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Abstract The influence of the combined effect of initial
stress and periodic surface corrugation on ultrasonic SH
wave propagation in an elastic plate is investigated. Consider-
ing weak surface corrugations, a small parameter is defined
using the ratio between the corrugation amplitude and the
average thickness of the plate and the perturbation method
of strained parameters is used up to the second order. An
equation for evaluating the wave phase velocity in the peri-
odically corrugated plate is realized. Numerical examples
are provided to graphically illustrate the variations of the
phase velocity in periodic plates, with various corrugation
amplitudes and wavelengths, under compressive and tensile
initial stresses over a frequency spectrum. The study reveals
the dispersive nature of SH waves in corrugated plates. It
is found that the wave phase velocities are slightly higher
(lower) in plates under initial tension (compression) than
initially stress-free plates. The influence of initial stresses
on SH phase speed decreases as the frequency increases.
It is shown that periodic surface roughness has a stronger
effect on reducing wave phase speeds than a shallow surface
waviness.
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1 Introduction

The effect of initial stresses on elastic wave propagation
characteristics has been an active research topic over the
past decades. Initial stresses normally occur in plates during
their manufacturing and/or assembly. A dominant method
for nondestructively evaluating plates is the use of elastic
(ultrasonic) wave propagation characteristics, which provide
valuable information about the internal composition of their
structures, their interfaces as well as the conditions of their
boundary surfaces. Accounting for the influence of initial
stress on material characterization and nondestructive test-
ing is important in light of the fact that theoretical studies so
far showed a clear influence of initial stresses on elastic wave
dispersion and stability, especially at low frequency.

An early theoretical study by Wagh [1] was based on
Cauchy’s model to study the effect of initial compression
across an elastic layer thickness on the zeroth-orderSHmode.
Zhuk [2] studied the influence of finite initial strain on the
phase speeds of SH and torsional waves in an elastic layer
having an arbitrary form of elastic potential. Wilson [3] pre-
sented the derivation of approximate dispersion equations
valid when the wavelength was much greater than the plate
thickness and stability implications. Later, Ogden and Rox-
burgh [4,5] focused on the aspects of dynamic stability in a
pre-stressed plate with a general form of strain energy func-
tion. Rogerson and Fu [6] obtained asymptotic expansions
for the wave speed as a function of wavenumber and initial
stress in plates satisfying neo-Hookean and Mooney–Rivlin
strain energy functions. Sandiford and Rogerson [7] derived
asymptotic expressions of the dispersion relation and eluci-
dation of the longitudinal wave front in slightly compressible
pre-strained elastic plate. Pichugin [8] wrote a dissertation
on asymptotic wave models in initially stressed elastic lay-
ers with fixed and free faces. Kaplunov et al. [9–11] used
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asymptotic models up to the third order to study the influ-
ence of initial stress on wave propagation in isotropic elastic
layers with free as well as fixed faces. Nolde et al. [12] uti-
lized asymptotic analysis to note that the existence of initial
stress in a plate could allow the speed of the longitudinalwave
front to be equal to or less than its correspondent shear wave.
Wijeyewickrema et al. [13] considered an initially stressed
constrained layer and studied the influence of constraining
degree on dispersive behavior. Zhang and Yu [14] presented
dispersion curves in a plate having two types of initial stresses
including a homogeneous stress in the thickness direction
and inhomogeneous stress in thewave-propagating direction.
Pau and di Scalea [15] analyzed Lamb wave propagation in
an elastic plate with initial stresses in the direction of the
wave propagation and in an orthogonal to the wave propa-
gation direction. They presented the variation of phase and
group velocity as a function of the initial stress.

Other researchers focused on wave propagation in fiber-
reinforced and layered plates. Rogerson and Sandiford [16]
analyzed extensional waves in a four-ply laminated plate
and showed that the asymptotic limits of the fundamen-
tal wave velocity were either a surface or interfacial wave
speed. Akbarov et al. [17] used harmonic potentials to study
Lamb waves in an initially strained sandwich plate and esti-
mated the influence of the magnitude of the initial strains
on the wave propagation velocity. Wijeyewickrema and
Leungvichcharoen [18] considered an initially stressed three-
layered composite plate with imperfectly bonded interfaces
and studied the effect of weak bonding on dispersive behav-
ior. Kayestha and Wijeyewickrema [19] studied the coupled
symmetric–antisymmetric dispersion in an initially stressed
bilayered plate. Kayestha et al. [20] compared elastic wave
propagation along a nonprincipal direction to waves prop-
agating along a principal direction in an initially stressed,
traction free layer. Zamanov andAgasiyev [21] examined the
dispersive behavior of Lamb waves in an initially strained
three-layer plate and obtained numerical results for a har-
monic potential. Akbarov et al. [22] considered an initially
strained elastic sandwich plate under two cases of loading, a
dead load that contributed an initial stress and a follower load
that contributed the initial stress while constraining Lamb
wave propagation in the plate. Son and Kang [23] analyzed
shear wave propagation in an initially stressed elastic layer
that was bonded to a piezoelectric layer. Yu and Li [24] ana-
lyzed Lamb-like waves and SH waves in initially stressed
multilayered plates showing that the influence of initial stress
in the thickness directionwas significantly different from that
in the longitudinal direction.

In all of the above-covered research, initially stressed
elastic plates were considered to have straight surfaces and
interfaces. The present paper aims at studying wave propaga-
tion in an initially stressed plate with uneven surfaces. Since
it is common to encounter plate-machining defects that lead

to the formation of small surface corrugations, the combined
effect of initial stresses and surface corrugations on elastic
wave propagation needs a rigorous analysis. As an initial
phase of investigation, this study focuses on the influence of
initial stresses in a periodically corrugated plate on the phase
speed of horizontally polarized shear (SH) waves. Assuming
that the surface corrugations have a small amplitude allows
utilizing asymptotic expansions in terms of a small geomet-
ric parameter. An analytical formula is derived for the elastic
SHwave phase velocity. The effect of initial tensile and com-
pressive stresses on the wave phase speed in plates having
sinusoidal surface corrugationswith different amplitudes and
wavelengths is presented.

2 Mathematical Model and Solution

Let us consider an elastic plate with sinusoidally corru-
gated surfaces under an initial stress in the Cartesian frame
of reference (x̂, ŷ, ẑ) as shown in Fig. 1. The lower and
upper plate surfaces are described by ẑ = â sin(k̂s x̂) and
ẑ = ĥ+ δâ sin(k̂s x̂ + θ), respectively, where ĥ is the average
thickness of the plate, k̂s is the wavenumber of the periodic
surface corrugation of the plate, â is the amplitude of cor-
rugation, and to allow analysis generality θ is a phase angle
between the two plate periodic surfaces and δ is a coeffi-
cient allowing a different corrugation amplitude at each plate
surface. The horizontally polarized motion of the plate is
described by the following governing equation of motion
[25]:

C66
∂2υ̂

∂ x̂2
+ C44

∂2υ̂

∂ ẑ2
∓ P

2

∂2υ̂

∂ x̂2
= ρ

∂2υ̂

∂t2
(1)

where t is the time coordinate, υ̂ is the displacement in the
ŷ-direction, ρ is the material density, C44 and C66 are the
elastic shear moduli of the anisotropic (orthotropic) mate-
rial of the plate, P is the initial stress on the plate in the
x̂-direction, and positive and negative signs indicate tensile
and compressive initial stresses, respectively. The governing
equation of motion is supplemented by the boundary condi-
tions of the vanishing of the stress vector component normal
to the corrugated plate surfaces

C66
∂υ̂

∂ x̂
nx + C44

∂υ̂

∂ ẑ
nz = 0 at lower surface,

ẑ = â sin(k̂s x̂) (2a)

C66
∂υ̂

∂ x̂
nx + C44

∂υ̂

∂ ẑ
nz = 0 at upper surface,

ẑ = ĥ + δâ sin(k̂s x̂ + θ) (2b)

where 〈nx , nz〉 are the components of unit outward-pointing
vector normal to the corrugated surfaces.
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Fig. 1 The weakly corrugated plate. The initial stress could be tensile or compressive

Focusing on the propagation of a horizontally polarized
time-harmonic ultrasonic wave along the plate in the x̂-
direction, then the displacement is described by υ̂ = V̂ e−iωt

where V̂ is the displacement amplitude and ω is the angular
frequency. If one takes the average plate thickness ĥ to be a
spatial reference quantity, the equation of motion for a shear
wave in the plate and the boundary conditions can then be
written in the following dimensionless form:

∂2V

∂z2
+

(
C66

C44
∓ P

2C44

)
∂2V

∂x2
= −ρω2ĥ2

C44
V (3a)

∂V

∂z
= C66

C44
εks cos(ksx)

∂V

∂x
at

z = ε sin(ksx) (3b)
∂V

∂z
= C66

C44
εδks cos(ksx + θ)

∂V

∂x
at

z = 1 + εδ sin(ksx + θ) (3c)

where all quantities without carets in (3) are dimensionless
quantities, and ε(=â/ĥ) is the ratio of the amplitude of the
surface corrugation to the average thickness of the plate. ε is
considered to be a small dimensionless parameter since the
surface corrugations are considered to be weak.

In order to simplify boundary conditions (3b and 3c), they
can be expanded using Taylor series around z = 0 and z = 1,
respectively. This leads to transferring the boundary condi-
tions to the average line of the sinusoidally corrugated upper
and lower surfaces of the plate. Hence, the system of equa-
tions (3) takes the following form:

∂2V

∂z2
+ R

∂2V

∂x2
+ κ2V = 0 (4a)

∂V

∂z
(x, 0) = −ε sin(ksx)

∂2V

∂z2
(x, 0)

− 1

2
ε2 sin2(ksx)

∂3V

∂z3
(x, 0) + C66

C44
εks cos(ksx)

[
∂V

∂x
(x, 0)

+ ε sin(ksx)
∂2V

∂x∂z
(x, 0) + 1

2
ε2 sin2(ksx)

∂3V

∂x∂z2
(x, 0)

]

(4b)

∂V

∂z
(x, 1) = −εδ sin(ksx + θ)

∂2V

∂z2
(x, 1)

− 1

2
ε2δ2 sin2(ksx + θ)

∂3V

∂z3
(x, 1)

+ C66

C44
εδks cos(ksx + θ)

[
∂V

∂x
(x, 1)

+ εδ sin(ksx + θ)
∂2V

∂x∂z
(1, 0)

+ 1

2
ε2δ2 sin2(ksx + θ)

∂3V

∂x∂z2
(x, 1)

]
(4c)

where κ(= ωĥ/c0) is the nondimensionalwavenumber, c0 =√
C44
ρ

is the bulk shear velocity of the plate material, and

R = (C66 ∓ P
2 )/C44.

2.1 Asymptotic Formulation

The system of Eqs. (4a–4c) comprises a partial differential
equation with nonhomogeneous boundary conditions. Per-
turbation methods are commonly utilized to obtain solutions
for inhomogeneous systems of differential equations [26].
Therefore, the implementation of an asymptotic scheme for
obtaining an approximate analytical solution can be done
using the small parameter ε as a perturbation parameter to
come up with an asymptotic solution for system (4). The
analysis is done in two steps. The first is to use a straight-
forward perturbation scheme, which helps in identifying the
uniformity of the asymptotic expansion, and the second is to
expand the wavenumber as a strained parameter to obtain an
asymptotic estimation for it.

2.1.1 Straightforward Asymptotic Expansion

The displacement V can be expanded in terms of ε as
V = V0 + εV1 + ε2V2 + · · · . Upon the substitution of this
expansion into Eqs. (4a–4c), it is found that the asymptotic
expansion breaks down at the first level of approximation
when the wavenumber of the propagating SH mode equals
half of the periodic surface corrugation wavenumber ks. This
condition is known in the literature as Bragg resonance [27],
which occurs as a result to the formation of a stopband in
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the dispersion spectrum of the periodic waveguide (the plate
with periodic surface corrugations). In a banded dispersion
spectrum, waves can propagate if their frequency is within a
passband, and they cease to propagate if their frequency is
within the stopband. The SH waves stopband behavior was
considered by Hawwa and Asfar [28] for the case of single
surface periodicity and by Hawwa [29] for the case of two
surface periodicities. In this paper, it is intended to study the
behavior of SH waves that are capable of propagation within
frequency passbands. Therefore, one does not only need to
seek a solution for V , but also one needs to seek a solution
for the wavenumber κ .

2.1.2 Asymptotic Method of Strained Parameters

In order to seek uniform asymptotic expansions for the dis-
placement and the wavenumber terms ofε, let us assume

V = V0 + εV1 + ε2V2 + · · · (5)

κ = κ0 + εκ1 + ε2κ2 + · · · (6)

The motivation of expanding the nondimensional wavenum-
ber stems from the fact that surface corrugations are expected
to influence wave phase velocity in the corrugated plate. By
substituting Eqs. (5) and (6) into system (4) and equating
coefficients of equal powers of ε on both sides of the equa-
tions, one can determine more accurate approximations in
a successive fashion in a typical manner of the perturbation
method of strained parameters. Thus, one has to solve the
following three systems of equations sequentially:

Zeroth-Order Problem

∂2V0
∂z2

+ R
∂2V0
∂x2

+ κ2
0V0 = 0 (7a)

∂V0
∂z

(x, 0) = 0 (7b)

∂V0
∂z

(x, 1) = 0 (7c)

First-Order Problem

∂2V1
∂z2

+ R
∂2V1
∂x2

+ κ2
0V1 = −(2κ0κ1)V0 (8a)

∂V1
∂z

(x, 0) = − sin(ksx)
∂2V0
∂z2

(x, 0)

+ C66

C44
ks cos(ksx)

∂V0
∂x

(x, 0) (8b)

∂V1
∂z

(x, 1) = −δ sin(ksx + θ)
∂2V0
∂z2

(x, 1)

+ C66

C44
δks cos(ksx + θ)

∂V0
∂x

(x, 1) (8c)

Second-Order Problem

∂2V2
∂z2

+ R
∂2V2
∂x2

+ κ2
0V2 = −(2κ0κ1)V1

− (κ2
1 + 2κ0κ2)V0 (9a)

∂V2
∂z

(x, 0) = − sin(ksx)
∂2V1
∂z2

(x, 0)

− 1

2
sin2(ksx)

∂3V0
∂z3

(x, 0) + C66

C44
ks cos(ksx)

×
[
∂V1
∂x

(x, 0) + sin(ksx)
∂2V0
∂x∂z

(x, 0)

]
(9b)

∂V2
∂z

(x, 1) = −δ sin(ksx + θ)
∂2V1
∂z2

(x, 1)

− 1

2
δ2 sin2(ksx + θ)

∂3V0
∂z3

(x, 1)

+ C66

C44
δks cos(ksx + θ)

[
∂V1
∂x

(x, 1)

+ δ sin(ksx + θ)
∂2V0
∂x∂z

(1, 0)

]
(9c)

In the sequel, the above three systems of equations are solved
in a sequence.

2.2 Zeroth-Order Solution

Equations (7a–7c) admit a solution of the form

V0 = An cos(nπ z)eikn x (10)

where An and kn are the amplitude and the wavenumber of
the nth propagation ultrasonic SH mode. The substitution of
the assumed solution (10) into the boundary conditions (7b
and 7c) leads to the following dispersion relation:

ωĥ

c0
− Rk2n = (nπ)2 (11)

2.3 First-Order Solution

In order to deal with the first-order system (8), let us assume
a particular solution for V1 can be postulated in the form

V1(x, z) = �1(z)e
ikn x + �2(z)e

i(kn+ks)x + �3(z)e
i(kn−ks)x

(12)

Substituting the zeroth-order solution and (10) and assumed
first-order solution (12) into the system of equations (8) and
equating the coefficients of eikn x , ei(kn+ks)x , and ei(kn−ks)x

yield three problems in �1, �2, and �3, as follows:
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�′′
1(z) + (nπ)2�1(z) = −(2κ0κ1)A j cos(nπ z) (13a)

∂�1

∂z
(0) = 0 (13b)

∂�1

∂z
(1) = 0 (13c)

�′′
2(z) +

[
k20 − R(kn + ks)

2
]
�2(z) = 0 (14a)

�′
2(0) =

[
− (nπ)2

2
+ i

knks
2

C66

C44

]
An (14b)

�′
2(1) = δ(−1)n

[
− (nπ)2

2
+ i

C66

C44

kskn
2

eiθ
]
An

(14c)

�′′
3(z) +

[
k20 − R(kn − ks)

2
]
�3(z) = 0 (15a)

�′
3(0) =

[
− (nπ)2

2
+ i

knks
2

C66

C44

]
An (15b)

�′
3(1) = (−1)nδ

[
− (nπ)2

2
+ i

knks
2

C66

C44

]
e−iθ An (15c)

Equation (13a–13c) comprises an ordinary inhomogeneous
differential equation with homogeneous boundary condi-
tions. One can multiply the governing equation (13a) by
cos(nπ z) and integrate by parts from z = 0 to z = 1 and
invoke the boundary conditions (13b, 13c). This leads to
determining the first-order approximation of the wavenum-
ber. It is found that k1 = 0, which indicates that the periodic
surface corrugations do not influence the wavenumber at
first-order level of approximation. Hence, a higher-order cor-
rection is needed to describe the effect of surface corrugations
on the phase speed.

It remains to solve systems (14) and (15). The governing
equations (14a) and (15a), respectively, admit solutions of
the forms

�2(z) = b21e
i p2z + b22e

−i p2z where

p=
2

√
k20 − R(kn + ks)2 (16)

and

�3(z) = b31e
i p3z + b32e

−i p3z where

p3 =
√
k20 − R(kn − ks)2 (17)

In order to determine the unknown coefficients in the above-
assumed solutions, one substitutes the solution (16) into the
boundary conditions (14b, 14c), and the solution (17) into
the boundary conditions (15b, 15c) to obtain the following
solutions for coefficients:

(
b21
b22

)
= 1

2i sin p2

(−e−i p2 1
−ei p2 1

)

×
⎛
⎝

[
i (nπ)2

2p2
+ knks

2p2
C66
C44

]
(−1)n

[
i (nπ)2

2p2
+ kskn

2p2
C66
C44

]
δeiθ

⎞
⎠ An (18)

(
b31
b32

)
= 1

2i sin p3

(−e−i p3 1
−ei p3 1

)

×
⎛
⎝

[
i (nπ)2

2p3
+ knks

2p3
C66
C44

]
(−1)n

[
i (nπ)2

2p3
+ knks

2p3
C66
C44

]
δe−iθ

⎞
⎠ An (19)

2.4 Second-Order Solution

At the second level of approximation, one has to find a solu-
tion for system (9). Let us seek a solution for V2 in the form
V2(x, z) = �2(z)eikn x , which upon substitution in the sys-
tem of equations (9a–9c) leads to

� ′′
2 (z)eikn x +

[
κ2
0 − k2n R

]
�2(z)e

ikn x

= −(κ2
1 + 2κ0κ1 + 2κ0κ2)An cos(nπ z)eikn x (21a)

� ′
2(0) = −1

2

(
p22(b21 + b22) − p23(b31 + b32)

)

+ i

2

C66

C44
ks ((kn + ks)(b21 + b22) + (kn − ks)(b31 + b32))

(21b)

� ′
2(1)e

ikn x = − δ

2

(
p22(b21e

i p2 + b22e
−i p2)e−iθ

− p23(b31e
i p3 + b32e

−i p3)eiθ
)

+ iδ

2

C66

C44
ks

(
(kn + ks)(b21e

i p2

+ b22e
−i p2)e−iθ + (kn − ks)(b31e

i p3 + b32e
−i p3)eiθ

)
(21c)

If the governing equation (21a) is multiplied by cos(nπ z)
and integrated by parts from z = 0 toz = 1, and then the
boundary conditions (21b, 21c) are invoked. One obtains
the second-order correction for the wavenumber as κ2 =
[� ′

2(0) − � ′
2(1) cos(nπ)]/2κ0. Thus, the asymptotically

approximate value of the wavenumber of the SH wave in
the corrugated plate is

κ ≈
√

(nπ)2 + Rk2n + ε2
[
� ′

2(0) − � ′
2(1) cos(nπ)

2κ0

]
(22)

Having obtained the nondimensional shear wavenumber in
the weakly corrugated plate, one can estimate the phase
velocity of the ultrasonic shear wave from the following rela-
tionship:

c = ω/Re(κ/ĥ) (23)
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3 Discussion and Illustrations

The periodically corrugated plates considered for numer-
ical illustrations are all made of an elastic material with
a density of ρ = 4.4 g/cm3 and elastic shear moduli of
C44 = 60 GPa and C66 = 40 GPa. The periodic surfaces
have nondimensional wavenumbers (ks) between 1 and 10.
During calculation, stopband frequency domains, centered at
ks = κ/2, are avoided so that transmission within passbands
is considered. Two ratios of the amplitude of surface corruga-
tion to the average thickness of the plates (ε) are taken to be
0.005 or 0.01. It is the aim of this research to investigate the
influence of the combined effects of surface corrugations and
initial stress; the illustrations are presented in three scenar-
ios. 1) Plates having the same periodic surface wavenumber,
same corrugation amplitude, and different initial stresses. 2)
Plates having the same periodic surface wavenumber, differ-
ent corrugation amplitudes, and positive or negative initial
stresses. 3) Plates having various periodic surface wavenum-
bers, same corrugation amplitude, and positive or negative
initial stresses.

Figure 2 shows the fundamental SH mode of a shear
wave propagating along an axis of material symmetry in a
plate with smooth surfaces to be nondispersive. The plate is,
however, dispersive when its surfaces are uneven, as shown
for the fundamental SH modes of periodic plates with (ε)
equals to 0.005 or 0.01. In fact, the higher-amplitude surface-
corrugated plate is the stronger dispersion the plate has. This
dispersive nature of the fundamental SH mode is predicted
by Eq. (22), which provides an asymptotic estimation of the
wavenumber. Therefore, estimation of the behavior of SH
waves propagating in plates with surface corrugationmust be

obtained by considering the second-order perturbation solu-
tion.

Next, let us consider the influence of plate surface corruga-
tion wavenumber on the fundamental SH mode phase speed
in an initial stress-free periodic plate. At 1 kHz, as a repre-
sentative case shown in Fig. 3, the shear wave travels slower
in the corrugated plate having high periodic corrugation
wavenumber (corresponding to a small surface wavelength,
which resembles the case of a plate with periodic surface
roughness) than it does in the corrugated plate having low
periodic corrugation wavenumber (corresponding to large
surface wavelength, which resembles the case of a plate sur-
face with weak waviness).

The effect of initial stress on the dispersive behavior of
periodically corrugated plates is investigated. Calculations
are done for three corrugated plates with a surface nondi-
mensional wavenumber of ten. One of the plates is laid under
initial compression of 1 GPa, one of them is placed under
initial tension of 1 GPa, and one plate does not have any
initial stress. Figure 4 indicates the fact that the ultrasonic
SH0 mode travels slightly slower in the initially compressed
periodically corrugated plate than it does in the stress-free
periodic plate. In addition, the SH0 mode travels slightly
faster in the periodically corrugated plate subjected to initial
tensile stress than it does in the stress-free periodic plate. It is
also worth reporting that the more initial compressive stress
the periodic plate has, the lower the phase velocity the shear
wave travels in it, and the stronger initial tensile stress the
periodic plate has, the higher the phase velocity the wave
travels in it. A point one can note is that dispersion curves
of the periodically corrugated plates are all asymptotically
approaching the bulk shear phase speed of the plate material,

Fig. 2 Phase velocities of an ultrasonic fundamental SHmode propagating in plates with no initial stress and different periodic surface corrugation
amplitude levels. h = 1 mm, ks = 5.0, θ = 90◦, and δ = 1
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Fig. 3 Phase velocities of an ultrasonic fundamental SH mode at 1 kHz propagating in plates with different periodically corrugated surface
wavenumbers and carrying no initial stress. h = 1 mm,ε = 0.01, θ = 90◦, and δ = 1

Fig. 4 Phase velocities of an ultrasonic fundamental SHmode propagating in corrugated plates under indicated tensile/compressive initial stresses.
h = 1 mm, ks = 10.0, θ = 90◦, and δ = 1

c0 = √
C44/ρ, that is equal to 3692 m/s at a high frequency.

A physical interpretation of material behavior can be made
in light of the fact that tensile stresses pull material parti-
cles apart from each other, forming in a way a less dense
continuum. Waves travel faster in media with low density.
Compressive stresses, on the other hand, cause an opposite
effect.

The magnitude of initial stress in the giga Pascal range is
somehow exaggerated compared to realistic ultimate shear
strengths in the mega Pascal range. The choice of 1GPa as

an initial stress value is based on the fact that lower levels
of initial stresses unnoticeably alter the dispersion curve of
the stress-free periodic plate. The observations made in Fig.
4 go along with the findings of previous studies by Zhuk
[2], who studies SH waves in an elastic layer with smooth
surfaces under initial extension across its thickness. Results
are also in agreementwithSon andKang [23]who considered
SH waves in a composite plate with smooth surfaces under
initial stresses of more than

∣∣108∣∣Pa along the plate, in the
wave propagation direction.
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Fig. 5 Difference (at various
frequencies) between phase
velocities of an ultrasonic
fundamental SH mode
propagating in corrugated plates
under indicated
tensile/compressive initial
stresses. h = 1 mm,ks = 10.0,
θ = 90◦, and δ = 1

Fig. 6 Phase velocities of an ultrasonic fundamental SH mode propagating in corrugated plates under indicated tensile/compressive initial stresses
and indicated corrugation amplitudes. h = 1 mm,ks = 10.0, θ = 90◦, and δ = 1

The difference between fundamental SH phase speed in
a periodically corrugated plate under initial tensile (com-
pressive) stress of 1GPa (-1GPa) and that in a stress-free
periodically corrugated plate is shown in Fig. 5. One can
conclude that the effect of initial stresses on the SH0 phase
speed gets weaker at higher frequencies.

In order to measure the combined effect of periodic cor-
rugation strength and the initial tension/compression stress
of ∓1GPa, let us consider two periodically corrugated plates
with amplitude ratios (ε) of 0.005 and 0.01, and let each of

these plates be under initial compressive stress in one sit-
uation and under initial tensile stress in the other. Figure 6
shows that the SH0 phase velocities in the plate with higher
corrugation amplitude are lower than the phase velocities
in the plate with lower corrugation amplitude. Hence, con-
clusions derived from Fig. 2 are applicable for the cases of
periodically corrugated plates under initial stresses. There-
fore, stronger corrugations lead to higher levels of interaction
between propagating shear waves and the initially stressed
plate geometric inhomogeneity. In addition, similar obser-
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Fig. 7 Phase velocities of an ultrasonic fundamental SHmode propagating in initially stressed plates with different periodically corrugated surface
wavenumbers. h = 1 mm,ε = 0.01, θ = 90◦, and δ = 1

vation to that made in Fig. 4 is noted here; ultrasonic shear
signals travel slightly faster in the periodic plate when sub-
jected to initial tensile stress than they do in the periodic plate
that is put under initial compression.

Figure 7 shows the relationship between the fundamental
SH mode phase speed and the periodic surface corrugation
wavenumber in two periodically corrugated plates; one of
them is under initial compression, and the second plate is
under initial tension. At all frequencies, shear signals in the
plate under initial tension propagate at higher velocities than
that in these propagating in the plate under initial compres-
sion. From Figs. 6 and 7, one can construe that periodic
surface roughness has a stronger effect on reducing SH0
phase speeds than a weak surface waviness does.

4 Conclusion

In this paper, an asymptotic analysis up to the second order
was presented for studying the influence of initial stress on
shear wave propagation in elastic plates with periodically
corrugated free surfaces. The derived asymptotic expressions
were graphically presented to study the combined influence
of the geometric inhomogeneity and initial compressive or
tensile stresses. Initial stress effect on phase speeds of the
shear wave was very small. The density of periodic sur-
face corrugation was found to have an effect on the phase
velocity of propagating shear waves. It was shown that sur-
face corrugations having small wavelengths had a stronger
effect on reducing wave phase speeds than surface corru-
gations having large wavelengths. The effect of tensile and
compressive initial stresses on shear phase speeds decreases

at higher frequencies. The study quantified the influence of
large corrugation amplitude in comparison with small cor-
rugation amplitudes. The study showed that ultrasonic shear
signals travelled faster in plates under initial tension than they
did in initially compressed plates.
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