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Abstract In recent years, there has been a growing inter-
est for the prediction of machining characteristics (such as
surface roughness and tool wear) during machining. Several
machiningparameters such as cutting speed and cuttingdepth
are known to affect the surface characteristics. Various meth-
ods are used to investigate the relative contribution of these
parameters on the surface characteristics. Therefore, select-
ing a set of parameters according to the relative contributions
is important in the prediction of the surface characteristics
effectively. In this paper, a new alternative parameter selec-
tion method based on artificial neural networks is suggested.
Within this scope, forward and stepwise selection methods
are proposed. A statistical hypothesis test is used as an elim-
ination criterion. The suggested methods are used to predict
the surface roughness in turning operations effectively. Suc-
cessful results were obtained in the prediction of surface
roughness by using these methods.
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asofuoglu@ogu.edu.tr

R. Aykut Arapoğlu
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Nomenclature

K Tool stiffness coefficient (N/m)
CD Cutting depth (mm)
OL Tool overhang length (mm)
S Tool damping ratio (%)
SRA Side rake angle (◦)
ECA End cutting angle (◦)
NR The number of revolutions per minute (rpm)
WD Workpiece diameter (mm)
BRA Back rake angle (◦)
IH Insert hardness (HV)
SCA Side clearance angle (◦)
AA Approach angle (◦)
WH Workpiece hardness (HV)

1 Introduction

The main aspect of manufacturing is to shape metals as
machining and non-machining forms. Inmachiningmethods,
machines are operated for a long time, the process param-
eters such as cutting speed and feed rate can be adjusted
easily, and the high quality of surface is obtained at desired
level; therefore, the machining methods outperform the
other manufacturing methods. It is very important to choose
the appropriate production parameters in machining. If the
production parameters are not chosen properly, excessive
cutting tool wear is observed and the surface quality deterio-
rates. After acceptable dimensions and tolerances are found,
obtaining a satisfactory quality of surface becomes impor-
tant. The surface quality is affected by workpieces, cutting
tools, machines and machining conditions. Surface quality
directly affects mechanical life of components. Therefore,
the prediction of surface roughness is needed for high-quality
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machining. The chatter vibration adversely affects surface
roughness. It is the one which is formed with a self-excited
mechanism between the workpiece and the tool. A wavy
surface is observed on the workpiece due to both previ-
ous cycle and the structural vibration in turning operations.
While the system is vibrated at chatter frequency which is
very close to the structural mode, the maximum chip thick-
ness may increase exponentially depending on the phase
shift between two consecutive waves. The growth of variable
chip thickness increases the cutting forces by amplifying the
vibration and leads to the wavy surface on the workpiece
[1].

The problems due to machining are divided into groups
as quality of product, tool life, productivity and chat-
ter vibration. Different optimization methods are used for
the machining in the literature. Genetic algorithm and the
sequential quadratic programming are used in most of the
machining problems. Abuelnaga and El-Dardiry [2] sum-
marized the different optimization methods used in the
machining (genetic algorithm, sequential quadratic pro-
gramming, etc.). Aggarwal and Singh [3] summarized the
optimization problems in accordance with the traditional and
the latest technology in turning processes. Mukherjee and
Ray [4] summarized the advantages and disadvantages of
machining optimization problems. Kurdi [5,6] performed a
multi-purpose optimization for milling operations by using
sequential quadratic programming and they also used a
Pareto diagram. Krishna [7] calculated the optimum condi-
tions of operation for grinding using a differential evolution
algorithm. Saikumar and Shunmugon [8] calculated the opti-
mum cutting speed, feed rate and cutting depth for milling
by using a differential evolution algorithm. The aim of their
study is to obtain the desired surface roughness.

In machining literature, the optimization techniques are
divided into three parts as traditional methods, statistical
methods and heuristic methods. Geometric programming
[9], dynamic programming [10] and sequential quadratic
programming [11] for the traditional methods, design of
experiments [12–18] for the statistical techniques, and hill
climbing algorithm [19], artificial neural networks (ANN)
[20], simulated annealing [21], genetic algorithm [22], dif-
ferential evolution algorithm [7], particle swarm algorithm
[23–25] for the heuristic methods have been used in the lit-
erature.

Several methods are used to predict surface roughness
such as artificial neural networks, Taguchi and regression
models [26–28]. Significant amount of study is performed
regarding ANN modelling to predict surface roughness.
Mostly, cutting speed, feed rate and depth of cut are taken
into consideration. In some studies, the hardness of the mate-
rial is also taken into account [29]. Kumar and Chauhan
[30] studied surface roughness of Al 7075/10/SiCp and Al
7075 hybrid composites in turning operations. They observed

that response surface methodology (RSM) is superior to
ANN in surface roughness prediction. Sahoo et al. [31] per-
formed experiments to machine AISI 1040 steel under dry
cutting conditions. RSM and ANN were used to predict
surface roughness. They claimed that ANN is more appro-
priate than RSM. The percentage error is between−2.63 and
2.47% for RSM,whereas themaximum error ranges between
−1.27 and 0.02. Furthermore, compared to nonlinear regres-
sion, ANN produced successful results in different studies
[32,33].

When the optimization studies conducted within the man-
ufacturing process in the literature are examined, the method
of analysis of variance is used in the calculation of variables’
relative contribution. Analysis of variance is generally used
when the number of variables is low compared to datamining
methods. As the number of variables increases, calculations
are getting more complex. Therefore, some variables (low
contributed variables) should be removed from the model
and more effective variables should be added to the model to
increase prediction accuracy. Only regression variable elimi-
nationmethods are used in the literature butwhen the number
of variables increases, these elimination methods do not pro-
duce successful results and the accuracy decreases. There is
no good way for the elimination of low contributed variables
from the model when the number of variables is high. In this
study, a new variable selectionmethod is proposed to address
this issue. Therefore, a simpler model will be obtained by
selecting proper variables in the data analysis.

In this study, the surface roughness is predicted consider-
ing the variables affecting the surface roughness in turning
process. It is determined that 13 factors affect the surface
roughness. By means of the weights obtained in the ANN,
the relative contribution (weights) of each variable is deter-
mined. According to the relative weights, the variables are
added into the model starting from the highest one. The vari-
able selection steps are determined by using the paired t test.

In the second part of the study, the used methods are
presented. In the third part, the details of empirical study
are given. In the fourth part, the empirical and numerical
results are shown, respectively. In the last part, the results
and suggestions are presented. This study will enable the
operators and engineers to machine more effectively while
obtaining the desired surface roughness in machining oper-
ations.

2 Methodology

2.1 Artificial Neural Networks (ANN)

An artificial neural network is a network which automati-
cally develops the knowledge generation and formation in
the way of learning. It is the structure which is developed
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Fig. 1 Different activation functions

for hard or impossible events to be programmed. Nowadays,
artificial neural networks which resolve many problems are
developed with the hierarchical and parallel connections of
neural cells.

Artificial neural cells are connected to each other and
ordered as layers. They ensure the collection, storage and
generalization of information in the learning process. Arti-
ficial neural cells which resemble the principles of neural
cells are defined as the process elements. Each process ele-
ment has five properties: inputs, weights, the sum function,
the activation function and outputs [34]. Process elements
are connected to each other by means of networks. Process
elements and connections form the artificial neural networks.
Weight values associated with the connections are calculated
in learning process.

Set of input nodes : X = X1, . . . , Xn

Set of connection weights : W = W1, . . . ,Wn

where n denotes the number of inputs.
The sum function is presented in Eq. (1)

u =
∑n

i=1
wi xi + b (1)

where b is the bias.

The activation function can have different functions. The
sigmoid function is presented as an example in Eq. 2

y = 1

1 + e−u
(2)

where y takes values between 0 and 1 and shows the output
value.

The other most frequently used activation functions are
given in Fig. 1.

The error for network, E , is given in Eq.3

E = 1

2

∑

J

(
y j − d j

)2 (3)

y j is the activity level of the j th unit and d j is the desired
output of the j th unit. Neural networks have different archi-
tectures such as feedforward, feedback, network layers and
perceptrons. An example for a simple feedforward network is
given in Fig. 2. Feedforward ANN permits signal from input
to output (only oneway). There is no loop in this network. It is
especially used in pattern recognition. The learning process
is given in Fig. 3. Incoming neural activations are multiplied
by the set of connection weights as inputs. In the middle
of Fig. 3, the sum function is given. Output activations are
multiplied by connection weights as outputs.
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Fig. 2 Feedforward networks

Fig. 3 Cycle of learning process.Wi j : connection weights; Ai : incom-
ing neural activations; A j : output activations

2.1.1 Running of ANN

The operation of artificial neural networks consists of data
collection, training, testing and running stages [34].

1. Data collection stage In this stage, sample data are col-
lected. Pre-processing should be conducted for the data
in specified conditions. The pre-processing makes data
representing the same thing similar and data represent-
ing the different things different.

2. Training stage In this stage, the connections in the net-
work are formed to find the right connections between
output and input data. To this end, specific error rate
and replication number are determined. If artificial neu-
ral network is trained too much with the same data, it
will recognize only this data set. This condition is known
as overtraining. Many different sample data should be
used to prevent overtraining. Moreover, a part of the data
should be kept for testing. Whether or not overtraining
occurs will be seen by checking the testing results. The
training algorithms used in the artificial neural networks
can be summarized as follows:

Quick This method creates a proper structure for the
network by using the features of specific rules and
data. In this method, parameters are: hidden layer
number, alpha and eta values and the hidden units in
the layers.
Dynamic It forms the first structure of network and
improves its topologyby adding and removinghidden
units.

Multiple In this algorithm, more than one artificial
neural networks with different topologies are devel-
oped in the beginning. The parallel method is used
for the training of the networks. The model which
has the lowest value of square root of sum of squares
is chosen at the end of training. In thismethod, param-
eters are: network parameters, alpha and eta values,
the cycle number repeatedwithout any improvements
in the network and the pyramid structure of the net-
work.
Prune The training starts with a broad network struc-
ture. The weakest units are removed from the input
and hidden layers in the training process. Thismethod
generally works slowly but produces much better
results than the other methods. Parameters of this
method are: the number of hidden layers, the num-
ber of hidden units, alpha and eta values, the cycle
number repeated without any improvements in the
network, the number of pruning operation of input
layer made without any improvement, the number
of pruning operation of hidden layer made without
any improvement, the number of input layer to be
removed in the pruning of only one input layer, the
number of hidden layer units to be removed in the
pruning of only one hidden layer and the pruning
cycle of a hidden layer/input layer unit without any
improvement.
Radial Basis Function Network (RBFN) It adapts a
curve according to the value of target variable in the
multi-dimensional space. It classifies the data accord-
ing to the output data by using a method similar
to the k-average clustering analysis. The training of
the model requires less time. More data are required
to obtain better results. In this method, parameters
are: alpha value, the cycle number made without any
improvement on the network, the width of hidden
layer (the number of cluster to be used), the number
of coincident clusters and the number of regions.
Exhaustive Prune It starts with a broad network struc-
ture and removes the weak units in the hidden layers
from the network. The training parameters are chosen
by being sure that the whole space of possible models
is searched. This method is the slowest one but pro-
duces the best results. The more the data increases in
size, the more the training takes time.

3. Testing stage In this stage, some data are kept for testing.
If the testing stage produces accurate results, it is under-
stood that the connections are appropriate. If the testing
stage is inaccurate, the training stage is started again and
it is repeated until the right connections are obtained.

4. Prediction stagewith newdata In this stage, new (unused)
data are entered and results are provided. The artificial

123



Arab J Sci Eng (2017) 42:1929–1940 1933

neural network benefits from the past results like humans
and makes predictions about the future.

2.2 Hypothesis Tests

Hypothesis tests are divided into two as parametric and
nonparametric hypothesis tests depending on the scale on
the measurement of evaluated variables. In the parametric
hypothesis tests, the determined parameter is equal to its
known value, lower and higher than it and different from
it. There are two hypotheses in relation with the parameters.
These are “null hypothesis” (H0)” and “alternative hypothe-
sis” (Ha) [35].

2.2.1 The Steps of Hypothesis Test

Two opposing hypotheses are stated as H0 and Ha. It is
revealed that the parameter in the null hypothesis (θ) is not
different from its revealed value (θ0) and there are differences
between parameters in the alternative hypothesis [35].

H0 : θ = θ0

Ha : θ �= θ0 or Ha : θ > θ0 or Ha : θ < θ0

2.2.2 t Test

t Test is the most widely used method in the hypothesis tests.
The average of two value groups is taken and this average
is compared whether the difference between them is statisti-
cally significant or not. In this context, there are three types
of t tests. These tests are one-sample t test, independent t
test and paired samples t test [35].

The aim of this test is to check whether or not obtained
results change under different conditions. The following
hypothesis is stated in order to test the difference between
averages under two different conditions or settings [35]. The
test statistic is calculated by using the following equation
(Eq. 4).

t = Sample statistic − H0 hypothesis value

Standart error
= d̄ − 0

Sd√
n

(4)

H0: μd = 0 (The difference between average values is equal
to zero), Ha: μd �= 0 (μd < 0 or μd > 0) (The difference
between average values is not equal to zero), Sd: the error of
test statistic. n: Sample size. d̄: The average of the differences
between two samples.

2.3 Experimental Design

Experimental design is used for decreasing the number of
experiments and designing the experiments properly. It is

firstly developedby theBritish statisticianR.A.Fisher et al. in
1920. Themethods used in the statistical experimental design
are divided into three as full factorial, fractional factorial and
Taguchi method [36].

2.3.1 Taguchi Experimental Design

Taguchi design is an optimization method which is based
on parameter, system and tolerance design. The orthogonal
arrays are used to show different experimental designs. Dif-
ferent factors are tested in the minimum number with the
orthogonal array and the simultaneous change is conducted
between factors. Generally, L4, L8 and L16 arrays are used
for 2 factor levels and the L9 and L27 arrays are used for
three factor levels [36].

3 Experimental Study

The experimental study is conducted in the laboratory and a
manual turning lathe is used in the machining experiments.
The number of revolutions is set to 355, 500, 710 rpm and
AISI-4140, AISI-1040, Al-2024 and Al-7075 bars are used
as material. The cutting tools’ cross section is 625 mm2. The
length of the cutting tools is 150mm. The length of each

Table 1 Dimensions of workpieces

Workpiece material Diameter (mm) Length (mm)

Al-2024 40 300

Al-7075 60 300

AISI-1040 60 300

AISI-4140 40 300

Table 2 Tool overhang length

Workpiece material Tool overhang length (mm)

Al-2024 80, 90, 100, 110

Al-7075 90

AISI-1040 80, 90

AISI-4140 80, 90

Table 3 Tool geometry

Tool angles Value range (◦)

Approach angle 93–100

End clearance angle 5

Back rake angle −5 to 0

End cutting angle 35–45

Side clearance angle −7 to 0

Side rake angle −7 to 0
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Table 4 AISI 4140 material
composition

Element Fe Cr Mn C Si Mo S P

AISI 4140

% 96.875–97.77 0.8–1.1 0.75–1 0.38–0.43 0.15–0.3 0.15–0.25 0.04 0.035

Table 5 AISI 1040 material composition

Element Fe Mn C S P

AISI 1040

% 98.9–99 0.6–0.9 0.37–0.44 ≤0.05 ≤0.04

Table 6 Al-7075 alloy composition

Element Al Zn Mg Cu Cr

Al-7075

% 90 5.6 2.5 1.6 0.23

Table 7 Al-2024 alloy
composition

Element Al Cu Mg Mn

Al-2024

% 93.5 4.4 1.5 0.6

workpiece is 300mm. The tool overhang lengths are chosen
as 80, 90, 100 and 110mm. The feed rate of cutting tool
is set to 0.06mm/rev. The insert materials are K-MTCVD-
coated cobalt-reinforced carbide, Tinalox Sn gold-coated
carbide and Wc/Co carbide PVD-TiAlN Al2 plus coatings.
The radius of the insert is 0.8mm. End clearance angle is 5◦.
The dimensions of workpieces used in the experiments, the
tool overhang lengths and the cutting tool angles are given
in Tables1, 2 and 3, respectively.

The composition of materials is given in Tables4, 5, 6 and
7 [37].

In the studies, the structural constants such as stiffness
coefficient (K ) and structural damping ratio (S) of the cut-
ting system are needed to measure the rigidity and damping
behaviour of the system. The accelerometer is connected
in the feed direction and the hammer tests are conducted
manually by using an impact hammer (see Fig. 4). The
data obtained during the hammer tests are performed by
using CUT PRO 8.0 software and the structural constants
are calculated. The stable cutting depths are determined by
increasing the cutting depths at the same rpmvalue. The chat-
ter sound is recorded by using amicrophone and is processed
in LABVIEW 7.1 software.

The 13 variables affecting the surface roughness are listed
in Table8.

Surface roughness values are measured at stable cutting
depths. MITUTUYO surface roughness device is used dur-

Fig. 4 Hammer test

Table 8 Independent variables

Tool stiffness ratio (K )

Cutting depth (CD)

Tool overhang length (OL)

Tool damping ratio (S)

Side rake angle (SRA)

End cutting angle (ECA)

The number of revolution (NR)

Workpiece diameter (WD)

Back rake angle (BRA)

Insert hardness (IH)

Side clearance angle (SCA)

Approach angle (AA)

Workpiece hardness (WH)

ing the measurement. The experimental set-up for surface
roughness is given in Fig. 5.

4 Results and Discussion

In this section, experimental and numerical results are given.

4.1 Experimental Results

The values of surface roughness are measured from the
machined surface at predetermined stable cutting depths.
Experiments are repeated three times at the same cutting
conditions. The average surface roughness values (µm) and
stable cutting depths (mm) are shown in Tables9 and 10 in
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Fig. 5 Experimental set-up for surface roughness measurement

Table 9 Average surface roughness and stable cutting depths for Al-
2024

Tool overhang
length (mm)

The number of revolutions (rpm)

355 500 710

80 13.7/14.7 12.18/14.1 11.05/13.5

90 8.48/13.2 8.41/12.5 8.02/12

100 4.78/10 3.35/9.5 2.34/9

110 4.12/7.9 3.01/7.4 2.13/7

accordance with the different tool overhang length and the
number of revolutions. It is observed that as the number of
revolutions increases and the stable cutting depth decreases
at the same tool overhang length, average surface roughness
decreases.

4.2 Numerical Results

The numerical study is carried out by using SPSS Clemen-
tine and MINITAB. An ANN model is developed by using
the independent variables given in Table8 and the dependent
variable is surface roughness. By means of 13 independent
variables for the model in Table8, the surface roughness is
predicted. Firstly, L18 Taguchi experimental design is con-

Table 11 Training parameters used in ANN

Training
algorithms

Training ratio (%) Data division

1—Quick 1–60 1

2—Dynamic 2–70 2

3—Multiple 3–80 3

4—Prune

5—RBFN

6—Exhaustive Prune

ducted for optimizing the ANN parameters. The training
parameters and levels used in the artificial neural networks
are presented in Table11. Six different algorithms are con-
sidered in the training stage. 60, 70 and 80% are chosen as the
ratios of training. The data used in the training and testing are
obtained by dividing the data in three different ways. Three
levels are used for the division of data within this scope. The
estimated average accuracy is determined in accordance with
L18 experimental design as shown in Table12. Three differ-
ent experimental runs were performed at each setting of the
experiment because the connection weights change in every
run.

Signal-to-noise (S/N) ratios are given for estimated aver-
age accuracy in Fig. 6. According to these ratios, the second
level of training algorithms (Dynamic), the third level of
training ratio (80%) and the second level of data division
were chosen to maximize estimated average accuracy.

By using these optimized ANN parameters, the relative
weights are calculated for 13 independent variables. The rel-
ative weights are the connection weights obtained from the
artificial neural network. In the calculation of weights, each
run is replicated independently 30 times and the average val-
ues are considered since the connection weights change at
every run. In Table13, the relative weights of the indepen-
dent variables are given. It is observed that the stable cutting
depths, the tool overhang length and stiffness ratio affect the
surface roughness more than the other variables.

Table 10 Average surface
roughness and stable cutting
depths for aluminium alloy and
steels

Tool overhang
length (mm)

Material The number of revolutions (rpm)

710

80 AISI 1040 3.8/4

80 AISI 4140 2.61/3

355 500 710

90 Al-7075 5.59/9 4.87/8.5 4.1/8

90 AISI 1040 3.64/5.1 3.6/4.4 3.44/3.8

90 AISI 4140 2.08/3.7 2.07/3.2 1.97/2.6
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Table 12 L18 experimental design for ANN parameters (Response:
estimated average accuracy)

Training
algorithm

Training
ratio

Data
division

Estimated
average accuracy

1 1 1 97.48

1 2 2 96.10

1 3 3 98.33

2 1 1 97.72

2 2 2 97.94

2 3 3 97.95

3 1 2 97.29

3 2 3 96.30

3 3 1 98.01

4 1 3 95.77

4 2 1 96.52

4 3 2 97.84

5 1 2 97.34

5 2 3 92.96

5 3 1 93.44

6 1 3 95.16

6 2 1 96.04

6 3 2 97.90

4.2.1 Forward Selection Method

The forward selection method is based on the addition of
independent variables to the model with paired t test starting
from the variable whose relative weight is the highest. The
steps of the method are given as follows:

1. Determine model parameters (the number of runs and p
value)

Table 13 Relative weights according to independent variables

Variables Relative weights

Cutting depth (CD) 0.418

Tool overhang length (OL) 0.301

Stiffness ratio (K ) 0.152

Tool damping ratio (S) 0.142

Side rake angle (SRA) 0.123

The number of revolution (NR) 0.109

Workpiece diameter (WD) 0.071

Insert hardness (IH) 0.061

Back rake angle (BRA) 0.059

Workpiece hardness (WH) 0.054

Side clearance angle (SCA) 0.04

Approach angle (AA) 0.039

End cutting angle (ECA) 0.038

2. The variable whose relative weight is the highest is
selected among the independent variables.

3. This variable is added into the model.
4. The model is run (a predetermined number of times).
5. A paired t test is performed to compare the results before

and after the variable addition.
6. Whether or not the variable is added is determined

according to the criterion of the paired t test (the p value
or equivalently paired t test statistic).

7. Steps 1–6 are repeated until all variables are considered
in the model and the method stops.

In this analysis, p value and the number of run are selected
as 0.3 and 10, respectively. The variable CD (Cutting Depth)

Fig. 6 S/N ratios for mean
estimated average accuracy
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Table 14 Stages of forward selection method

Stages Comparison t value p value Result

1 (CD + OL) versus CD 4.105 0.003 OL is added

2 (CD + OL + K) versus (CD + OL) −1.214 0.256 –

3 (CD + OL + S) versus (CD + OL) −0.927 0.378 –

4 (CD + OL + SRA) versus (CD + OL) −0.239 0.817 –

5 (CD + OL + NR) versus (CD + OL) 2.606 0.028 NR is added

6 (CD + OL + NR + WD) versus (CD + OL + NR) 2.196 0.056 WD is added

7 (CD + OL + NR + WD + IH) versus (CD + OL + NR + WD) −0.358 0.728 –

8 (CD + OL + NR + WD + BRA) versus (CD + OL + NR + WD) −0.337 0.744 –

9 (CD + OL + NR + WD + WH) versus (CD + OL + NR + WD) 0.479 0.643 –

10 (CD + OL + NR + WD + SCA) versus (CD + OL + NR + WD) 1.261 0.239 SCA is added

11 (CD + OL + NR + WD + SCA + AA) versus (CD + OL + NR + WD + SCA) 0.425 0.681 –

12 (CD + OL + NR + WD + SCA + ECA) versus (CD + OL + NR + WD + SCA) 0.784 0.453 –

which has the highest relative contribution in the model is
added into the model in the first stage. Since there is no
developedmodel in which the cutting depth can be compared
in the first stage, this variable is automatically added. The
model is run 10 times and the average value is taken. After
the CD (cutting depth) variable is entered into the model,
the other independent variables are, respectively, added to
the model as to their relative weights. In the next stage, tool
overhang length (OL) is added. Themodel is run 10 times and
the average value is taken. After 10 runs, the models before
and after (OL) is added are compared. The test statistics t is
obtained as 4.105 and equivalently the p value is obtained as
0.003. Because p value <0.3, the variable (OL) enters into
themodel. The results of the model are given in Table14. It is
efficient to predict the surface roughness if themodel consists
of the cutting depths (CD), tool overhang length (OL), the
number of revolutions (NR), workpiece diameter (WD) and
side cutting angle (SCA).

4.2.2 Stepwise Selection Method

The stepwise selection method is based on both the addition
and extraction of independent variables with paired t test.
The steps of the method are given as follows:

1. Determine model parameters (the number of runs and p
value)

2. The variable whose relative weight is the highest is
selected among the independent variables.

3. This variable is entered into the model.
4. The model is run a predetermined number of times.
5. A paired t test is performed to compare the results before

and after the variable addition.

6. Whether or not the variable is added is determined
according to the result of the paired t test (the p value
or equivalently paired t test statistic).

7. After runs, the variable which has the lowest relative con-
tribution is removed from the model.

8. Whether or not the variable is removed is determined
according to the results of the paired t test (the p value
or equivalently paired t test statistic).

9. Steps 1–8 are repeated until all variables are considered
and the method stops.

In this analysis, p value and the number of run are selected
as 0.3 and 10, respectively. The variable CD (Cutting Depth)
whichhas the highest relative contribution to themodel enters
into the model in the first stage. Since there is no developed
model in which the cutting depth can be compared to in the
first stage, this variable is automatically added. The model is
run 10 times.After the cutting depth is entered into themodel,
the other independent variables are, respectively, entered into
or removed from the model as to their relative weights. In
the next stage, tool overhang length (OL) is added (forward
stage/stage 1). The model is run 10 times. After 10 runs, the
models before and after OL is added are compared. The t
test statistic value is obtained as 5.487 and the p value is
obtained as 0.00. Since p < 0.3, the variable (OL) enters
into the model. The model is checked for removal of vari-
ables (backward stage/stage 2).When 10 runs are completed,
the tool overhang length (OL) variable has the lowest relative
contribution. Because tool overhang length (OL) is a signif-
icant variable in forward stage, it is not removed. Except
the 10th stage (backward), the other backward stages are not
given in Table15 because the same results are obtained. In
the 10th stage, side rake angle (SRA) is removed because
p = 0.378 > 0.3. The results of the model are given in
Table15. It is efficient to predict the surface roughness if
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Table 15 Stages of stepwise selection method

Stages Comparison t value p value Result

1 (CD + OL) versus (CD) 5.487 0.000 OL is added

3 (CD + OL + K) versus (CD + OL) 0.865 0.409 –

5 (CD + OL + S) versus (CD + OL) 0.746 0.475 –

7 (CD + OL + SRA) versus (CD + OL) 3.214 0.011 SRA is added

9 (CD + OL + SRA + NR) versus (CD + OL + SRA) 2.012 0.075 NR is added

10 (Backwad stage) (CD + OL + NR + SRA) versus (CD + OL + NR) −0.927 0.378 SRA is removed

11 (CD + OL + NR + WD) versus (CD + OL + NR) −0.234 0.82 –

13 (CD + OL + NR + IH) versus (CD + OL + NR) 0.249 0.809 –

15 (CD + OL + NR + BRA) versus (CD + OL + NR) −0.477 0.644 –

17 (CD + OL + NR + WH) versus (CD + OL + NR) −0.972 0.356 –

19 (CD + OL + NR + SCA) versus (CD + OL + NR) 0.082 0.937 –

21 (CD + OL + NR + AA) versus (CD + OL + NR) −0.675 0.516 –

23 (CD + OL + NR + ECA) versus (CD + OL + NR) −0.208 0.84 –

Table 16 Results of three
models in terms of average
estimated accuracy

Replication All variables (13 indepen-
dent variables)-1

Forward selectionmethod (5
independent variables)-2

Stepwise selection method
(3 independent variables)-3

1 0.98169 0.9868 0.9675

2 0.98282 0.9858 0.9715

3 0.98221 0.9714 0.9743

4 0.98338 0.9828 0.9749

5 0.98283 0.9714 0.9729

6 0.97824 0.9702 0.9714

7 0.94639 0.9825 0.9624

8 0.97868 0.9846 0.9732

9 0.97766 0.9862 0.9626

10 0.98601 0.9673 0.9679

Mean 0.977991 0.9789 0.96986

Table 17 Comparison of the models by paired t test

Paired differences t d f Sig. (two-tailed)

Mean SD SEM 95% CI of the difference

Lower Upper

Pair (1–2) −.000909 .01527 .0048318 −.0118393 .0100213 −.188 9 .855

Pair (1–3) .008131 .00936 .0029615 .0014315 .0148305 2.746 9 .023

Pair (2–3) .00904 .01014 .00321 .00179 .01629 2.819 9 .020

the model consists of the cutting depths (CD), tool overhang
length (OL) and the number of revolutions (NR).

In Table16, the results of three developed models are pre-
sented. The results are compared by using paired t test in
Table17. It is observed that there is no significant difference
between the models at 1% significance level and the model
which includes all the variables. Also, there is no significant
difference between the first and second model at 5% signifi-
cance level. However, forward selectionmethod outperforms
the stepwise selection method at 5% significance level.

5 Conclusion

In this study, a new variable selection method based on
ANN is proposed. Within this scope, forward and stepwise
selection methods are proposed. For the variable addi-
tion/elimination criterion, p significance value is considered.
The proposed methods are used in an experimental study
(the prediction of surface roughness). While it is observed
that the variables affecting the surface roughness are the cut-
ting depths, tool overhang length, the number of revolutions,
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workpiece diameter and side cutting angle in the forward
selection method, the cutting depths, tool overhang length
and the number of revolutions affected surface roughness
significantly in the stepwise selection method. The success-
ful results are produced in the selection of variables affecting
surface roughness and in the prediction of surface roughness
in turning. The selection of variables does not change the
prediction accuracy of the model at 1% significance level.
Also, there is no significant difference between the first and
secondmodel at 5% significance level. This studywill enable
the operators and engineers toworkmore efficiently. A sensi-
tivity analysismay be conducted in accordancewith different
p values in the future studies. Moreover, the results may be
compared for the different prediction problems in manufac-
turing such as tool wear prediction, cutting force prediction
in the future works.
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