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Abstract The advanced mean value (AMV) is gener-
ally implemented to evaluate the probabilistic constraints
of reliability-based design optimization (RBDO) problems
based on performance measure approach (PMA). The PMA-
based AMV is efficient method but yields unstable results
for highly nonlinear probabilistic constraints. In this paper, a
modifiedmean value (MMV)method is proposed to improve
the efficiency and robustness of inverse reliability method
to evaluate the reliable level in RBDO-based PMA. The
modified PMA using MMV is adaptively evaluated using a
modified search direction based on the two previous perfor-
mance values. The modified search direction is determined
using an adaptive step size, which is simply computed
based on a power function and adaptive factor between 0.95
and 1. The robustness and efficiency of proposed MMV
are compared with several reliability methods-based PMA
including the AMV, hybrid mean value (HMV), enriched
HMV (HMV+) and modified chaos control (MCC) through
four mathematical and structural RBDO problems with non-
linear probabilistic constraints. The results illustrated that
the proposed MMV is as robust as the MCC and HMV+ but
is computationally more efficient. In addition, the MMV is
more robust than the HMV and AMV for RBDO problems
with highly probabilistic constraints.
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Nomenclature

AMV Advanced mean value
Ag Adaptive factor
d Design variables
dL Lower bound of the design vector
dU Lower bound of the design vector
DLA Double loop approaches
EHMV, HMV+ Enhanced hybrid mean value
f Objective or cost function
FORM First-order second-moment method
fX (x) Joint probability density function
k Number of iterations
MCC Modified chaos control
MPFP Most probable failure point
MPTP Minimum performance target point
n(uAMV

k ) Normalized steepest descent search
direction

n(uMMV
k ) Normalized modified descent search

direction
p Number of performance functions
Pf Acceptable failure probability
PMA Performance measure approach
RBDO Reliability-based design optimization
RIA Reliability index approach
SLA Single loop approaches
SORA Sequential optimization and reliability

assessment approach
X Random variables in X-space
U Independent standard normal random

variable
U∗ The most probable failure point

Ũ
MMV
k+1 Modified mean value search direction

β Reliability index
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β
j
t Target reliability index of the j th proba-

bilistic constraint (g j )
δ Modified factor
� Standard normal cumulative distribution

function
µL
x Lowermean of the randomdesign vector

µU
x Uppermean of the random design vector

1 Introduction

Recently, the reliability-based design optimization (RBDO)
models were developed to consider the uncertainties of engi-
neering systems. The uncertainties in dimensions, materials
and loads of a structural system have been evaluated based
on probabilistic constraints in RBDOmodels. Therefore, the
RBDO such as double loop approach (DLA), single loop
approach (SLA) and decoupled approach can provide an
optimal design under uncertainties to achieve a good bal-
ance between the total cost and the confidence level [1–4].
The SLA, which is converted the double loop structure to
single loop, is an efficient approach, but may produce inac-
curate results for RBDO problems with nonlinear constraints
[5]. The accuracy of SLA was improved using the reliable
design method, within which any design satisfies the relia-
bility requirements [6]. A hybrid SLA and DLA approaches,
in which was used the sufficient descent condition to imple-
ment SLA, was proposed to improve the accuracy of SLA
[5]. The SORA was proposed to convert the double loop
structure into serial loop that the deterministic optimization
and reliability analysis are performed, sequentially [2]. In
SORA, the convex linearization was used to approximate the
probabilistic constraints at the design point and was used
to shift the probabilistic constraints to reliable region of
RBDOproblems [7,8]. The accuracy of SORAwas improved
using the dimension reduction method for reliability analysis
[9].

Generally, the DLA is widely used in RBDO of a struc-
tural system due to accuracy. The DLA involved two loops
at each cycle that the inner loop provides reliability analy-
sis and deterministic optimization is obtained based on the
outer loop [10,11]. The performance of reliability method
to evaluate the probabilistic constraints is vital important in
DLA that it may be led to an accurate optimum results, effi-
ciently and robustly. Reliability information in inner loop
can be obtained based on two probabilistic models such
as reliability index approach (RIA) [4,5] and performance
measure approach (PMA) [12,13] in RBDO-based DLA. In
RIA, the first-order reliability method (FORM) [14,15] is
applied to search the most probable failure point (MPFP)
on the limit state surface using transformation of the proba-
bilistic constraint to reliability index constraint that several

reliability methods have been developed for MPFP search in
Refs. [15–18]. In PMA, the probabilistic constraint is eval-
uated by searching the minimum performance target point
(MPTP) on the target reliability surface [12,19]. The PMA
has higher efficiency and robustness in comparison with the
RIA in the double loop process [5,20]. Therefore, themost of
investigationswere focused on the PMA-basedMPTP search
in RBDO models that several iterative formula methods
for MPTP search have been developed in Refs. [4,5,10–
19].

In general, the AMV scheme is utilized to search MPTP
in PMA but could converge to unstable solutions as periodic
and chaotic solutions for highly nonlinear probabilistic con-
straints [5,19,20]. The hybrid mean value method (HMV)
was proposed to enhance the robustness and efficiency of
MPTP search based on a conjugate line search for either
concave or convex problems [10]. It showed the HMV
yields unstable solutions for highly nonlinear convex per-
formance functions [4,13,21]. The enriched hybrid mean
value method (HMV+) was proposed to improve the robust-
ness of the HMV method using PMA [11,22]. The new
point in HMV+ method was evaluated based on interpo-
lation of two successive previous points [22]. Recently, the
modified chaos control was developed to improve the robust-
ness of reliability method based on a modified line search
by chaos feedback control for highly nonlinear concave
performance functions [21]. TheMCCmethod could be con-
verged to find the MPTP by implementing more iteration
due to select the small control factor to achieve stabiliza-
tion. The hybrid modified chaos control [21], adaptive chaos
control [4] and self-adaptive modified chaos control [19]
were proposed to improve the efficiency of MCC using a
step size less than 1. The relaxed mean value was proposed
using the sufficient descent condition to improve the robust-
ness and efficiency of RBDO-based PMA [13]. Thus, the
computational demand and robust reliability algorithm are
main issues to implement the PMA-based MPTP search
methods.

In this paper, a modified mean value (MMV) is proposed
to improve the robustness of AMV approach based on an
adaptive search direction, which is computed based on a
simple power relation using two previous performance val-
ues to determine a adaptive factor. A step size is introduced
which can be reduced with a nonlinear rate by increasing
the iteration number. The robustness and efficiency of MMV
are evaluated through four RBDO problems with nonlinear
constraints. The computational iterations and the converged
results of the proposed MMV are compared with the AMV,
HMV, HMV+ and MCC in studied RDBO problems. The
results demonstrated that the MMV has a good performance
both robustness and efficiency. The MMV is as simple as the
AMV but more robust and is robustly and efficiently con-
verged in comparison with the HMV and MCC methods.
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2 Reliability-Based Design Optimization Model

The RBDO problem is generally formulated as [1,2]:

find d,µx min f (d)

S.t. Pf [g j (d,X) ≤ 0] ≤ �
( − β

j
t
)

j = 1, 2, . . . , p

dL ≤ d ≤ dU , µL
x ≤ µx ≤ µU

x (1)

where f is the objective or cost function, g j is the j th con-

straint function (i.e. performance function), β j
t is the target

reliability index for the j th probabilistic constraint, and p is
the number of performance functions. � is the standard nor-
mal cumulative distribution function. Two types of variables
include deterministic design variables d, representing phys-
ical quantities with design lower bound dL and upper bound
dU ; and random variables X , representing uncertain quanti-
ties with lower bound µL

x and upper bound µU
x . In RBDO,

uncertainties can be considered based on the probabilistic
model g(d,X) in terms of random variablesX. Therefore, the
acceptable/target failure probability (Pf) for the constraints
of Eq. (1) can be computed by following multidimensional
integration [23,24]:

Pf [g(d,X) ≤ 0] =
∫

g(d,X)≤0

· · ·
∫

fX (X)dX ≈ �(−βt ) (2)

where fX (x) is the joint probability density function of the
basic random variables X and g(d,X) ≤ 0 denotes the failure
domain. The above relation can be rewritten alternatively
by use of the cumulative distribution function (Fgj ) of the
performance function (g j ) in PMA as

g j (d,X) = F−1
g j

(
d,�

( − β
j
t
)) ≥ 0 (3)

Eq. (3) is employed to evaluate the probabilistic constraints
of Eq. (1) in the reliability loop of RBDO model (1). Thus,
Eq. (1) is rewritten using the following RBDO model based
on PMA

find d,µx min f (d)

S.t. g j (d,X) ≥ 0 j = 1, 2, . . . , p

dL ≤ d ≤ dU , µL
x ≤ µx ≤ µU

x (4)

In RBDO-based PMA, a probabilistic constraint is evaluated
by searching theMPTP on the target reliability surface based
on the following probabilistic optimization model [12]:

findU∗

min g j (d,U)

s.t. ‖U‖ = β
j
t (5)

in which U is the independent normal variable that it is
computed by transforming the random variables from the
original space (X -space) into the standard normal U -space
asU = T (X), i.e. u = �−1{FX (x∗)} [15,19]. Generally, the
main goal of the optimization model (5) is determined the
MPTP (U∗). The convergence of RBDO model is depended
on the performance of reliability algorithm to MPTP search
in PMA. It can use an iterative robust and efficient reliability
analysis algorithm for evaluating the probabilistic constraints
in Eq. (3).

3 A Modified Mean Value Method

An iterative formula is proposed to evaluate the probabilistic
constraints in RBDO-based PMA in this section. The itera-
tive formula of the proposed modified mean value (MMV)
method is proposed as follows:

UMMV
k+1 = βtn

(
uMMV
k

)

n
(
uMMV
k

)
= Ũ

MMV
k+1∥∥∥Ũ
MMV
k+1

∥∥∥
(6)

where n
(
uMMV
k

)
stands for the normalized modified descent

search direction. A modified search direction
(
Ũ

MMV
k+1

)
is

established for MMVmethod by the following search direc-
tion:

Ũ
MMV
k+1 = UMMV

k + λk

[
UAMV

k+1 − UMMV
k

]
(7)

inwhich Ũ
MMV
k+1 is newmodifiedmean value search direction,

UMMV
k is point at kth iteration of MMV method, and UAMV

k+1
is new point, which is computed based on AMV iterative
formula as follows:

UAMV
k+1 = βtn

(
uAMV
k

)

n
(
uAMV
k

)
= − ∇ug(d,UMMV

k )
∥∥∇ug(d,UMMV

k )
∥∥ (8)

where n
(
uAMV
k

)
stands for the normalized steepest descent

search direction. λk in Eq. (7) is an adaptive step size, which
is computed by the following relation:

λk = δk

Ag
(9)

where δ is modified factor, which is considered as 0.95 ≤
δ < 1 and Ag is adaptive factor, which is determined as
follows:

Ag = max

{

1,

∣
∣g(d,UMMV

k )
∣
∣

∣∣g(d,UMMV
k−1 )

∣∣

}

(10)
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Fig. 1 The MPTP search using the proposed MMV

inwhich, g
(
d,UMMV

k−1

)
and g

(
d,UMMV

k

)
are the twoprevious

performance values at kth and k−1th iterations, respectively.
The proposed modified search direction in Eq. (7) for a

cycle of the proposed MMV method is plotted in Fig. 1. As
seen, the steepest descent search direction is modified using
an adaptive step size in the MMV method. The proposed
MMV is as simple as the AMV formula (see Eqs. 6, 8), but
the major difference of the MMV and AMV is the modi-
fied search direction in Eq. (7) based on adaptive step size
in Eq. (9). It can be funded from inverse FORM formula in
Eq. (6) (e.g. proposed MMV) and Eq. (8) (e.g. AMV) that
the MMV is as simple as the AMV, MCC and HMV meth-
ods. However, the steepest descent search direction is used
in AMV with step size equal to 1, MCC in which a smaller
(i.e. λ = 0.1) step size is selected at each iteration andMMV
with an adaptive step size between 1 and 0. However, the
HMV and HMV+ are formulated using a conjugate search
direction. The adaptive step size may produce stable results
for highly nonlinear performance function, adaptively. The
MMV method with the adaptive step size is simpler than
the HMV+, because a cubic interpolation to approximate
the performance function between two successive points and
optimization to determine its parameters could be applied in
the HMV+.

A larger adaptive step size is determined at the beginning
iterations (e.g. for δ = 0.99, λ3 ≈ 0.97 and λ5 ≈ 0.95).
Thus, the proposed method is converged similar to the AMV
approach. Consequently, this approach is as efficient as the
AMVapproach for convex performance functions. The adap-
tive step size in Eq. (8) computes a small value at the final
iterations, and also, the adaptive factor in Eq. (10) may be
determined more than 1 for highly nonlinear performance
functions. Consequently, the decreasing rate of adaptive step
size is increased thus, if k → ∞, then λk ≈ 0. This means

that the new modified search direction is located on the pre-

vious point, i.e. Ũ
MMV
k+1 ≈ UMMV

k ; thus, it obtained a fixed
point using iterative MMV formula in Eq. (6). Therefore, the
proposed MMV inverse reliability method is robustly con-
verged to stable MPTP for highly concave problems. Based
on the above relations, the iterative procedure of proposed
MMV is described by following steps:

Step 1 Define performance function g(d,X) and βt . Given
parameters 0.95 ≤ δ < 1, statistical random vari-
ables μ and σ . Set k = 0, and ε (stopping criterion)

Step 2 Normalize random variables Uk = T (Xk)

Step 3 Compute ∇ug(d,UMMV
k ) and new point based on

AMV (UAMV
k+1 ) using Eq. (8) Determine adaptive fac-

tor and step size using Eqs. (10) and (9), respectively.
Step 4 Compute the modified line search on the basis of

Eq. (7)
Determine the new point using modified line search
based on Eq. (6)

Step 5 If
∥∥UMMV

k+1 − UMMV
k

∥∥ /
∥∥UMMV

k

∥∥ < ε, then print
g

(
d,UMMV

k+1

)
, else set k = k + 1 then go to step

2.

4 Illustrative Examples

The proposed MMV is coded in a computer program with
MATLAB 7.10 to determine the optimum results of RBDO-
based PMA problems that this program can consider the
probabilistic constraints of RBDOexampleswith normal and
non-normal variables. The converged results of MMV are
compared with AMV [4], HMV [10], HMV+ [22] and MCC
methods using four mathematical and structural examples.
The objective and number of evaluating probabilistic con-
straints are used to illustrate the efficiency and robustness
of proposed method. The results from the MCC algorithm
are obtained by the parameters of c = I and λ = 0.1 [21].
The modified factor is set as δ = 0.975for proposed MMV
method, and also the stopping criterion (ε) is set as 10−6 for
all examples in the reliability loop of PMA.

Example 1 A highly nonlinear mathematical

A highly nonlinear mathematical for the RBDO model is
used as [5,14]

Find d = [d1, d2]T

min f (d) = − (d1 + d2 − 10)2

30
− (d1 − d2 + 10)2

120

S.t. Pf [g j (X) > 0] ≤ �
( − β

j
t
)
, j = 1, 2, 3

where g1 = 1 − x21 x2
20
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Table 1 RBDO results for highly nonlinear mathematical example

Method Design variables
[
d∗
1 , d∗

2

]
Objective Iterations F-evaluations g1\g2\g3

AMV Not converged

HMV Not converged

MCC 4.558115 1.964495 −1.724735 10 7260 (3399\1167\2694)
HMV+ 4.558115 1.964495 −1.724735 10 2013 (285\1548\180)
Proposed MMV 4.558115 1.964495 −1.724735 10 1593 (372\981\240)
The bold numbers are the minimum iterations to achieve the stabilization

Fig. 2 The iterative histories of MPTP search using MMV method
(iterations 1, 7, 10)

g2 = −1 + (Y − 6)2 + (Y − 6)3 − 0.6(Y − 6)4 + Z

Y = 0.9063x1 + 0.4226x2, Z = 0.4226x1 − 0.9063x2

g3 = 1 − 80

x21 + 8x2 + 5

0 ≤ di ≤ 10, xi ∼ N (di , 0.3
2) for i = 1, 2

d0 = [5, 5], β1
t = β2

t = β3
t = 3.0 (11)

This example includes two normally distributed independent
random variables x1, x2 and three probabilistic constraints
g1, g2, g3. The RBDO results of different PMA-basedMPTP

methods are listed in Table 1. As is evident from Table 1, the
PMA-based AMV and HMV yield unstable solutions, but
the MCC, HMV+ and proposed MMV are accurately con-
verged to optimum objective as −1.729546, which is equal
to the results fromKestegar and Hao [5] andMeng et al. [21].
The MPTP of the proposed method is illustrated for 1, 7, and
final iterations in Fig. 2. It can also be found from the results
of Table 1 and Fig. 2 that the MMV is converged to stable
results that the first and second probabilistic constraints are
the active for this example. The MMV and HMV+ are more
slightly efficient than the MCC, and the MMV method is
robustly converged about four times faster than the PMA-
based MCC. The first and third constraints are converged
computationally more efficient based on the proposed MMV
in comparison with theMCC, while the HMV+ evaluates the
first and third constraints more efficient than the proposed
MMV. The HMV+ is robust than the AMV and HMVmeth-
ods, but HMV+ is inefficiently converged to stable results
compared to MCC and MMV method for highly nonlinear
constraints (see second constraint in Table 1). Therefore, it
can be concluded that the proposed MMV method is more
robust than the AMV and HMV methods and more efficient
than theMCC for convex andHMV+ for concave probabilis-
tic constraints.

The effects of the stopping criterion (ε, i.e. 10−3, 10−4,
10−5 and 10−6) are tabulated for the MCC, HMV+ and pro-
posed MMV method in Table 2. These reliability methods
are converged to stable results. The HMV+ is more efficient
than the MCC because the HMV+ is computationally effi-
cient approach for convex probabilistic constraints 1 and 3
compared to the MCC. The efficiency of the HMV+ is more
sensitive to smaller stepping criterion (i.e. ε <10−6), while
the proposed MMV is insensitive to stopping criterion in

Table 2 RBDO results (F-evaluations g1\g2\g3) using different stopping criterions (ε) for highly nonlinear mathematical example

Method ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6

MCC 2016 (915\462\639) 3762 (1743\699\1320) 5511 (2574\927\2110) 7260 (3399\1167\2694)
HMV+ 720 (165\435\120) 1023 (207\666\150) 1230 (243\837\150) 2013 (285\1548\180)
MMV 782 (204\446\132) 969 (240\573\156) 1177 (263\722\192) 1593 (372\981\240)
The bold numbers are the minimum iterations to achieve the stabilization
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Table 3 Statistical properties of
random variables for steel
column

Variables Description Mean SD Distributions

Fs (MPa) Yield stress 400 35 Lognormal

F0 (mm) Initial deflection 30 10 Normal

E (MPa) Young’s modulus 21,000 4200 Weibull

P1 (N) Dead load 500,000 50,000 Normal

P2 (N) Live load 600,000 90,000 Gumbel

P3 (N) Live load 600,000 200,000 Gumbel

L (mm) Column length 3000 300 Normal

bf (mm) Flange breadth Design variable 30 Lognormal

tf (mm) Flange thickness Design variable 2 Lognormal

h (mm) Height of profile Design variable 50 Lognormal

Table 4 RBDO results for steel
column example

Method Design variables
[
b∗
f , t

∗
f , h∗] ObjectiveI terations F-evaluations

AMV [200, 10.3368, 486.7069] 4500.8886 22 8273

HMV [200, 10.3368, 486.7069] 4500.8886 23 10,426

MCC [200, 10.3368, 486.7069] 4500.8886 25 8789

HMV+ [200, 10.3354, 486.7564] 4500.8659 26 9507

Proposed MMV [200, 10.3368, 486.7069] 4500.8886 19 4535

The bold numbers are the minimum iterations to achieve the stabilization

comparisonwith theMCCandHMV+.TheMCCandHMV+
show a similar efficiency for highly nonlinear performance
function in second constraint, but the proposed method is
converged, more efficiently.

Example 2 A steel T-column

A steel column is considered with the random section
dimensions. The objective function is defined based on the
mean values of dimensions with a probabilistic constant as
follows:

Find d = [bf , tf , h]T
min f (d) = bf tf + 5h

S.t. Pf [g(X) > 0] ≤ �(−βt ),

where

g = Fs − F

(
1

As
+ F0

ms
× eb

eb − F

)

200 ≤ bf ≤ 400, 10 ≤ tf ≤ 30, 100 ≤ h ≤ 500

d0 = [300, 20, 300], βt = 3.0 (12)

The parameters of the T-shaped steel profile of column are
defined as F = P1 + P2 + P3, As = 2bf tf , ms = bf tfh,
and eb = π2E

2L2 bf tfh
2 [25]. This problems involve three

non-normal random design variables and seven independent
random variables as {Fs, P1, P2, P3, F0, E, L}, whose sta-
tistical characteristics are given in Table 3. This example
involves a nonlinear constraint with normal and non-normal
random variables.

The results of RBDO-based PMA for different reliability
methods, i.e. AMV, HMV, MCC, HMV+ and MMV are tab-
ulated in Table 4 for steel column. It can see all reliability
methods,which are implemented to evaluate the probabilistic
constraint, are converged to a same optimum as 4500.8886
but the numbers of evaluating the performance function to
achieve stable results are obtained different iterations for
these reliability methods. The proposed MMV is slightly
more efficient than other existing PMA-based MPTP search
methods for steel column RBDO model (12). The AMV and
MCC are more efficient than HMV and HMV+, but the
MMV is converged about twice faster than the AMV and
MCC. The proposed method is accurately converged to sta-
ble results with less iteration than the modified versions of
iterative inverse FORM formula to evaluate the constraint of
this example.

Example 3 A rectangular reinforced concrete beam

A rectangular reinforced concrete beam, which is plotted
in Fig. 3, is considered to determine the optimum dimensions
and reinforced bars by the following RBDO model:

Find d = [b, d, As]T
min f (d) = 800bd + 2000As

S.t. Pf [g j (X) > 0] ≤ �
( − β

j
t
)
, j = 1, 2, 3

where g1 = BAs fy

(
d − 0.59

As . fy
b. fc

)
− MD − ML
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Fig. 3 A rectangular reinforced concrete beam

g2 = As − 1.4bd

fy
n

g3 = 0.85β1
600

600 + fy
.
fc
fy
bd − As

100 ≤ b ≤ 400, 200 ≤ d ≤ 550, 500 ≤ As ≤ 3000

d0 = [200, 400, 1500], β1
t = β2

t = β3
t = 3.5 (13)

This problem involves three constraints that the first con-
straint is defined based on the moment capacity of beam that
it is considered various uncertainties such as model, load and
resistance. Two constraints g2 and g3 on parameters are given
a maximum and minimum admissible area of reinforcement
in relation to the total area of the concrete section. The statis-

tical properties of random variables are described in Table 5
for reinforced concrete beam.

TheRBDO results of different reliabilitymethods of PMA
are listed in Table 6 for reinforced concrete beam. A same
optimum and converged design variables are obtained for all
studied reliability analysis methods. As seen, the proposed
MMVmethod has a top performance in comparison with the
other methods. The MMV yields stable results about four
and three times faster than the HMV and HMV+ methods,
respectively. The MCC is more computationally inefficient
and needsmore iterations to achieve the stabilization for con-
straints 1–3, but the proposed MMV is more efficient.

Example 4 A welded beam problem

A welded beam, which is extracted from [4], is shown
in Fig. 4. The objective function is the welding cost, and
the probabilistic constraints are related to physical quanti-
ties, such as shear stress, bending stress, buckling load and
displacement that the RBDO model can be formulated as

Find d = [d1, d2, d3, d4]T
min f (d) = c1d

2
1d2 + c2d3d4(z2 + d2)

S.t. Pf [g j (X, z) > 0] ≤ �(−β
j
t ), j = 1, 2, . . . , 5

where g1(X, z) = τ(X, z)
z6

− 1, g2(X, z) = σ(X, z)
z7

− 1,

g3(X, z) = x1
x4

− 1, g4(X, z) = δ(X, z)
z5

− 1,

g5(X, z) = 1 − Pc(X, z)
z1

,

Table 5 Statistical properties of
random variables for reinforced
concrete beam

Variable Description Distribution Mean COV

fy Steel yield stress Lognormal 400 (MPa) 0.1

fc Concrete comp. strength Normal 30 (Mpa) 0.18

B Model uncertainty Normal 1.01 0.06

MD Dead bending moment Normal 95.87 (kN-m) 0.10

ML Live bending moment Gumbel 67.11 (kN-m) 0.25

β1 – Lognormal 0.85 0.05

As (mm2) Reinforced area Normal Design variable 0.1

b (mm) Width Normal Design variable 0.12

d (mm) Effective depth Normal Design variable 0.12

Table 6 RBDO results for reinforced concrete beam example

Method Design variables
[
b∗, d∗, A∗

s

]
Objective Iterations F-evaluations g1\g2\g3

AMV [361.1941, 550, 2236.004] 163,397,418.77 10 4415 (1835\980\1600)
HMV [361.1941, 550, 2236.004] 163,397,418.77 14 14,978 (5846\3841\5291)
MCC [361.1941, 550, 2236.004] 163,397,418.77 27 12,4382 (42,113\34,370\47,899)
HMV+ [361.1985, 550, 2236.031] 163,399,388.03 12 10,015 (5313\751\3951)
Proposed MMV [361.1941, 550, 2236.004] 163,397,418.77 8 3616 (1617\700\1299)
The bold numbers are the minimum iterations to achieve the stabilization
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Fig. 4 A welded beam structure

xi ∼ N (di , 0.1693
2) for i = 1, 2 xi ∼ N (di , 0.0107

2)

for i = 3, 4

β1
t = β2

t = · · · = β5
t = 3.0, 3.175 ≤ d1 ≤ 50.8,

0 ≤ d2 ≤ 254,

0 ≤ d3 ≤ 254, 0 ≤ d4 ≤ 50.8,

d0 = [6.208, 157.82, 210.62, 6.208]T

τ(X, z) =
√

t (X, z)2 + 2t (X, z)t t (X, z)x2
2R(X)

+ t t (X, z)2,

t (X, z) = z1√
2x1x2

, t t (X, z) = M(X, z)R(X)

J (X)
,

σ (X, z) = 6z1z2
x23 x4

,

δ(X, z) = 4z1z32
z3x33 x4

, M(X, z) = z1[z2 + x2/2], R(X)

=
√
x22 + (x1 + x3)2

2
,

J (X) = √
2x1x2

{
x22/12 + (x1 + x3)

2/4
}

,

Pc(X, z) = 4.013x3x34
√
z3z4

6z22

(
1 − x3

4z2

√
z3
z4

)
(14)

This problemhas four randomvariables andfive probabilistic
constraints. The fixed system parameters are listed in Table 7.
All random variables are statistically independent and follow
the normal distribution.

The optimal results of welded beam are listed in Table 8.
The optimal results (i.e. objective value and design point of
all the approaches) are almost equal to those in the obtained
results of Li et al. [4]. The results from Table 8 demonstrated
that all RBDO using PMA methods converge to the same
optimum 2.59132.

The PMA-based AMV, HMV and HMV+ are converged
with a same iteration, but proposed PMA method based on
MMV is converged faster than other existing PMA meth-
ods. The proposed MMV has a highly convergence rate in
comparison with the MCC for this example. Thus, the pro-
posed MMV can improve the efficiency and robustness of
the DLA-based PMA.

5 Conclusions

Typically, the iterative schemes of minimum performance
target point (MPTP) search could yield unstable solutions for
evaluating the highly probabilistic constraints in reliability-
based design optimization (RBDO) problems. In present
paper, a simple iterative formula is developed based on a
modified search direction to enhance the robustness and
efficiency of reliability analyses-based MPTP search in per-
formance measure approach (PMA), which is computed
using two previous results of performance value. The pro-
posed method is called modified mean value (MMV) that the

Table 7 System parameters for
the welded beam z1 2.6688 × 104 (N) z4 8.274 ×104 (MPa) z7 2.0685 × 102(Mpa)

z2 3.556 × 102 (mm) z5 6.35 (mm) c1 6.74135 × 10−5 ($/mm3)

z3 2.0685 × 105 (Mpa) z6 9.377 ×101 (Mpa) c2 2.93585 × 10−6 ($/mm3)

Table 8 RBDO results for welded beam

Method Design variables Objective Iteration F-evaluations

AMV (5.730022, 200.8981, 210.5977, 6.238936) 2.59132 15 1350

HMV (5.730022, 200.8981, 210.5977, 6.238936) 2.59132 15 1350

MCC (5.730022, 200.8981, 210.5977, 6.238936) 2.59132 15 12,170

HMV+ (5.730022, 200.8981, 210.5977, 6.238936) 2.59132 15 1350

Proposed MMV (5.730022, 200.8981, 210.5977, 6.238936) 2.59132 9 1135

The bold numbers are the minimum iterations to achieve the stabilization
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efficiency and robustness of MMV are illustrated with four
nonlinear mathematical and structural RBDO problems with
nonlinear probabilistic constraints. The converged results of
MMV are compared with several existing reliability meth-
ods such as AMV, HMV, HMV+ and MCC. The MMV is as
simple as PMA-based AMV but more robust and efficient. In
addition, the proposed MMV has top convergence both effi-
ciency and robustness in comparison with the AMV, HMV,
HMV+ and MCC methods.

The HMV+ can be improved for highly nonlinear perfor-
mance function with a simple interpolation andMMV can be
combined with the AMV to improve its efficiency for convex
problems in future.
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