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Abstract This paper describes a methodology for shape
optimization of trapezoidal labyrinth weirs. The objective
function is the volume of the weir. Different parameters of
the weir are introduced as design variables including the total
width of weir, width of upstream apex and actual length of
side leg. Sensitivity analysis revealed that three design vari-
ables of weir width in one cycle, weir leg and number of
cycles are the main parameters affecting weir optimization
solution. The constraint conditions are the weir geometric
shape and its different ratios. Genetic algorithm is applied
to perform optimization process. The proposed method is
applied successfully to Ute Dam labyrinth weir, and the
results are compared with the real one. The results indicated
that the volume of the trapezoidal labyrinth weir is reduced
by an average of 21% which is obtained per 14 cycle num-
bers.

Keywords Labyrinth weir · Optimization · Genetic
algorithm · Sensitivity analysis

1 Introduction

The spillway is one of the most important structures in dam
construction projects. It provides the ability to release excess
or flood water in a controlled or uncontrolled manner to
ensure the safety of the dam during very major floods. Hence,
it is very important the spillway facilities designed with suf-
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ficient capacity to prevent overtopping of the dam [1–4].
In dam construction, special attention should be paid to the
shape optimization of spillways because their costs are very
considerable in comparison with major parts of the dam’s
ones. For large and small dams, it is about 20 and 80% of the
total dam construction costs, respectively [5,6].

According to the International Commission on Large
Dams (ICOLD), the inadequate capacity of the spillway is
the main cause of dam failures all over the world [5]. In
order to satisfy this requirement, the labyrinth weirs are
the best option to increase the discharge capacity because
the increased crest length can provide much more unit dis-
charge over conventional weirs for a given head [7,8]. Several
numerical and experimental researches have been published
on different issues of labyrinth weirs design [1–3,9–15],
while their optimal design has been less considered contrary
to other aspects. The optimal shape is the best design for
a structure subjected to various constraints imposed by the
restrictions placed on the design [16]. The labyrinth weir geo-
metrical shape considered during the initial design phase is
not always the best one from technical and economical points
of view. The best geometrical shape should be determined by
applying optimization methods, which employ a set of struc-
tural safety and minimal cost criteria [13]. The complicated
flow pattern over the weir and the several geometrical para-
meters cause the optimum design of the labyrinth weirs has
particular complexities.

Ghare et al. [6] established a mathematical optimization
model for determining the optimum value of the discharge
coefficient in labyrinth weirs based on the ratio of total
upstream head to the weir height. The results indicated that
by increasing this ratio, the discharge coefficient is con-
siderably increased. Izadbakhsh et al. [17] investigated the
hydraulic efficiency of the labyrinth weirs by use of dis-
charge coefficient. A mathematical model and Flow3D CFD
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model are applied in this study. The results showed that
the vertical aspect ratio increases in proportion to the head
ratio, and after reaching the maximum point, it begins to
decrease. Also, increasing the height of the weir leads to
increase in the discharge coefficient. Crookston and Tullis
[2] used the physical and numerical models to investigate the
hydraulic performance of labyrinth weirs under high head-
water ratios (greater than 1). The numerical results indicated
that agreement between the physical and numerical modeling
is about 5%. Also, in high headwater ratios, flow3D model
is an acceptable technique to examine the performance of
labyrinth weirs. A labyrinth weir design and analysis pro-
cedure were presented by Crookston and Tullis [1] based
upon the results of physical modeling in a laboratory flume.
The proposed method with experimental discharge coeffi-
cient data of this study was validated with other physical
model studies.

In solving NP-hard problems with nonlinear and com-
plicated objective functions and large number of vari-
ables, gradient-based optimization techniques often fail or
reach local optimum [18]. To overcome these defects, the
evolutionary-based algorithms have been presented for find-
ing near-optimum solutions. The genetic algorithms (GAs)
were the first evolutionary-based technique introduced in the
literature [19]. GAs demonstrated abilities to reach near-
optimum solutions in complex problems and are vastly used
in science and engineering problems [20–23]. Diverse appli-
cations of genetic algorithm also can be found in different
literatures.

An inverse problem is considered by Mera et al. [24]
to identify the geometry of discontinuities in a conductive
material with anisotropic conductivity from Cauchy data
measurements taken on the boundary. In this regard, a real
coded genetic algorithm in conjunction with a boundary ele-
ment method is proposed to detect an anisotropic inclusion.
It is found that the developed genetic algorithm is a robust,
efficient method for detecting the size and location of sub-
surface inclusions.

Hacioglu and Ozkol [25] introduced the distribution
strategies (DS) in evolutionary computations and their appli-
cation to the inverse airfoil design problems. They developed
new strategies combined with a real coded genetic algorithm
to obtain a faster and more robust method. The performance
of this new method is compared with classical and more
commonly used genetic algorithms, and the considerably
decreased number of computational fluid dynamics calcu-
lations showed the effectiveness of new proposed method. In
research of Khan et al. [26], a genetic algorithm is employed
to minimize the entropy generation rate in microchannel heat
sinks. The results of optimization are compared with the
existing results obtained by the Newton–Raphson method
and concluded that the GA gives better overall performance
of the microchannel heat sinks.

Different shape optimizations, such as arch dam optimiza-
tion, were conducted by using genetic algorithms such as
[27]; however, the shape optimization of labyrinth weirs was
not considered with none of the evolutionary algorithms.

The present study describes a method for shape optimiza-
tion of the trapezoidal labyrinth weir. In the optimization
process, the total volume of the labyrinth weir is defined as
the objective function. Design variables of processing are the
geometric shape of trapezoidal labyrinth weir such as width,
height and side angle, and the constraint conditions are sev-
eral ratios of different design variables and design discharge.
For optimization purposes, an optimum model of labyrinth
weir is presented to make the cost of project minimal on the
premise of meeting the structural and hydraulic needs. Gen-
erally, the cost of weir project is mainly dependent upon the
volume of consumed concrete in weir. The total volume of
the weir is the sum of the wall volume, the volume of head
wall and the volume of the slab.

The proposed method is successfully applied to a labyrinth
weir, where good results are achieved. The results showed
that the concrete volume of the optimized labyrinth weir is
reduced by an average of 21% in comparison with the ini-
tial shape. In this model, the convergence time is very short
and the method is very effective. So, it can be applied to
other practical engineering problems. This paper is organized
into four sections. Materials and methods for the analysis are
described in Sect. 2, while Sect. 3 is devoted to the results
and discussion, and the last section contains a summary and
conclusion.

2 Labyrinth Weirs

Labyrinth weirs with a trapezoidal shape in plan are schemat-
ically presented in Fig. 1 [5]. The main parameters affecting
performance of the weir include the total width of weir W ,
the width of the weir in one cycle w, the width of upstream
apex A, the actual length of side leg l, the effective length of
side leg lC , the labyrinth weir leg B, the wall thickness tw,
the angle of the side wall α and the weir height relative to the
canal bed P (see Fig. 1).

Various experimental relations are presented for describ-
ing the relation of discharge head in labyrinth weirs. Different
definitions of the effective length and head parameters lead-
ing to numerous discharge-head relations are introduced.
However, the simple relation of discharge head in labyrinth
weirs is mostly used. This relation is presented by a general
equation as [2]:

Q = 2

3
CdLe

√
2gH1.5

T (1)

where Q is the discharge over the weir, Cd is dimensionless
discharge coefficient, Le denotes the effective length of the
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Fig. 1 Schematics of trapezoidal plans of the labyrinth weir

weir, g is the constant of gravitational acceleration, and HT

is the total head over weir (HT = H + V 2/2g), where V
and H , respectively, denote the depth- averaged velocity and
piezometric head at the weir upstream relative to the crest
elevation [4,7,28,29].

3 The Optimal Method of Labyrinth Weirs

The aim of shape optimization is to minimize the volume of
consumed concrete during labyrinth weir construction while
enhancing hydraulic criteria. The shape optimization prob-
lem is to find the design variable X while minimizing the
objective function F(X) under the defined constraint func-
tions g j (X) that can be stated mathematically as [16]:

Find X = [X1, X2, X3, . . . , Xn]T ,

ai ≤ X ≤ bi (i = 1, 2, . . . , n)

To minimize F(X)

g j (X) ≤ 0 ( j = 1, 2, . . . ,m) (2)

The subscripts n and m show the number of design variables
and inequality constraints, respectively, where ai and bi are
allowable lower and upper bounds of each design variable,
which is defined according to requirements of the problem.

3.1 Design Variables

Increasing the number of defined design variables can
improve the shape optimization of labyrinth weirs; however,
it raises the problem complexities and the cost of calculations.
According to the geometric model of labyrinth weir shown in
Fig. 2, the design variables can be classified into two major
groups: decision variables and design variables. Decision
variables are the variables that directly can be controlled by
the decision makers. In optimization of trapezoidal labyrinth
weirs, three decision variables can be introduced: number
of cycles in labyrinth weir (N ) that must be selected as an
integer number; crest shape in which quarter-round shape is
considered; and the design rate flow (Q) of labyrinth weir.

Also 10 design variables are considered, which will be
entered in the optimization process. The design variables in
shape optimization of labyrinth weirs can be divided into
dependent and independent variables, in which the dependent
variables will be defined based on the independent ones. The
independent and dependent design variables are introduced
in Table 1.

3.2 Objective Function

The purpose of shape optimization is to present optimum
geometric shape of labyrinth weir to make the cost of
project minimal on the premise of meeting the structural and
hydraulic needs. Generally, the cost of labyrinth weir project
is mainly dependent upon the volume of weir body concrete.
So, the objective function is defined as the total volume of
weir body. The total volume of the weir body VT is the sum
of the wall volume Vw, the volume of head wall Ve and the
volume of the slab Vs.

VT = Vw + Ve + Vs

in which

Vw = N ((2B/ cos α) + 2A)Ptw

Ve = 2(P + HT + Fb)(B + HT)tw

Vs = (B + 2HT)Wts (3)

Fig. 2 Illustration of labyrinth weir geometric parameters in a longitudinal, b lateral sections [5]
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Table 1 Definition of independent and dependent design variables

Design variable Symbol Definition

Independent variables

Leg of labyrinth weir B –

Side wall angle α –

The upstream apex width A –

Weir height P –

Wall thickness tw –

Total upstream head over
labyrinth weir

HT H + V 2/2g

Crest shape Quarter-round

Dependent variables

Width of the weir in one
cycle

w = 2(B tan α + A)

Total width of the weir Wc = 2N (B tan α + A)

Effective length of the
weir

lc = 2(B/ cos α + A)

Actual length of the side
leg

l = 2N (B/ cos α + A)

where ts is the thickness of the slab and Fb denotes the con-
sidered free board.

3.3 Constraint Functions

In shape optimization of labyrinth weir, only one type of
constraint should be satisfied, as required by the hydraulic
demands:
Headwater Ratio (Ht/P) The ratio of total head over the weir
to weir height is called the headwater ratio. Unlike typical lin-
ear weirs, discharge coefficient in labyrinth weirs increases
with decreasing headwater ratio, and as a result, the labyrinth
weir indicates good performance in low headwater ratios. To
achieve the high performance of labyrinth weir in the opti-
mization process, this ratio must be limited by 0.9 and 0.05
as upper and lower limits, respectively [1].

0.05 ≤ Ht

P
≤ 0.9 →

{ Ht
0.9P − 1 ≤ 0

1 − Ht
0.05P ≤ 0

(4)

Cycle Width Ratio (w/P) The ratio of each cycle width over
the weir height is described as the cycle width ratio. Decreas-
ing the cycle width ratio causes the discharge coefficient to
reduce. Taylor [30] proposed that this ratio must be greater
than 2. Lux and Hinchliff [31] recommended this ratio to
be 2.5 for trapezoidal shapes weirs for design purposes. The
upper bound for this ratio is proposed to be 4 by Tullis et al.
[28] and Lux [32]. The minimum and maximum proposed
values are selected as lower and upper bands, respectively:

2 ≤ (2B tan α + 2A)

P
≤ 4 →

{
(2B tan α+2A)

4P − 1 ≤ 0

1 − (2B tan α+2A)
2P ≤ 0

(5)

Apex Width Ratio (A/w) The crossing length of weir apex,
A, is the most effective parameter on discharge coefficient in
trapezoidal labyrinth weirs. Increase in apex width leads to
reduce the net length and the capacity of the labyrinth weir.
Hence, apex width must be considered as small as possible.
In trapezoidal shape weirs, this ratio is limited to 0.08 [28].

A

0.08(2B tan α + 2A)
− 1 ≤ 0 (6)

Magnification Ratio (L/w) The ratio of one cycle length over
the one cycle width is described as the magnification ratio.
For optimum performance, this ratio is limited between 3 and
9.5 [28].

3 ≤ (2B cos α + 2A)

(2B tan α + 2A)
≤ 9.5 →

⎧
⎨

⎩

(2B cos α+2A)
9.5(2B tan α+2A)

− 1 ≤ 0

1 − (2B cos α+2A)
3(2B tan α+2A)

≤ 0

(7)

Wall ThicknessRatio (A/tw) Wall thickness ratio is described
as the ratio of apex width over the wall thickness. For the best
performance, this ratio is limited to 1 and 2 [32].

1 ≤ A

tw
≤ 2 →

{ A
2tw

− 1 ≤ 0

1 − A
tw

≤ 0
(8)

Total Head (HT + P) Total head shows the water level com-
pared with the canal bed level. Total head depends on the
crossring flow over the weir and has different values among
various weirs. So, this parameter must be determined for each
special case study regarding the crossring flow over the weir.
DesignDischarge (Qd) Qd describes the maximum probable
flooding discharge that should be passed to the downstream
region by labyrinth weir. Hence, the passing flow over the
weirs (Q) which may be calculated by equation (1) must be
equal or larger than the design discharge Qd [33].

Qd −
(

2/3
√

2gCdH
1.5
T N (2B/ cos α + 2A)

)
≤ 0 (9)

3.4 Fitness Function

Penalty function method causes a constrained optimization
problem to be converted to an unconstrained one. To reduce
the number of penalty parameters, often the constraints are
normalized (generally between [−1, 1]) and only one penalty
parameter is used [21,22]. Hence, all constraints are normal-
ized manually in the similar way to make each constraint
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violation approximately on the same scale. The scaled con-
straints are listed as follows:

g1 =
{

[(HT/P) × (1/0.9)] − 1

1 − [(HT/P) × (1/0.05)]
(10)

g2 =
{

[((2B tan α + 2A)/P) × (1/4)] − 1

1 − [((2B tan α + 2A)/P) × (1/2)]
(11)

g3 = [(A/(2B tan α + 2A) × (1/0.08))] − 1 (12)

g4 =
{

[((2B/ cos α + 2A) /(2B tan α + 2A)) × (1/9.5)] − 1

1 − [((2B/ cos α + 2A) /(2B tan α + 2A)) × (1/3)]

(13)

g5 =
{

[(A/tw) × (1/2)] − 1

1 − [(A/tw) × (1/1)]
(14)

g6 =
{

[(HT + P) × (1/β1)] − 1

1 − [(HT + P) × (1/β2)]
(15)

g7 = 1 −
(

2

3

√
2gCdH

1.5
T N (2B/ cos α + 2A)

)
× (1/Qd)

(16)

where β1 and β2 are coefficients that varied in dealing with
various requirements of each special weir and must be deter-
mined based on meeting the design needs. By applying a
penalty function to the objective function, the fitness func-
tion is obtained as follows:

V = VT +
n∑

i=1

[
R(i)

∣
∣g(i)

∣
∣Pow

]
(17)

where V presents the fitness function, VT denotes the
objective function, R(i)is the penalty parameter of the ith
constraint, n is the number of constraints, g(i) shows the nor-
malized constraints, and pow is the power of the constraint.
The power value strongly depends on the type of optimiza-
tion problem and should be determined by the trial-and-error
process. In this paper, different values between 1 and 2 are
examined, and finally, the value of 1.1 is obtained as the best
option.

4 Optimization Algorithm

GAs are inspired by the evolutionist theory explaining the ori-
gin of species [19]. Many versions of genetic algorithm are
available. Using an appropriate version depends on the type
of problem constraints. The version of adaptive genetic algo-
rithm is applied in this paper. Applying the adaptive strategy
helps to develop the adaptive genetic algorithm in which the
method operators are systematically adapted with respect to
the problem constraints. The adaptive operators always keep
the GA in feasible regions of the decision space and conse-
quently improve the optimum performance in terms of speed
and reliability [34].

GAs have different components in that various options
can be considered for them. The main components are popu-
lation size, selection, probability of crossover and mutation.
Functioning and running speed of the GA program strongly
affected the accurate selection of these components. Hence,
in this study, in order to utilize the best option for each
component of GA, different options have been considered
and their performance was examined to reach the best solu-
tion. The examined options for each component are listed in
Table 2.

In order to investigate the efficiency and performance of
the optimization method for the shape optimization of trape-
zoidal labyrinth weirs, the Ute Dam labyrinth weir is chosen
as a real work structure. Ute Dam is a 40-meter-high earthen
embankment dam on the Canadian River and is located 32
km west of Logan, New Mexico. The dam and its weir were
constructed in 1963 and then were substantially modified in
1984 to increase the storage capacity of the reservoir [35].
The weir modification consisted of constructing a 14-cycle
labyrinth weir to pass the 12177 (m3) 430,000 cfs design
flood. The length of the weir is about 1024 meters that can
pass down the design flood under a hydraulic head of 5.8
meters. Figure 3 shows the constructed labyrinth weir of Ute
Dam.

4.1 Sensitivity Analysis of Optimization Algorithm

Sensitivity analysis is one of the most preoccupying and
interesting areas in optimization. Many attempts are made

Table 2 Options for each component of genetic algorithm

Component Options

Population 60 90 120 150 – –

Crossover Scattered Single point Two points Intermediate Heuristic Arithmetic

Similarity coefficient 1.1 1.2 1.3 – – –

Selection Stochastic uniform Reminder Uniform Roulette Tournament –

Mutation Gaussian Uniform Adaptive feasible Constraint dependent – –
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Fig. 3 Constructed labyrinth weir of Ute Dam

to investigate the problem’s behavior when the input data
change. A sensitivity analysis may be performed in a general
optimization problem, including sensitivities of the objective
function and the design variables with respect to the data. In
order to preset more accurate, optimal design for labyrinth
weir, sensitivity analysis has been conducted in different
parameters of the algorithm. So, the variations of different
parameters including objective function, design variables and
decision variables with respect to the different options of each
parameter of genetic algorithm are presented in the following
section:

Population Size In running genetic algorithm, the population
distribution is one of the most important parameters that are
controlled by regulating the initial size of the population.
Sensitivity analysis of the design variables and fitness func-
tion to the different values of population size is presented in
Fig. 4. The best value of population size is resulted to be 90,
mostly corresponding to the minimum value of the fitness
function.

Crossover In GAs, crossover occurs during evolution accord-
ing to a user-definable crossover probability. In the present

study, six of the most widely used algorithms are considered
and the sensitivity analysis was conducted to select the best
option. The results are presented in Fig. 5.

The graphs show that using the heuristic crossover leads in
achievement of minimum fitness function. The performance
of the heuristic crossover, however, mostly depended on the
selection of optimum value for similarity coefficient. Hence,
three values of similarity coefficient that are equal to 1.1, 1.2
and 1.3 are selected and more investigated by comparison of
the fitness function. Figure 6 shows the results.
Selection In evolutionary algorithms, selection of the best
individuals is performed based on evolution of fitness func-
tion. Figure 7 demonstrates the sensitivity analysis of fitness
function and other design variables to different options of
selection parameter.

As shown in Fig. 7, applying the uniform option results in
minimum fitness function and is a very convenient option for
selection. However, it should be noted that using the tourna-
ment option convergence is not established, and as a result,
the results of this option are not presented in Fig. 7.
Mutation In GAs, mutation helps escape from local minima’s
trapped and maintains diversity in the population. Figure 8
shows the sensitivity of fitness function to different options
of mutation. As obvious in Fig. 8, the minimum value of
fitness function is achieved by using Constraint Dependent.

5 Results and Discussion

The optimization process of labyrinth weir according to the
mentioned methodology converged after 1000 iterations. The
convergence rate of the fitness function in the optimization
process is presented in Fig. 9.

In shape optimization of labyrinth weir, in initial step,
the number of 9–14 cycles is considered and the values of
design variables and objective function are obtained for each
cycle number. The initial and optimum values of design

Fig. 4 Results of sensitivity
analysis in determination of
population size
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Fig. 5 Results of sensitivity
analysis in determination of
crossover Fittness Function
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Fig. 6 Results of sensitivity
analysis in determination of best
value of similarity coefficient

Fig. 7 Results of sensitivity
analysis in determination of best
option for selection
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variables and objective function are given in Table 3 (all
dimensions are in meters). The optimum volume of the
labyrinth weir is 2640 m3 less than the initial volume,
i.e., 21.47% less.

As can be seen in table 3, minimum value of labyrinth
weir volume defined by the present optimization method was
achieved in applying 13 and 14 cycles. However, in apply-

ing cycle numbers of 9, 10, 11 and 12, low difference is
achieved between the resulted weir volumes. So, regarding
the low difference between the weir volumes using differ-
ent cycles, other criteria should be considered to reach the
optimum model. In this regard, the effect of cycle num-
bers on other parameters of labyrinth weirs such as B, A,
tw, HT, P and W is studied. The variations of design vari-
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Fig. 8 Results of sensitivity
analysis in determination of
mutation option
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Fig. 9 Convergence rate of the
fitness function
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Table 3 Initial and optimum values of design variables and objective function

Variable UTE N = 14 N = 13 N = 12 N = 11 N = 10 N = 9

B 33.990 22.024 23.687 25.625 27.910 30.611 33.976

α 12.147 17.727 17.848 17.973 18.093 18.215 18.340

A 1.820 1.000 1.001 1.000 1.002 1.002 1.000

P 9.140 7.893 7.894 7.894 7.895 7.882 7.896

ttw 1.065 1 1.000 1.000 1.000 1.000 1.000

HT 5.790 7.106 7.106 7.106 7.107 7.119 7.111

W 255.807 225.154 224.350 223.527 222.676 221.520 220.755

lc 73.176 48.246 51.772 55.881 60.730 66.456 73.591

w 18.271 16.082 17.257 18.627 20.243 22.152 24.528

HT + P 14.930 15.000 15.000 15.000 15.002 15.001 15.007

HT/P 0.633 0.900 0.900 0.900 0.900 0.903 0.900

w/P 1.999 2.037 2.186 2.359 2.564 2.810 3.106

A/w 0.099 0.062 0.058 0.053 0.049 0.045 0.040

Q 16181.880 15569.960 15569.140 15570.260 15568.860 15566.030 15559.260

Cd 0.383 0.412 0.413 0.415 0.416 0.417 0.419

l/w 4.004 2.999 2.999 2.999 3.000 3.000 3.000

A/tw 1.708 1.000 1.001 1.000 1.002 1.002 1.000

VT 9972.353 7331.845 7977.882 7908.075 7876.164 7851.233 7831.125

% – 21.47 21.47 21.02 20.71 20.21 19.45
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Fig. 10 Variations of design
variables considering different
cycle numbers
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Fig. 11 Shape of labyrinth weir
at initial and optimum designs
with different cycle numbers
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ables in using 9 to 14 cycle numbers are presented in Fig.10.
The difference between the initial and optimum design
shapes due to different cycle numbers also be clearly seen in
Fig. 11.

As can be seen in Fig. 10, some of the variables such as
B, α, A, P, tw, andHT remained constant at different cycle
numbers in which increase or decrease in cycle numbers has
not considerable effect on these parameters. The three impor-
tant and effective design variables in shape optimization of
labyrinth weir will be the width of labyrinth weir in each
cycle (w), leg of weir (B) and the effective length of side leg
(lc).

Comparison of the real and optimized values of weir’s
width and leg in one cycle for different cycle numbers is pre-
sented in Fig. 12. The real and optimum values of width and
leg of the weir in one cycle are also summarized in Table 4.

It is obvious that increasing the cycle numbers of labyrinth
weir leads to considerable reduction in width and leg of
weir in one cycle, which causes significant decrease in total
volume of labyrinth weir. In applying 9 cycles, although
reduction of the total volume of the labyrinth weir is resulted,
the width of weir in one cycle has increased about 25%
regarding the real one. The width of the weir continues to
increase, until in a cycle of 13, reduction in the weir width
is initiated. Reduction of the weir leg in one cycle, however,
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Fig. 12 Comparison of one cycle of the labyrinth weir for different
cycle numbers

has been observed in all cycle numbers. It can be concluded
that the labyrinth weir is mostly sensitive to the width of each
cycle than that of the cycle leg. Another view of the labyrinth
weir comparison in one cycle for different cycle numbers is
given in Fig. 13.
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Table 4 Real and optimum values of width and leg of the labyrinth weir in one cycle for different cycle numbers

Cycle numbers Ute N = 9 N = 10 N = 11 N = 12 N = 13 N = 14

Width of the weirs in one cycle (m) 18.271 24.528 22.152 20.243 18.627 17.257 16.082

Decreasing of weir width in one cycle (%) – −25.5 −17.5 −9.741 −1.91 +5.59 +11.98

Length of the weir in one cycle (m) 33.990 33.976 30.611 27.910 25.625 23.687 22.024

Decreasing of weir length in one cycle (%) – +0.041 +9.94 +17.88 +24.61 +30.31 +35.20
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Fig. 13 Other comparison of labyrinth weir in one cycle for different
cycle numbers

After performing the optimization process, the labyrinth
weir total volume decreased by 21% in comparison with that
in the initial design.

6 Conclusion

In this paper, a new methodology is developed for shape
optimization of trapezoidal labyrinth weirs. The genetic algo-
rithm was used to reach the optimal solution. Like other
meta-heuristic optimization algorithms, GA uses a combina-
tion of randomness and exploitation of previously obtained
favorable results to perform global optimization. The volume
of the labyrinth weir was considered as the objective func-
tion. Among different parameters of labyrinth weir selected
as design variables, only three parameters, weir width in one
cycle, weir leg and the number of cycles, were determined
as the most effective parameters in shape optimization of
labyrinth weir. The quarter-round shape was also selected
for the crest shape. In order to examine the effectiveness
of the proposed methodology, optimal design of the Ute

Dam labyrinth weir is performed. The optimized volume
of labyrinth weir as well as the design variables values is
obtained and compared with the real ones. The results indi-
cated that increasing the cycle numbers of labyrinth weir
leads to considerable reduction in width and leg of weir in
one cycle and as a result to reduction the total volume of
labyrinth weir. The optimum volume of the labyrinth weir is
2640 m3 less than the initial volume, i.e., 21.47% less.

For future extension of this work and for more efficient
optimal design, two procedures can be considered:

• Applying other effective parameters as design variable in
optimization, such as discharge over weir, crest shape and
weir height. It seems that using high number of design
variable can lead to more accurate results.

• Using other meta-heuristic algorithms such as ACO, PSO
or hybrid the GA with other algorithms (e.g., GA-ACO,
GA-PSO or GA-ICA), to reach the new probable and
possible results, and comparing them with the presented
results in this paper.
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