noisy condition
is shown in Fig. 8.

According to Table 5, high number of damaged elements
results in less number of successful runs.

When noise is added to the problem, some errors are cre-
ated in the experimental modal data. However, there is no
corresponding real β vector data. Thereupon, the algorithm
seeks the β which has the least divergence from the model
data. Consequently, the found β can (or cannot) be the same
experimental assumed scenario. Although the found β of a
scenario in noisy condition is equal to its assumed experi-
mental one, the value of the objective function is not zero
in the last iteration. In the case noisy condition, this error in
objective function is due to the noise.

Table 4 physical properties of the plates

Property (unit) Value

E , elasticity modulus (GPa) 210

ρ, mass density (kg/m3) 7850

ν, Poisson’s ratio 0.3

t , thickness (m) 0.005

4.2 One Quarter of a Plate With a Hole

The six first modes are considered. In this plate, the four
following damage scenarios are presumed:

Scenario 1: 6% damage in element 7
Scenario 2: 15% damage in element 13, 10% damage in
element 24
Scenario 3: 5% damage in element 1, 8% damage in ele-
ment 18, and 10% damage in element 31
Scenario 4: 18% damage in element 1, 13% damage in
element 13, 20% damage in element 31, and 10% damage
in element 35

Table 6 shows the results of applying the hybrid algorithm
to the plate for the four damage scenarios.

The evolutionary processes of damage severities of dam-
aged elements corresponding to the scenario 2 for noisy
condition are shown in Fig. 9.

4.3 A Rectangular Two-Clamped Supported Plate

The six first modes are considered, and the four following
damage scenarios are assumed:

Scenario 1: 10% damage in element 15
Scenario 2: 8% damage in element 25, 15% damage in
element 40
Scenario 3: 6% damage in element 22, 8% damage in
element 25, and 12% damage in element 39
Scenario 4: 25% damage in element 8, 26% damage in
element 28, 12% damage in element 39, and 15% damage
in element 40

Table 7 shows the results of applying the hybrid algorithm
to the plate for the four damage scenarios.

The evolutionary processes of damage severities of dam-
aged elements corresponding to scenario 3 for noisy condi-
tion are shown in Fig. 10.
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Table 5 Results for the
L-shaped two-clamped
supported plate

Scenario Damaged element(s) Damage severity Runs

1* 16 0.200 9

1† 16 0.199 6

2* 9, 32 0.100, 0.120 8

2† 9, 21, 32 0.102, 0.020, 0.084 6

3* 9, 11, 13, 22, 32 0.100,0.012, 0.057, 0.03, 0.12 5

3† 9, 13, 32 0.122, 0.040, 0.114 5

4* 15, 19, 20, 32 0.249, 0.221, 0.137, 0.119 5

4† 3, 4, 5, 15, 19, 20, 32 0.012, 0.015, 0.020, 0.253, 0.215, 0.145, 0.128 4

Fig. 8 Evolutionary processes
of damage severities for the
L-shaped plate corresponding to
scenario 1 in 100 first iteration
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Table 6 Results for the one
quarter of a plate with a hole

Scenario Damaged element(s) Damage severity Runs

1* 7 0.060 9

1† 7 0.056 6

2* 13, 24 0.143, 0.098 8

2† 13, 20, 24 0.111, 0.015, 0.086 7

3* 1, 18, 31 0.049, 0.075, 0.100 6

3† 1, 18, 31 0.049, 0.079, 0.097 6

4* 1, 13, 19, 25, 31, 35, 36 0.156, 0.127, 0.018, 0.012, 0.196, 0.072, 0.015 5

4† 1, 13, 25, 31, 32, 35, 36 0.159, 0.118, 0.021, 0.192, 0.014, 0.073, 0.013 5

4.4 Comparing the Algorithms’ Performance

As it was previously mentioned, considering details of the
three algorithms, the scenarios related to analyzed plates are
tested by PSO andGA for noisy and noise-free conditions. To
compare the results of these algorithms and hybrid algorithm,
the following equations are used:

I1 =
m∑

i=1

∣∣∣∣∣
βi − β̂i

βi

∣∣∣∣∣ × 100 (17)

I2 =
n−m∑

i=1

β̂imis (18)

where βi and β̂i are actual and estimated damage of the i th
damaged element using algorithm, respectively. β̂imis denotes
the estimated damage of the i th undamaged element. m and

n represent the number of damaged elements and the number
of elements of the structure, respectively.

Considering the details of the Eqs. (17) and (18), I1 is
index of evaluating the percent of error in the damaged ele-
ments (elements not zero in the assumed experimental β

vector) estimated by the algorithm. Since the index is not
efficient in demonstrating algorithm’s capability, to evalu-
ate undamaged elements (elements in which are assumed
experimental β vector are zero), the I2 index is introduced
separately which is sum of the values of misidentified ele-
ments in each scenario. Hence, it can be said that the
nearer these values to zero, the more efficient the algorithm.
Tables 8, 9 and 10 show I1 and I2 values of the examples as
I1 + I2.

Considering Tables 8, 9 and 10, most of the I1 and I2 val-
ues corresponding to the hybrid algorithm are less than other
values. However, in the scenario 2 corresponding to the first
plate and the scenario 1 corresponding to the third plate, I1

123



Arab J Sci Eng (2017) 42:1251–1263 1261

Fig. 9 Evolutionary processes
of damage severities for the one
quarter of a plate with a hole
corresponding to scenario 2 in
100 first iteration
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Table 7 Results for the
rectangular two-clamped
supported plate

Scenario Damaged element(s) Damage severity Runs

1* 15 0.100 8

1† 14, 15 0.015, 0.091 7

2* 25, 40 0.077, 0.146 8

2† 25, 36, 40 0.074, 0.011, 0.147 6

3* 22, 25, 39 0.060, 0.080, 0.120 4

3† 22, 25, 39 0.054, 0.074, 0.116 5

4* 8, 28, 39, 40 0.250, 0.260, 0.120, 0.150 4

4† 8, 28, 33, 39, 40 0.249, 0.248, 0.013, 0.116, 0.135 4

Fig. 10 Evolutionary processes
of damage severities for the
rectangular plate corresponding
to scenario 3 in 100 first
iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10 20 30 40 50 60 70 80 90 100

D
am

ag
e
in
d e

x

Iterations

22th element

25th element

39th element

Table 8 Sum error index for the
L-shaped two-clamped
supported plate

Scenario 1 Scenario 2 Scenario 3 Scenario 4

GA-PSO* 0.000 + 0.000 0.000 + 0.000 34.279 + 0.044 3.763 + 0.010

GA-PSO† 0.333 + 0.000 31.245 + 0.020 69.976 + 0.009 13.738 + 0.120

PSO* 0.202 + 0.000 7.904 + 0.014 74.739 + 0.071 53.983 + 0.888

PSO† 3.050 + 0.000 17.721 + 0.049 103.641 + 0.329 46.324 + 0.743

GA* 0.064 + 0.000 2.594 + 0.004 42.347 + 0.028 69.948 + 0.353

GA† 12.300 + 0.347 8.798 + 0.157 179.183 + 0.011 98.472 + 0.731

Table 9 Sum error index for the
one quarter of a plate with a hole

Scenario 1 Scenario 2 Scenario 3 Scenario 4

GA-PSO* 0.000 + 0.000 6.977 + 0.013 6.891 + 0.004 45.539 + 0.078

GA-PSO† 5.823 + 0.000 39.974 + 0.025 6.233 + 0.000 52.267 + 0.088

PSO* 0.404 + 0.000 51.548 + 0.094 58.305 + 0.028 110.611 + 0.194

PSO† 7.482 + 0.009 86.707 + 0.738 101.410 + 0.486 169.076 + 0.303

GA* 0.237 + 0.000 43.571 + 0.075 39.956 + 0.021 102.731 + 0.133

GA† 20.252 + 0.063 156.937 + 0.430 70.485 + 0.202 162.881 + 0.112
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Table 10 Sum error index for
the rectangular two-clamped
supported plate

Scenario 1 Scenario 2 Scenario 3 Scenario 4

GA-PSO* 0.000 + 0.000 6.093 + 0.007 0.001 + 0.000 0.000 + 0.000

GA-PSO† 9.275 + 0.026 8.824 + 0.026 20.678 + 0.010 18.738 + 0.000

PSO* 1.505 + 0.002 27.764 + 0.034 183.247 + 0.144 16.680 + 0.047

PSO† 17.686 + 0.055 43.647 + 0.001 162.137 + 0.623 25.373 + 0.365

GA* 0.411 + 0.000 32.713 + 0.056 172.875 + 0.161 22.968 + 0.045

GA† 1.411 + 0.284 59.063 + 0.103 185.529 + 0.336 120.147 + 0.095

values of GA and PSO are better than GA-PSO. Also in the
scenario 3 corresponding to the first plate and the scenario 2
corresponding to the third plate, I2 values of GA and PSO,
respectively, are better than GA-PSO. For all three plates, I1
maximum values in noisy condition belong to the scenarios
3 and 4 and GA; also in noise-free condition belong to the
scenarios 3 and 4 and PSO. Thus, it is concluded that GA and
PSO have the most errors in the damaged elements of multi-
ple scenarios for noisy and noise-free condition, respectively.
In general, the results concerned hybrid algorithm are better
than the other two algorithms. Algorithms provide different
solutions, depending on the type of scenario and structure.
Since existence of noise in damage detection problem is very
important issue and solutions of noisy condition are better by
hybrid algorithm, it can be concluded that the algorithm is
more efficient in noisy condition setting.

5 Conclusion

In this paper, in addition to introducing a new approach for
damage detection of thin plates, a hybrid algorithm, GA-
PSO, has been used to solve the inverse optimization damage
detection problem in these structures. To formulate the objec-
tive function, dynamic methods based on modal are used.
The methods are based on the studying of the changes in
the structure’s properties. Therefore, their underlying theory
is based on the fact that damage makes some changes in
the dynamic parameters of the structure. Through the modal
properties of the structures, natural frequencies and mode
shapes are chosen to be used in the objective function. The
effectiveness of the algorithm and the approach is evaluated
by simulating the three different thin plate structureswith dif-
ferent scenarios in two conditions of with and without noise.
Moreover, considering the importance of the time in the opti-
mization problems, the effectiveness of the hybrid algorithm
is determined, especially in added-noise condition, by com-
paring the results of the presented algorithm with two GA
andPSOalgorithms spending almost equal times for running.
Among all the tested damage scenarios by hybrid algorithm,
few misidentified elements were found with damage sever-
ity less than 0.05 and there was no damaged element not
found.

References

1. Doebling, S.W.; Farrar, C.R.; Prime,M.B.; Shevitz, D.W.: Damage
identification and health monitoring of structural and mechanical
systems from changes in their vibration characteristics: a literature
review. In: Los Alamos National Lab, NM (United States) (1996)

2. Lee, E.-T.; Eun, H.-C.: Damage detection of damaged beam by
constrained displacement curvature. J. Mech. Sci. Technol. 22(6),
1111–1120 (2008)

3. Carden, E.P.; Fanning, P.: Vibration based condition monitoring: a
review. Struct. Health Monit. 3(4), 355–377 (2004)

4. Doebling, S.W.; Farrar, C.R.; Prime, M.B.: A summary review of
vibration-based damage identification methods. Shock Vib. Dig.
30(2), 91–105 (1998)

5. Fan, W.; Qiao, P.: Vibration-based damage identification methods:
a review and comparative study. Struct. Health Monit. 10(1), 83–
111 (2011)

6. Rytter, A.: Vibration Based Inspection of Civil Engineering Struc-
tures, 1993. Aalborg University, Denmark (1993)

7. Bagheri, A.; Amiri, G.G.; Razzaghi, S.S.: Vibration-based damage
identification of plate structures via curvelet transform. J. Sound
Vib. 327(3), 593–603 (2009)

8. Wang, Q.; Deng, X.: Damage detection with spatial wavelets. Int.
J. Solids Struct. 36(23), 3443–3468 (1999)

9. Yan, Y.; Yam, L.: Online detection of crack damage in composite
plates using embedded piezoelectric actuators/sensors and wavelet
analysis. Compos. Struct. 58(1), 29–38 (2002)

10. Rucka,M.;Wilde,K.: Application of continuouswavelet transform
in vibration based damage detection method for beams and plates.
J. Sound Vib. 297(3), 536–550 (2006)

11. Kim, M.; Kim, E.; An, Y.; Park, H.; Sohn, H.: Reference-free
impedance-based crack detection in plates. J. Sound Vib. 330(24),
5949–5962 (2011)

12. Fan, W.; Qiao, P.: A 2-D continuous wavelet transform of mode
shape data for damage detection of plate structures. Int. J. Solids
Struct. 46(25), 4379–4395 (2009)

13. Navabian, N.; Bozorgnasab, M.; Taghipour, R.; Yazdanpanah, O.:
Damage identification in plate-like structure using mode shape
derivatives. Arch. Appl. Mech. 86(5), 819–830 (2015)

14. Xiang, J.-W.; Matsumoto, T.; Long, J.-Q.; Ma, G.: Identification
of damage locations based on operating deflection shape. Nonde-
struct. Test. Eval. 28(2), 166–180 (2013)

15. Song, W.; Dyke, S.; Yun, G.; Harmon, T.: Improved damage local-
ization and quantification using subset selection. J. Eng. Mech.
135(6), 548–560 (2009)

16. Nicknam, A.; Hosseini, M.: Structural damage localization and
evaluation based on modal data via a new evolutionary algorithm.
Arch. Appl. Mech. 82(2), 191–203 (2012)

17. Masoumi, M.; Jamshidi, E.: Damage diagnosis in steel structures
with different noise levels via optimization algorithms. Int. J. Steel
Struct. 15(3), 557–565 (2015)

18. Mukhopadhyay, T.; Dey, T.K.; Chowdhury, R.; Chakrabarti, A.:
Structural damage identification using response surface-based

123



Arab J Sci Eng (2017) 42:1251–1263 1263

multi-objective optimization: a comparative study. Arab. J. Sci.
Eng. 40(4), 1027–1044 (2015)

19. Xiang, J.; Liang, M.: A two-step approach to multi-damage detec-
tion for plate structures. Eng. Fract. Mech. 91, 73–86 (2012)

20. Xiang, J.; Zhong, Y.; Chen, X.; He, Z.: Crack detection in a shaft
by combination of wavelet-based elements and genetic algorithm.
Int. J. Solids Struct. 45(17), 4782–4795 (2008)

21. Jena, P.K.; Parhi, D.R.: A modified particle swarm optimization
technique for crack detection in Cantilever Beams. Arab. J. Sci.
Eng. 40(11), 3263–3272 (2015)

22. Zare Hosseinzadeh, A.; Ghodrati Amiri, G.; Koo, K.-Y.:
Optimization-based method for structural damage localization and
quantification by means of static displacements computed by flex-
ibility matrix. Eng. Optim. 48(4), 543–561 (2016)

23. Chen, B.; Nagarajaiah, S.: Flexibility-based structural damage
identification using Gauss-Newton method. In: The 14th Interna-
tional Symposium on: Smart Structures and Materials and Non-
destructive Evaluation and Health Monitoring 2007, pp. 65291L-
65291L–65212. International Society for Optics and Photonics

24. Kaveh, A.; Hoseini Vaez, S.R.; Hoseini, P.; Fallah, N.: Detection of
damage in truss structures using Simplified Dolphin Echolocation
algorithmbasedonmodal data. Smart Struct. Syst.18(5), 983–1004
(2016)

25. Kaveh, A.; Zolghadr, A.: An improved CSS for damage detection
of truss structures using changes in natural frequencies and mode
shapes. Adv. Eng. Softw. 80, 93–100 (2015)

26. Boussaïd, I.; Lepagnot, J.; Siarry, P.: A survey on optimization
metaheuristics. Inf. Sci. 237, 82–117 (2013)

27. Holland, J.H.: Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control, and
Artificial Intelligence. University of Michigan Press, Ann Arbor
(1975)

28. Bäck, T.; Schwefel, H.-P.: An overview of evolutionary algorithms
for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

29. Blickle, T.; Thiele, L.: A comparison of selection schemes used in
genetic algorithms. In. TIK-Report (1995)

30. Beasley, D.; Bull, D.R.; Martin, R.R.: An overview of genetic
algorithms: part 2, research topics. Univ. Comput. 15(4), 170–181
(1993)

31. Beasley, D.; Martin, R.; Bull, D.: An overview of genetic algo-
rithms: part 1. Fundamentals. Univ. Comput. 15, 58–58 (1993)

32. Michalawicz, Z.: Genetic algorithms+ data structures= evolution
programs. Springer, Berlin (1996)

33. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of
Machine Learning, pp. 760–766. Springer, Berlin (2011)

34. Clerc,M.;Kennedy, J.: The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. IEEE Trans.
Evol. Comput. 6(1), 58–73 (2002)

35. Castillo, O.; Melin, P.: Optimization of type-2 fuzzy systems based
on bio-inspired methods: a concise review. Inf. Sci. 205, 1–19
(2012)

36. Thangaraj, R.; Pant, M.; Abraham, A.; Bouvry, P.: Particle swarm
optimization: hybridization perspectives and experimental illustra-
tions. Appl. Math. Comput. 217(12), 5208–5226 (2011)

37. Eberhart, R.; Simpson, P.; Dobbins, R.: Computational Intelligence
PC Tools. Academic Press Professional, Inc, Cambridge (1996)

123


	Damage Detection of Thin Plates Using GA-PSO Algorithm Based on Modal Data
	Abstract
	1 Introduction
	2 Damage Detection Approach
	2.1 Stage 1: Determine the Finite Element Model for Intact Structure
	2.2 Stage 2: Define Damage Scenario by Considering One Vector β
	2.3 Stage 3: Evaluate the Experimental Dynamic Parameters of the Damaged Structure for Noise-Free Condition
	2.4 Stage 4: Generate Small Deviation in Dynamic Parameters
	2.5 Stage 5: Formulate the Objective Function
	2.6 Stage 6: Apply the GA-PSO Algorithm
	2.7 Stage 7: Show the Damage Scenario Found

	3 The Hybrid Algorithm GA-PSO
	3.1 Genetic Algorithm
	3.2 Particle Swarm Optimization
	3.3 GA-PSO
	3.3.1 Section 1
	3.3.2 Section 2
	3.3.3 Section 3


	4 Numerical examples
	4.1 An L-Shaped Two-Clamped Supported Plate
	4.2 One Quarter of a Plate With a Hole
	4.3 A Rectangular Two-Clamped Supported Plate
	4.4 Comparing the Algorithms' Performance

	5 Conclusion
	References




