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Abstract Pull-out capacity of ground anchors is analogous
to axial capacity of piles as both of them apply same meth-
ods. These availablemethods aremostly empirical; therefore,
in this paper efficient prediction models for determining the
uplift capacity of small ground anchors have been presented
using recently developed artificial intelligence (AI) tech-
niques. Multi-objective feature selection (MOFS) has been
utilised to find the subset of influential parameters respon-
sible for the pull-out capacity of ground anchors along with
the development of prediction equations. MOFS has been
applied with artificial neural network and non-dominated
sorting genetic algorithm. Prediction models are also pre-
sented using two other AI techniques: functional network
and multi-variate adaptive regression spline. AI models were
compared in terms of different statistical parameters such
as mean absolute error, root-mean-square error, correlation
coefficient and ranking criterion approach have been imple-
mented to assess the performance of different prediction
models.
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1 Introduction

Short-term light constructions and marquees are usually
made stable by the help of small ground anchors. Ground
anchors are basically tensile resisting structures, which trans-
fer the tension forces built on the superstructures to the
ground due to the shear resistance of the soil. They are made
of steel of different shapes and diameters with length around
1m. The various parameters on which the pull-out capacity
of ground anchors depend are: diameter of anchors, adhesion
between the surrounding soil and anchors, physical prop-
erties of the soil, length of the anchors up to which it is
embedded, installation methods, etc. There are several con-
ventional methods available to design the ground anchors.
Out of these available methods, three methods which are in
recent use are Laboratoire Central des Pontset Chaussées
(LCPC) [1], Das [2] and Bowels [3]. All the available
prediction methods are purely based on the axial compres-
sion of piles. Axial piles are based on compressive loads,
whereas ground anchors are based on tension. As the actual
approaches to determine the pull-out capacity of ground
anchors are underdeveloped, therefore proper assumptions
have to bemade during the design process. One such assump-
tion is simulating the behaviour of ground anchors with that
of micro-piles taking into consideration the scaling effect of
dimensions. But still these methods are empirical and inad-
equate.

In general, geotechnical modelling is difficult due to the
heterogeneous nature of soil.Moreover, apart from the empir-
ical equations as stated above there are no available methods,
which can be used to directly determine the pull-out capacity
of marquee ground anchors. For overcoming the difficul-
ties as discussed above, artificial intelligence (AI) techniques
came to the discussion. Out of several AI methods, artificial
neural network (ANN) is the most widely used technique to
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be ever used in the field of geotechnical engineering. ANN
has been applied to a variety of problems in civil engineer-
ing [4–9]. Apart from ANN, other AI techniques, which are
widely utilised, are genetic programming (GP), multi-variate
adaptive regression splines (MARS), functional networks
(FN), support vector machines (SVM) etc.

Research articles related to the pull-out capacity of ground
anchors are limited [10]. Shahin and Jaksa [11] conducted
a sequence of 119 in situ anchor pull-out tests and made
a comparison with conventional methods. The in situ tests
were conducted on six different types of soil namely, alluvial
silt and sand; clay with some gravel; medium-grained sand;
fine-grained sand; highly plastic black clay; and red, brown
clay, dry, hard (Adelaide, SouthAustralia). The anchors were
of circular, hexagonal and star dropper shaped and varied
in embedment length (400–800mm). From the comparison
study, they found that the predictive accuracy of conven-
tional methods in predicting the uplift capacity of anchors
was inconsistent. Based on the same data set, AI models
[12,13] are far better in estimating the pull-out capacity of
anchors in comparison with traditional techniques. Shahin
and Jaksa [13] also presented a model equation for hand cal-
culation and found that the average cone tip resistance of
the ground anchor had almost negligible effect on the pull-
out capacity. Later on Samui et al. [14] and Shahin [15]
developed least square support vector machine (LSSVM)
and evolutionary polynomial regression (EPR) prediction
models, respectively, for estimating the pull-out capacity of
ground anchors using the same database.

Often in data-driven modelling, separation of the data set
(subsets of training and testing data samples) is important
[16]. In machine learning, major portion of the data are used
for training and a smaller portion for testing by random sam-
pling of data to ensure that the testing and training sets are
alike for minimising the effects of data discrepancies and to
better understand the characteristics of the model. So, the
model is trained for several times to reduce the effect of
overfitting. After a model is developed by using the train-
ing set, the model is tested by making predictions against
the test set and through various ways the performance of
the model is evaluated. Performance indicators such as coef-
ficient of correlation (R), root-mean-square error (RMSE)
and mean absolute error (MAE) show the average variation
in the model.

Due to the complex nature of soil, it has been found that
selection of influential parameters for data-driven modelling
is important as a result, the performance of the model varies,
so identification of the controlling factors is a must. Simi-
larly, it is imprudent to include all the features of a model as
it unnecessarily increases the complexity of themodel giving
a very little benefit in terms of the predictive capability of the
developed model [16]. Also, many different combinations of
features may give similar predictions. Thus, researchers are

on constant lookout for reliable predictive models, which are
not only less complex but also high in its predictive capabil-
ity. One such algorithm, feature selection (FS) algorithm not
only minimises the number of features but also maximises
the predictive accuracy (minimisation of error) of the model.
But the above-described objectives are mutually conflicting
in nature; a decrease in number of features also decreases
the prediction accuracy. Therefore, multi-objective evolu-
tionary algorithms (MOEA) can be implemented which can
simultaneously minimise all the objective functions. MOEA
produces a Pareto front for the multi-objective minimisation
problem fromwhich one canfind a trade-off solution between
conflicting objectives. The Pareto front is defined as the set
of non-dominated solutions, where each objective is consid-
ered as equally good. MOEA and ANN in conjunction with
evolutionary algorithm have been applied in several fields
with great degree of success [17,18].

Feature selection (FS) algorithm is of three types: wrap-
per, filter and embedded. In wrapper technique, a predictive
model is used to evaluate each feature subset. Each new sub-
set is used to train a model and tested and then ranked based
on their accuracy rate or error rate. In filter technique, a
proxy measure is used which is fast to compute. Some of
the measures used in filter technique are mutual information
[19], pointwise mutual information [20], Pearson product-
moment correlation coefficient, inter-/intra-class distance or
the scores of significance tests for each class/feature combi-
nations [20,21]. Filter selects a feature set which is not tuned
to a particular type ofmodel, thus resulting in to bemore gen-
eral as compared to wrapper technique. Embedded technique
uses a catch-all groupmethod performing feature selection as
a part of the modelling process. LASSO algorithm [22,23] is
one such techniquewhere during linearmodelling the regres-
sion coefficients are penalised with an L1 penalty, shrinking
many of them to zero. Embedded technique is in between fil-
ters and wrappers in terms of computational complexity. FS
has also been used in text classification [24]. Implementation
of evolutionary algorithms for FS has been made using dif-
ferential evolution (DE) [25], genetic algorithms (GA) [26],
genetic programming (GP) [27] and particle swarm optimi-
sation (PSO) [28–30].

In the present study, a novel type of algorithm known
as multi-objective feature selection (MOFS) is proposed to
solve the above-described pitfalls. Using MOFS, not only
the model is much more generalised but also it reduces the
computation time along with better convergence. In this pro-
posed MOFS (wrapper-type approach) algorithm, artificial
neural network (ANN) is combinedwith non-dominated sort-
ing genetic algorithm (NSAG II), where ANN acts as the
learning algorithm and NSGA II performs the feature subset
selection and minimises the errors for the developed pre-
diction model simultaneously. By using three objectives for
minimisation (a subset of features, training error and testing
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error), a variant of MOEA (modified non-dominated sorting
genetic algorithm or NSGA II) is applied to investigate if a
subset of features exists with cent per cent correct predic-
tions for both training and testing data sets. The features fed
to theMOFS are represented in binary formwhere 1 indicates
selection of the feature and 0 indicates its non-selection. The
performance of the proposed model is evaluated in terms of
mean square error in which NSGA II minimises during the
multi-objective optimisation process.

Along with the implementation of MOFS algorithm, two
recent AI methods, functional network (FN) and multi-
variate adaptive regression spline (MARS) have also been
implemented to find the pull-out capacity of ground anchors.
Once the identification of the controlling features responsible
for the pull-out capacity of ground anchors has been done via
MOFS algorithm, FN andMARS have been implemented on
the same subset of influential features to develop prediction
models for the ground anchor for comparison.

2 Methodology

2.1 Multi-objective Feature Selection (MOFS)

2.1.1 Non-dominated Sorting Genetic Algorithm (NSGA II)

NSGA II [31] is an elitist non-dominated sorting genetic
algorithm and is very popular in the application of multi-
objective optimisation. Not only does it adopt an elite
preservation strategy but also uses explicit diversity preserva-
tion technique. In this first, the parent population is initialised,
from which the offspring population is created, and then,
both the population are combined and finally classified based
on non-dominated sorting. After the completion of non-
dominated sorting, filling of new population starts with the
best non-dominated front with assignment of rank as 1
and this continues for successive fronts and assignment of
ranks simultaneously.Alongwith the non-dominated sorting,
another niching strategy adopted is the crowding distance
sorting in which the distance reflects the closeness of a
solution to its neighbours, greater the distance better is the
diversity of the Pareto front. Offspring population are cre-
ated from parent population by using crowded tournament
selection, crossover and mutation operators and this whole
operation continues until a termination criterion is met.More
details of the algorithm can be found in Deb et al. [31].

2.1.2 NSGA II with ANN for Feature Selection

In this study to solve the feature selection problem, wrapper-
type approach is implemented where binary chromosomes
are used to represent the features with a value of 0 and 1, 0
indicating that the required feature is not selected and 1 indi-
cating that the required feature is selected. Three objectives

are defined in the NSGA II algorithm, first being the minimi-
sation of the number of selected features, second being the
minimisation of training error rate and third being the min-
imisation of testing error rate in the learning algorithm. The
training error and testing error are calculated based on mean
square error. Learning algorithm used is feed-forward artifi-
cial neural networks (ANNs). Basic flow chart of the MOFS
algorithm is presented in Fig. 1. Population size, number of
generations, crossover probability and mutation probability
are the parameters to be fine-tuned to get the optimal model.

2.2 Functional Network (FN)

Functional network (FN) proposed by Castillo et al. [32,33]
is a recent technique. The preliminary topology of FN net-
work is centred on the domain knowledge of problem to be
solved. Functional equations are used to simplify the pre-
liminary topology of FN. The advantage of FN over ANN
is that it uses both the knowledge’s of domain and data
simultaneously. FN uses randommulti-argument and vector-
valued functions, whereas ANNs use sigmoidal functions.
The functions by the help of structural learning and para-
metric learning are learned and estimated, respectively. But
in case of artificial neural networks, the neural functions are
predetermined and fixed. By the use of intermediate layers in
FN, several neuron outputs can be connected to a same unit,
which in case of ANN is not possible. Based on the learning
method, functional networks are of two types viz. structural
learning and parametric learning. In structural learning, ini-
tial topology of the network is built on the assets obtainable
to the designer. Further simplification is undertaken with the
help of functional equations, whereas in parametric learning,
estimation of the neuron function is based on the combination
of functional families. Associated parameters are estimated
from available data. A functional network is a combination
of three types of units/elements. They are storing units (input
layer, output layer and processing layers), computing units
and directed link sets. The arrangement of the neural func-
tions fi (x) can be done as per the equation given below.

fi (x) =
m∑

j=1

ai jφi j (X) (1)

where φ is the shape function, having algebraic expressions,
exponential functions and/or trigonometry functions. A set
of linear or nonlinear algebraic equations are obtained by the
help of associative optimisation functions. Previous informa-
tion about the functional equation is vital for working with
functional network. Cauchy’s functional equation is the most
common instance for the functional equations. The efficiency
of the FN depends upon the type of basic function to be
used (exponential/polynomial/sine/cosine/tangent function)
and degree/order of the function. This study applies the use
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Fig. 1 Flow chart of MOFS
algorithm

of associativity FNs. In-depth discussions can be found in
Das and Suman [34].

2.3 Multi-variate Adaptive Regression Splines (MARS)

MARS proposed by Friedman [35] follows a nonlinear,
nonparametric approach. It creates relationships between dif-

ferent input variables by the help of coefficients and basis
functions. MARS algorithm follows a divide and conquer
strategy. It efficiently handles both continuous and categor-
ical data samples. Preliminary data preparation is almost
negligible, when using MARS algorithm. Like recursive
partitioning, MARS algorithm also uses automatic variable
selection tofind the important variables in the data set.MARS
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Table 1 Statistical parameters
of the data samples related to the
pullout capacity of ground
anchors

Maximum Minimum Average Standard deviation

Deq (mm) 44.60 25.00 30.81 7.71

L (mm) 800.00 400.00 579.83 120.44

qc-tip (MPa) 3.55 0.95 1.93 0.57

fs (kPa) 179.71 12.22 57.59 40.45

I 2.00 1.00 1.59 0.49

Qu(m) (kN) 3.80 0.29 1.75 0.77

models are flexible enough to model nonlinearity and vari-
able interactions. Data sets large in size can be easily handled
by MARS to develop models and make predictions in very
less amount of time. A MARS model contains a number of
piece-wise linear/cubic functions and knots (end points of
splines). Creation of models in MARS follows a two-step
process. In the first step, the basis functions, which has the
lowest training error, are added sequentially. This process
continues until the maximum number of basis functions are
reached. Then in the second step, the best viable sub-model
is obtained by removing the least effective terms. Once the
pruning of model is complete, it is validated by generalised
cross-validation (GCV) process. Elaborate discussion about
MARS algorithm can be found in Das and Suman [34]. For
the sake of creating simple linearmodels, only piece-wise lin-
ear basis functions have been used in this study. User needs
to fix the maximum number of basis functions, generalised
cross-validation (GCV) penalty per knot, type of function
(piece-wise linear function or piece-wise cubic function),
maximum degree of interaction between input variables and
maximum number of basis functions in the pruned model to
the best MARS model. For better understanding of MARS
algorithm refer Das and Suman [34]. Models created by
MARS are more flexible in comparison with models devel-
oped by linear regression method. MARS models have a
good bias and variance trade-off. For numeric type of data,
MARS is found to be more efficient than recursive parti-
tioning as hinges are more suitable for numeric variables
than the piece-wise constant segmentation used by recursive
partitioning.

The MOFS, FN and MARS methodologies have been
implemented using MATLAB.

3 Database and Pre-processing

In this study, data set of Shahin and Jaksa [13] was utilised.
The database consists of 119 in situ results conducted on
small (embedment depth 400, 600 and 800mm) mild steel
ground anchors at six different locations in Adelaide, South
Australia, on alluvial soils with silt and sand, clay with some
gravel, fine-grained sand, medium-grained sand, highly plas-
tic black clay, and red, brownmedium plastic clay. It contains

in situ cone penetration test results; average resistance of the
tip of cone (qc-tip), average sleeve friction and equivalent
anchor dia (Deq), embedment length (L), along the embed-
ment depth and the installation technique (I ) (1 is for static
installation and 2 is for dynamic installation). The ultimate
pull-out capacity (Qu(m)) of the ground anchor measured
usingdrilling rig anddata acquisition system.Statistical para-
meters of the data set are presented in Table 1.

In the MOFS algorithm, ANN training function used was
Levenberg–Marquardt type consisting of 2 hidden neurons
and performance of the neural network was based on MSE.
Out of the total data set, 70% of the samples were used for
training and the remaining 30% for testing. Data were nor-
malised in the range [0, 1]. In NSGA II, uniform crossover
technique was applied where replacement of the genetic
material of the two selected parents takes place uniformly
at several points. Conventional mutation operator was used
on each bit separately and changing randomly its value. After
the identification of the influential parameters responsible for
the pull-out capacity of the ground anchors by MOFS algo-
rithm, FN and MARS algorithm were applied on the same
set of features/input variables. For FN andMARS algorithm,
training (95 data samples) and testing (24 data samples) data
set were normalised between 0 and 1.

4 Results and Discussions

Statistical comparison of all the AI models developed in
this study along with the available AI models from the lit-
erature was done in terms of mean absolute error (MAE),
root-mean-square error (RMSE), correlation coefficient (R)
and is presented in Table 6. The overfitting ratio, which is
the ratio between the RMSE of testing to training, was found
out and also presented in Table 6. Overfitting ratio indicates
the generalisation of the prediction models. Residual plots
(residual error between the measured and the predicted val-
ues) of all the AI models developed in this research has been
presented in Figs. 3, 4, 5 and 6 for the training and testing
data set. If the residuals appear to behave randomly (equally
distributed on both sides of the zero line), it suggests that the
model fits the data well otherwise it is a poorly fitted model.
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4.1 MOFS Model

Pareto optimal solutions given by MOFS algorithm are pre-
sented below with the number of input parameters used for
modelling and the error rate of training and testing in terms of
MSE. The optimum results obtained with NSGA II parame-
ters as: population size = 50, crossover probability = 0.95,
mutation probability = 0.1 and mutation rate = 0.1. Results
of the multi-objective optimisation are presented in Fig. 2,
and the details of thePareto front are given inTable 2. Figure 2
clearly shows that MSE for training and testing decreases
with increase in the number of input variables/features. Also,
the difference between the training error and testing error
which indicates the generalisation of a model (small differ-
ence means more generalised is the model) is least when
number of input features is 4.

From Table 2, it can be inferred that the most influen-
tial features responsible for the pull-out capacity of ground
anchors are average sleeve friction ( fs) along the embedment
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Fig. 2 Pareto front obtained from MOFS algorithm

Table 2 Details of the Pareto front obtained from the MOFS algorithm

Selected features MSE

– – – fs – Training 0.269

Testing 0.284

– L – fs – Training 0.195

Testing 0.214

Deq L – fs – Training 0.179

Testing 0.172

Deq L – fs I Training 0.166

Testing 0.163

Deq L qc-tip fs I Training 0.171

Testing 0.151

length and embedment length (L), as these two parameters
are selected for a maximum number of times. The least influ-
ential parameter is average cone tip resistance (qc-tip) which
agrees well with previous study [12]. It can also be seen that
MSE values with four and five selected features are compara-
ble. Hence, two prediction models for the pull-out capacity
of ground anchors corresponding to 4 number of parame-
ters (Deq, L , fs, I ) (MOFS1) and 5 number of parameters
(Deq, L , qc-tip, fs, I ) (MOFS2), respectively, are presented
as follows.

4.1.1 MOFS1

For four numbers of features, the developed model is named
as MOFS1 and its mathematical form is presented below
(weights and biases of the MOFS1 model are given in
Table 3).

Qu(p) = 3.51 [325.129+ 0.134 tanh (A1)

−325.664 tanh (A2)]+ 0.29 (2)

where for static installation:

A1 = −5.258− 10−3 [
5.72Deq + 11.997L − 564.67 fs

]
(3)

A2 = 3.729− 10−3 [
3.2Deq + 0.474L + 0.884 fs

]
(4)

and for dynamic installation:

A1 = −5.235− 10−3 [
5.72Deq + 11.997L − 564.67 fs

]
(5)

A2 = 3.755− 10−3 [
3.2Deq + 0.474L + 0.884 fs

]
(6)

It is evident from Table 6 that model is well generalised
as the R values for both training and testing are nearly same
(training= 0.856 and testing= 0.834). TheMAE andRMSE
of the MOFS1 model are 0.294, 0.408 and 0.283, 0.403kN
for training and testing data set, respectively (Table 6). From
Fig. 3, it can be observed that the MOFS1 model is a good fit
modelwith amaximum residual error of approximately 1 and
1.25kN for training and testing, respectively, on either side
of the zero error line. Overfitting ratio of the model is 0.988
(close to 1.0), which indicates that the developed model is
well fitted.

4.1.2 MOFS2

MOFS2 model has been developed taking into account all
the features of the data set, i.e. for five number of vari-
ables (Deq, L , qc-tip, fs, I ). Model equation for predicting
the pull-out capacity of ground anchors along with the con-
nection weights and biases (Table 4) of MOFS2 model is
presented below.
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Table 3 Connection weights
and biases of the MOFS1 model

Neuron (hidden) Weights (wik) Biases

Input Output

Deq L fs I Qu bhk b0

k1 −0.112 −4.799 94.577 0.023 0.134 −3.299 325.129

k2 −0.063 −0.189 −0.148 0.027 −325.664 3.448 –
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Fig. 3 Residual Error of MOFS1 Model

Qu(p) = 3.51 [40.189+ 41.814 tanh (A1)

+0.158 tanh (A2)]+ 0.29 (7)

where for static installation:

A1 = −2.083+ 10−3 [
1.339Deq + 0.252L + 6.889qc-tip

+0.404 fs] (8)

A2 = 2.061− 10−3 [
25.076Deq + 8.227L + 937.864qc-tip

−275.951 fs] (9)

and for dynamic installation:

A1 = −2.101+ 10−3 [
1.339Deq + 0.252L + 6.889qc-tip

+0.404 fs] (10)

A2 = 1.366− 10−3 [
25.076Deq + 8.227L + 937.864qc-tip

−275.951 fs] (11)
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Fig. 4 Residual error of MOFS2 model

Figure 4 shows that the maximum error in prediction for
the MOFS2 model is around 1.25kN for training on either
side of the zero error line and for testing it is approximately
−1.15kN. The correlation coefficient betweenmeasured and
predicted values of pull-out capacity for the MOFS2 model
as presented in Table 6 is 0.854 and 0.861, respectively, for
training and testing. Also from Table 6, MAE and RMSE are
given as 0.287, 0.414 and 0.289, 0.389kN, respectively, for
training and testing. The value of overfitting ratio as indicated
in Table 6 is 0.940.

4.2 FN Model

A FN model with degree four and polynomial BF (associa-
tive type) found to give optimum result. The corresponding
prediction equation is given by:

Qu(p) = 0.364D3 + 2.883L2 − 2L3 + 11.837 fs − 45.222 f 2s

+80.789 f 3s − 45.701 f 4s − 0.277I 4 + 0.331 (12)

Table 4 Connection weights
and biases of the MOFS2 model

Neuron (hidden) Weights (wik) Biases

Input Output

Deq L qc-tip fs I Qu bhk b0

k1 0.026 0.101 0.018 0.068 −0.017 41.814 −1.937 40.189

k2 −0.491 −3.291 −2.438 46.219 −0.695 0.158 0.624 –
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Fig. 5 Residual error of FN model

In Eq. 12, the values of the inputs to be used are their nor-
malised values between 0 and 1. Figure 5 shows the residual
error plot between the measured and the predicted pull-out
capacity of ground anchors. It can be seen that the model fits
well along with a maximum deviation of 1kN on both sides
of the zero line for training phase and for testing phase it is
approximately 0.5kN. The values of R in training and testing
for the FN model are 0.832 and 0.935, respectively, as indi-
cated in Table 6.MAE andRMSE for the FNmodel as shown
in Table 6 are 0.328, 0.444 and 0.177, 0.214kN for training
and testing, respectively. The overfitting ratio (Table 6) for
the FN model is 0.482, which indicates that the FN model
developed is under fitted.

4.3 MARS Model

In MARS modelling, the best model was obtained corre-
sponding to 11 basis functions and the equivalent model
equation is given below.

Qu(p) = 1.97+ 4.967× BF1− 9.209× BF2− 0.856

× BF3− 6.151× BF4− 10.927× BF5

− 441.712× BF6+ 10.769× BF7+ 29.603

× BF8+ 2382.71× BF9− 288.274× BF10
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Fig. 6 Residual error of MARS model

− 7.096× BF11 (13)

Details of the respectiveBFs are presented in Table 5.Nor-
malised input values have to be used in Eq. 13. The residual
error plot of the MARS model is shown in Fig. 6 and from it
can be observed that the scatter of the error around the zero
line is randomwith amaximumerror of approx. 1.25kN from
the measured value during training and−1.20kN for testing.
It can be seen from Table 6 that the values of R in train-
ing and testing are same, i.e. 0.894, which indicates a strong
correlation between the predicted and observed values [36].
MAE and RMSE for training and testing (Table 6) are 0.254,
0.347 and 0.272, 0.371kN, respectively. From Table 6, it can
be inferred that the MARS model has better generalisation
(overfitting ratio = 1.069).

4.4 Evaluation of AI Models

As it can be seen from Table 6, different AI models per-
form differently based on different criteria. Hence, a ranking
system as suggested by Abu-Farsakh and Titi [37] has been
employed to assess the overall performance of the prediction
models taking into account the total number of data sam-
ples, which in this case is 119. Three different evaluation
criterions has been considered in this study. First ranking

Table 5 Details of the BFs for the MARS model

BF1 max(0, fs − 0.1415) BF7 max(0, L − 0.5) × max(0, fs − 0.2515)

BF2 max(0, 0.1415− fs ) BF8 max(0, L − 0.5) × max(0, 0.2515− fs)

BF3 max(0, 0.5− L) BF9 BF1 × max(0, 0.3129− fs) × max(0, qc-tip − 0.3615)

BF4 BF1 × max(D − 0.4336) BF10 BF1 × max(0, 0.3129− fs) × max(0, 0.3615− qc-tip)

BF5 BF1 × max(0.4336− D) BF11 max(0, L − 0.5) × max(0, qc-tip − 0.2807)

BF6 BF5 × max(0, D + 0)
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Table 6 Statistical comparison
of different AI models

R MAE (kN) RMSE (kN) Overfitting ratio
ANN [12]
Multi-layer perceptron
Training 0.830 0.320 0.430 1.070
Testing 0.850 0.350 0.460

B-spline neuro-fuzzy network
Training 0.830 0.310 0.420 0.929
Testing 0.890 0.300 0.390

EPR [15]
Training 0.789 0.340 0.460 0.935
Testing 0.872 0.370 0.430

FN (present study)
Training 0.832 0.328 0.444 0.482
Testing 0.935 0.177 0.214

MARS (present study)
Training 0.894 0.254 0.347 1.069
Testing 0.894 0.272 0.371

MOFS (present study)
MOFS1
Training 0.856 0.294 0.408 0.988
Testing 0.834 0.283 0.403

MOFS2
Training 0.854 0.287 0.414 0.940
Testing 0.861 0.289 0.389

Table 7 Evaluation of
performance of different
prediction models and their
ranking based on rank index
proposed by Abu-Farsakh and
Titi [34]

Best fit calcu-
lations

Arithmetic
calcula-
tions of
Qu(p)/Qu(m)

Cumulative
probability of
Qu(p)/Qu(m)

Overall rank

R E R1 μ σ R2 P50 P90 R3 RI Final rank

ANN [12] (multi-layer perceptron) 0.830 0.684 5 1.128 0.374 6 1.045 1.597 6 17 6

EPR [15] 0.808 0.651 6 1.081 0.369 5 1.013 1.587 5 16 5

FN (present study) 0.846 0.716 4 1.065 0.332 3 1.028 1.465 4 11 4

MARS (present study) 0.890 0.789 1 1.081 0.318 4 1.028 1.440 3 8 3

MOFS1 (4) (present study) 0.849 0.719 3 1.036 0.311 1 0.987 1.276 2 6 2

MOFS2 (5) (present study) 0.851 0.719 2 1.074 0.310 2 1.009 1.304 1 5 1

(best fit calculations) consists of correlation coefficient (R)

and Nash–Sutcliff coefficient of efficiency (E) [16]. Sec-
ond (arithmetic calculations) consists of arithmetic mean
(μ) and standard deviation (σ ) of the Qu(p)/Qu(m) ratio.
And finally third ranking (cumulative probability distribu-
tion of Qu(p)/Qu(m)) contains the P50 and P90 values of
Qu(p)/Qu(m), details of which can be found in Abu-Farsakh
and Titi [37] and Das and Suman [34]. Combining all the
three ranking criteria, a ranking index (RI) (Table 7) was
obtained and all the AI models were given an overall rank
(lower RI means better the rank of the model). As per the
best fit calculation criteria (Table 7) better rank was awarded
to MARS model as its R (0.890) and E (0.789) values were
generally closer to one as compared to others followed by the
MOFS2 model (R = 0.851 and E = 0.719). Analysis of the
arithmetic calculation of Qu(p)/Qu(m) ratio (Table 7) indi-
cated the best model to be MOFS1 (μ = 1.036, σ = 0.311)
and second best model to be MOFS2 (μ = 1.074, σ =

0.310). In this the best model has μ closer to unity with
least deviation, i.e. σ should be closer to zero. For the third
criteria, graphical representation of the cumulative probabil-
ity distribution of Qu(p)/Qu(m) ratio of FN, MARS, MOFS1
and MOFS2 models are presented in Fig. 7. The P50 val-
ues of the developed prediction model define the model in
terms of under prediction and over prediction. For the best
model, P50 value should be to closer to 1.0 and the difference
between P50 and P90 should be least. Among the developed
models, MOFS2 model (P50 = 1.009) is the “best model”.
As per the P90 value also MOFS2 model found to be more
efficient followed byMOFS1 model. The corresponding P50
and P90 values (Table 7) of MOFS2 and MOFS1 model are
1.009, 1.304 and 0.987, 1.276, respectively. Based on the RI
values of different prediction models, the best performing
model was found to be MOFS2 with a RI of 5 and second
best model was MOFS1 with a RI of 6.
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Fig. 7 Cumulative probability distribution of training and testing data

Hence, it can be easily concluded that out of all the AI
models, MOFS2 model is best followed closely by MOFS1
model as indicated in the ranking criteria (Table 7). The
performance of the model equations (based on the ranking
criteria) of the present AI models is better than available
AI models [12,15]. Also the MOFS2 and MOFS1 model
equations are less complex and better comprehensible in
comparisonwith themulti-layer perceptronmodel [12] equa-
tion.

5 Conclusion

This paper deals with the development of prediction model
for pull-out capacity of ground anchor using MOFS tech-
nique, simultaneously considering minimum number of
features (input variable) and minimising training and test-
ing errors. Prediction models are also developed using FN
and MARS using optimum features obtained as per MOFS.
Identification of the subset of features responsible for the
predictive capacity of the model is addressed here by consid-
ering it as a multi-objective optimisation problem. Statistical
comparison was made between the developed AI models and
the AI models available from the literature in terms of MAE,
RMSE, R and overfitting ratio. Ranking of variousAImodels
were also done. As per the ranking system, MOFS2 had the
best overall performance tailed by MOFS1, MARS and FN.
Model equations for all the AImodels (MOFS1,MOFS2, FN
and MARS) developed in this research have been presented,
which can be implemented by the field professionals. Also,
the prediction equations of MOFS2 and MOFS1 for deter-
mining thepull-out capacity of groundanchors in comparison
with the prediction equation of multi-layer perceptron model
are less complex and better comprehensible, which can be
used for hand calculations as the MOFS2 and MOFS1 equa-

tions are simple and better in prediction as compared to
others.
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