Arab J Sci Eng (2017) 42:619-637
DOI 10.1007/s13369-016-2284-2

@ CrossMark

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

An Automated Analysis of the Branch Coverage and Energy

Consumption Using Concolic Testing

Sangharatna Godboley!
Durga Prasad Mohapatra!

- Subhrakanta Panda! - Arpita Dutta! .

Received: 22 November 2015 / Accepted: 17 August 2016 / Published online: 27 August 2016

© King Fahd University of Petroleum & Minerals 2016

Abstract The energy consumption of computer systems has
become an important economic and environmental issue.
Many researchers have focused on the energy consumption
of hardware, but what about the software? Software energy
consumption is widely adopted for Green computation of
practical experimentation in research laboratories. But cur-
rent researchers fail to build a consistent concept base for
software energy consumption of critical applications. While
branch coverage and concolic testing are very critical prac-
tices to validate the safety critical systems, very little effort is
given to measure their energy consumption. The computation
of the energy consumption of these techniques is an impor-
tant issue in Green IT and Green Software Engineering. The
contribution of this paper is to automate the computation and
analysis of the energy consumption of the testing technique
while enhancing the branch coverage using concolic test-
ing. We implement our proposed automation framework in
a tool, named Green Analysis of Branch Coverage Enhance-
ment. The empirical study with forty Java programs and the
evaluation results show that our developed tool achieves an
average increase of 13.5 % in branch coverage. The average
energy consumption of our automated tool is approximately
5.6kJ to compute the branch coverage for all the forty exper-
imental programs.

B Sangharatna Godboley
sanghul790@gmail.com

Subhrakanta Panda
511cs109 @nitrkl.ac.in

Arpita Dutta
215¢s1067 @nitrkl.ac.in

Durga Prasad Mohapatra
durga@nitrkl.ac.in

Department of Computer Science and Engineering,
National Institute of Technology, Rourkela, India

Keywords Branch coverage - Concolic testing - Energy
consumption - Green IT - Green Software Engineering -
Green and sustainable technologies

1 Introduction

A technical report in 2007 by ITC-Literacy estimated that
Information and Communications Technologies (ICT) were
responsible for more than 2% of global carbon emissions
[1]. PC Energy Report of USA sponsored by 1E in 2007
concluded that a company that consisted of 10,000 PCs
approximately spent $165,000 in electricity consumption
every year. This huge bill was incurred as computers were
not switched off all night even when no one was working.
Thus, the energy consumption of PCs is an important issue
that needs to be addressed.

Green Information Technology (Green IT) believes that
the resource and energy consumption of ICT starts right
from the software development life cycle (SDLC) phase
that should be reduced and minimized [2,3]. The available
methods mainly focus on the hardware, such as the energy
consumption of the data centers. Since most of the ICT
solutions are based on software applications, the energy con-
sumption of these applications is very crucial to analyze and
control.

Software testing aims to detect and correct some bugs
in a software to ensure its quality. Earlier, software test-
ing techniques continuously failed to detect all the errors
present in the software. One of the reasons for this failure
is that it is not possible to exercise all the execution paths
in a program. A program may have different paths because
of the presence of conditional expressions and many other
loop structures. It is technically a difficult task to generate
test cases that could cover all execution paths in an aug-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-016-2284-2&domain=pdf
http://orcid.org/0000-0002-6169-6334

620

Arab J Sci Eng (2017) 42:619-637

mented manner [4]. To address these issues, CONCOLIC
(CONCrete + symbOLIC) testing or dynamic symbolic exe-
cution analysis is proposed in the literature to generate test
cases that explore the execution paths in a program [5-7].
The manual process of achieving this high coverage is tough,
rather infeasible. In accordance with RTCA/DO178B stan-
dard [8], coverage-based testing is a measure of acceptability
of the requirement-based testing in the context of execut-
ing logical statements. This is why branch coverage-based
testing has become mandatory for safety critical systems
such as aerospace and nuclear applications. Although CON-
COLIC and branch coverage testing techniques are useful in
many scenarios, their energy consumption has not yet been
addressed. This is a core area of concern for Green IT and
Green Software Engineering [9].

In this paper, we propose a framework that automates the
calculation of the branch coverage and analyze its energy
consumption to promote Green software testing. In this
regard, we implemented our framework in a tool, called
Green Analysis of Branch Coverage Enhancement (Green-
ABCE) that integrates some of the available tools for different
purposes. Our proposed framework integrates Java Program
Code Transformer (JPCT) proposed in our earlier work [10]
which is the Java version of Program Code Transformer
(PCT) [11]. JPCT transforms the input Java programs to
improve their branch coverage. We integrate Java Concolic
Unit testing Engine (JCUTE) with our proposed frame-
work to generate the required test cases and calculate the
branch coverage percentage for both the transformed and
non-transformed versions of the Java programs. Please note
that though the transformed program is syntactically differ-
ent as compared to original program, but both are semantical
and functional equivalent to each other due to the empty
body of extra expressions inserted. To avoid confusion, we
strip out those extra nested if—else statements from the trans-
formed program after the completion of experiment. By using
JouleMeter, we compute the total energy consumption. We
list the abbreviations used in this paper in Table 1.

The rest of the paper is organized as follows: Sect. 2
discusses some of the fundamental ideas required to under-
stand the proposed approach. Section 3 explains the proposed
framework and discusses the required algorithms for imple-
mentation. In Sect. 4, we analyze the experimental results. In
Sect. 5, we discuss and compare some of the existing work
related to our proposed work. There are some threats to the
validity of our work, which we report in Sect. 6. Section 7
concludes our work with some insights into our future work.

2 Fundamental Ideas

In this section, we discuss some of the important concepts
and definitions useful to our work.

@ Springer

Table 1 Abbreviations

Sl.no. Short-form Full-form

1 AC Ammeter clamps

2 ATGT ASM tests generation tool

3 BC Branch coverage

4 BCT Binary code transformer

5 CA Coverage analyzer

6 CONBOL CONcrete and symBOLIic testing

7 CONCOLIC CONCerete +symbOLIC

8 CUTE Concolic Unit Testing Engine

9 DAE Data Aggregator and Evaluator

10 EC Energy consumption

11 EDTSO Energy-Directed Test Suite Optimization

12 EXNCT Exclusive-NOR Code Transformer

13 GA Genetic algorithm

14 Green-ABCE Green Architecture model for Branch
coverage enhancement

15 Green IT Green Information Technology

16 Green SE Green Software Engineering

17 ICTs Information and Communications
Technologies

18 JCUTE Java Concolic Unit Testing Engine

19 JPCT Java Program Code Transformer

20 LOC Lines of code

21 MC/DC Modified condition/decision coverage

22 PC Power consumption

23 PCT Program Code Transformer

24 PM Power model

25 PSO Particle swarm model

26 Power TOP Power temporal optimization

27 TC Test cases

28 SCORE Scalable COncolic testing tool for
Reliable Embedded software

29 SOP Sum of products

30 UML Unified Modeling Language

31 VIM Virtual instrument machine

32 WG Workload generator

33 WLS Workloader simulator

2.1 Green Software Engineering

We derive the motivation for this proposed work from Kern
et al. [9] to promote energy-efficient Green software testing.
To classify and sort some concerns of Green and sustain-
able software and its engineering technology, Kern et al. [9]
developed GREENSOFT model as shown in Fig. 1. GREEN-
SOFT model consists of the following four parts: life cycle of
software products, sustainability criteria for software prod-
ucts, procedure models, and recommendations for action and
tools. Interested readers are advised to refer [9] for more

Arab J Sci Eng (2017) 42:619-637

621

Reference Model “GREENSOFT Model”

Life Cycle of software products

Sustainability criteria for software products

Procedure models

Recommendation for action and tools

Fig. 1 GREENSOFT model

details on Green Software Engineering (Green SE). Thus
with conformance to the principles of Green SE, we aimed
to develop a tool that can compute the energy consumption
during concolic testing. The awareness of energy consump-
tion can later enable the testers to generate energy- efficient
techniques in the direction of Green software testing.

2.2 Energy Consumption

This paper uses the existing JouleMeter! to compute the
energy consumption. JouleMeter is integrated to compute
the energy consumption (EC) of the proposed tool during
concolic testing of the programs. JouleMeter gives the power
consumption (PC) of the tool in use at any particular instance
of the recorded timestamp. We use these power readings
along with the first and last timestamps to compute the energy
consumption in joules. The formula to convert the power
readings to energy consumption is given below:

EC = (T,, — Tp) x Y _(PCy) (0

where EC is the energy consumption (in Joules), PC is power
consumption (in Watts), T; is the time stamp for ith instant,
n represents the first instance, and m represents the last
instance.

2.3 Branch Coverage
For achieving branch coverage, each decision should take

all possible outcomes at least once either true or false. For
example: If (m > 0), then there can be maximum of two

! http://research.microsoft.com/en-us/projects/joulemeter/.

1 import java.io.*;
2 public class Grade {
3 public static void main(String[] args) throws IOException {
4 System.out.println("Enter The mark of the student");
5 BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
String ip = br.readline();
int testscore = Integer.parseInt(ip);
char grade;

if (testscore >= 90) {
11 grade = 'A';
12 } else if (testscore >= 80) {
13 grade = 'B';
14 } else if (testscore >= 70) {
15 grade = 'C';
} else if (testscore >= 60) {
grade = 'D';
} else {
grade = 'F';
}

System.out.println("Grade = " + grade);
z !
23 }

Fig. 2 An example program to explain CONCOLIC Testing

possible test scenarios. These test scenarios are: (1) m > 0,
and (2) m <= 0. Therefore, any testing technique that gen-
erates enough test cases to execute all the above-mentioned
two scenarios achieves 100 % branch coverage.

2.4 CONCOLIC Testing

Concolic testing is a crossover methodology for program
verification that consolidates symbolic execution. Concolic
testing executes all the typical program variables for a more
concrete execution that runs the program on some spe-
cific inputs. In concolic testing, we introduce some standard
variables (with random values) to generate new path condi-
tions along with the regular execution paths (executed when
the condition satisfies to frue) to explore alternate branch
predicates. These newly generated paths connect the initial
predicate with that of its negated predicates.

The program in Fig. 2 checks the mark secured by a student
and accordingly assigns a grade. For concolic testing of this
program, we start by assigning random inputs to the variable,
named festscore. The execution of the program depends on
the assigned value of testscore variable. Supposing festscore
gets 91 as its first value, then the first predicate to be analyzed
will be:

(testscore >= 90) 2)
Now, Condition 2 must fail to explore another path possi-
ble to reach the next predicate. The new path is discovered
by negating the predicate under consideration. This negation
operation is shown below:

—(testscore >= 90) 3

The new predicate reached after the negation operation is as
follows:

@ Springer

http://research.microsoft.com/en-us/projects/joulemeter/

622

Arab J Sci Eng (2017) 42:619-637

Fig. 3 Overall view of

Green-ABCE Green-ABCE
JPCT
I > Minimization of SOP |
Generation of SOP using Quine McCluskey Insertion of Nested
empty if-else statements
Identification of
predicates Transformed
Java Program
N
Java Program JCUTE
CONCOLIC TESTER
Test cases and BC%
~
ENERGY CALCULATOR
N / _m
JOULEMETER Power
In-situ Power Model Leaming 4 Consumption
Detailed Power Metering |
Energy
Consumption
(testscore >= 80) “4) ing the available techniques. But this enhancement in branch

The constraint solver examines every constraint to discover
the appropriate paths in the program. If there exists a path for
an input, then that value is recorded as test data for further
executions of the program. The original constraint is com-
bined with the negated constraint to reach the next new path
constraint as shown in Eq. 5.

—(testscore >= 90) A (testscore > 80) @)

The above process will continue till the conditions get eval-
uated.

3 Proposed Framework

Both coverage-based testing and energy consumption analy-
sis are necessary for many safety critical systems. Due to
less branch coverage, many software testers are compelled
to discard the software. The proposed framework aims to
study the increase in branch coverage achieved by employ-

S @ Springer

coverage comes with an additional energy consumption. To
measure the energy consumption incurred in achieving an
increase in branch coverage, an energy computational tool,
i.e., JouleMeter, is integrated into the proposed framework
along with the branch coverage analyzer. Thus, our frame-
work is implemented in a tool, named Green-ABCE. The
objective of this tool is to enhance the branch coverage in
concolic testing and compute the energy consumption. We
have developed JPCT to achieve an increase in the branch
coverage and integrated it in Green-ABCE. We used JCUTE
as dynamic symbolic execution tool that resolves issues such
as unavailability of library code and shortcomings of concolic
engines.

3.1 Overview of Green-ABCE

Figure 3 shows the overall view of Green-ABCE. The block
diagram consists of mainly three modules: JPCT, JCUTE
and JouleMeter. The flow starts with the initiation of track-
ing record of power consumption for each 1s of JPCT and
JCUTE by JouleMeter. JPCT takes the Java program as

Arab J Sci Eng (2017) 42:619-637

623

Table 2 Algorithm 1 for Green-ABCE

Input: ABCE module

> ABCE modules consists of JPCT and JCUTE modules

Output: Total time taken(T), Power Consumption (PC), Energy Consumption (EC)

Begin
Compute Power Consumption.
Record power readings.

Produce Transformed Program.
> To achieve high branch coverage
Stop recording power readings.

Stop JouleMeter.

: Evaluate Energy consumption using Equation 1.
: Exit

CoO®N QU WE

Generate TCs_1 and compute BC% using JCUTE.

> Through JouleMeter

> Without using JPCT
> Invoke algorithm JPCT

Generate TCs_2 and compute BC'% using JCUTE for transformed program. > With JPCT
Measure Execution Time, Speed of test case generation, Difference = BC'% - BC%.

Compute Total time taken (T, — T},), and read Total power consumption (PC).

input and transforms it by adding extra nested empty if—else
expressions. Then the transformed version of the program is
supplied to JCUTE to generate test cases automatically [12]
and compute the achieved percentage of branch coverage.
After the completion of this process, we stop the tracking of
the power consumption. Finally, we get the total time taken
by Green-ABCE to find the branch coverage percentage, total
power and energy consumption of JPCT and JCUTE models.

3.2 Detailed Description of Green-ABCE

In this section, we provide a detailed discussion on the work-
ing of the different components of Green-ABCE.

3.2.1 Green-ABCE

The overall pseudocode for the proposed work is given in
Algorithm Table 2. The proposed Algorithm Table 2 takes
the ABCE module as input which consists of a Java program,
JPCT to transform the Java program and JCUTE concolic
tester to generate the required test cases and compute the
branch coverage. Here, JPCT stands for Java Program Code
Transformer, whereas JCUTE stands for Java Concolic Unit
Testing Engine. More description on JPCT and JCUTE is
given in Sects. 3.2.2 and 3.2.3, respectively. Finally, Algo-
rithm Table 2 gives the total Energy Consumption (EC) for
the input program as output. The first two steps are per-
formed by JouleMeter to start the timestamp recording. Step
3 of the algorithm computes the required other parameters
(i.e., generation of test cases and computing their corre-
sponding branch coverages) for the input Java program by
using JCUTE only. Step 4 invokes the code transformer,
named JPCT, that transforms the input Java program. The
pseudocode for the code transformer is given as Algorithm
Table 3. Now, Step 5 finds the test cases and BC% (branch
coverage using JCUTE + JPCT) for the transformed version
of the Java program. Step 6 computes all the required parame-

ters, i.e., computation time for branch coverage, speed of test
case generation and difference. Steps 7 and 8 are used to stop
functioning of JouleMeter. Step 9 computes the total power
consumption in terms of timestamp difference. Finally, Step
10 calculates the energy consumption using the formula given
in Eq. 1.

3.2.2 JPCT

The purpose of Java Program Code Transformer (JPCT)
[10,11] is to transform the input Java program by insert-
ing additional if-else statements. The pseudocode of the
transformer is given in Algorithm Table 3. The steps for trans-
forming the program are as follows:

i. Identification of predicates The objective of this step
(Lines 1-3) is to detect the predicates in a Java program.
The logic is to scan the Java program character by char-
acter and copy the line of code having a Boolean operator
in some other text file. This process is repeated until all
the predicates in the program are discovered.

ii. Generation of Sum of Products (SOP) The objective of
this step (Lines 5-6) is to have a simplified representa-
tion of the identified predicates by computing their Sum
of Product (SOP). This simplification is performed for
every predicate discovered in the program. The SOP for a
predicate is converted into minterm (binary) form so that
it can be minimized using Quine—McCluskey method.
These minterms are stored in the variable, P_Minterm.

iii. Minimization of the SOP using Quine—McCluskey method
Line 7 uses the Quine-McCluskey method to mini-
mize the SOP. The Quine-McCluskey method is given
in [10,13]. The hypothesis behind choosing Quine—
McCluskey method over another existing technique,
called Karnaugh map, to minimize the predicates is sim-
ple because the former is more efficient than the latter
[13].

@ Springer

624

Arab J Sci Eng (2017) 42:619-637

Table 3 Algorithm 2 for JPCT: Java Program Code Transformer

Input: J
Output: J’
Begin
1: for each statement s € J do
2 if && or ||or unary ! detects in s then
3: Predicate_Identified <+ Save_List(s)
predicates.
for each predicate p € Predicate_Identified do
P_SOP «+ SOP(p)
P_Minterm + Minterm(P_SOP)
P_Minimized < Minimization_ QM (P_Minterm)

J’ + insert_code(List_Statement,J)
statements and input Java program.

10: Exit

> Program J is in Java syntax

> Program J' is the transformed version of J

> Save_List(s) keeps record of all identified

> Generating SOP

List_Statement <+ Additional_if-else_for JPCT (P_Minimized)
> The insert_code() gathers the extra generated

iv. Insertion of nested empty if-else statements Line 8
generates the empty nested if—else statements to get
additional set of statements in the program. The method
to generate these additional statements is defined in [10].
These additional sets of statements comprise of empty
nested if-else statements which are inserted into the
input program at Line 9 resulting in the transformed
version of the original Java program. These additional
conditional expressions are useful to increase the num-
ber of generated test cases. Once we enhanced the
number of test cases, we can cover more number of
branches. This results in achieving high branch cover-
age.

3.2.3 JCUTE

We use JCUTE to generate test cases automatically for both
original and transformed versions of the Java program. The
output of Algorithm Table 3 is now the input for JCUTE.
Then JCUTE computes the branch coverage percentage. We
also record the total time taken by JCUTE to compute the
branch coverage. More information on JCUTE tool is avail-
able in [5,6].

3.2.4 JouleMeter

JolueMeter is a tool to measure the power consumption of
a computer system. Power consumption data can be com-
puted for the system as a whole or for the key components.
Readings may depend on individual tracking of different
applications. JouleMeter computes the power usage through
a model, called power model. This model shows the usage of
computer resources and hardware power state (processor uti-
lization, screen brightness, process frequency, monitor on/off
state, utilization of memory) to draw the power value. But in
our proposed work, we are not considering other hardware

@ Springer

power state usages, we are only tracking the power usage of a
particular software application. In the context of our research
work, the software application refers to our proposed soft-
ware testing tool. To learn power model, a manual estimate
of the individual power numbers may be entered to view the
power usage data. JouleMeter suggests some power num-
ber parameters for the power model. These power number
parameters are: Base (Idle) Power, Processor Peak Power
(high frequency), Processor Peak Power (low frequency) and
Monitor Power. Please note that the power consumption of
an application program denotes only the power consumed by
the application on the CPU. Here, we may consider the mon-
itor power as well as the base power of the computer, only if
the computer has been turned on to run that application only.
Energy consumption may be defined as the total energy used
for the entire run which may be obtained by summing up the
power consumption values (present in Watts) for the duration
of execution. Since each reading denotes the power usage for
one second, the sum represents the total energy consumption
in Joules. This whole process is represented in the form of a
pseudocode given in Algorithm Table 2.

4 Experimental Studies

The personal computer (PC) is configured of 4GB mem-
ory (RAM), Intel (R) Core (TM) i5 CPU 650@3.20 GHz
3.19 GHz and 32-bit operating system. We have performed
experiments on Windows 7 operating system. Using our
proposed work, we can handle any of the languages such
as SQL and C++. Since power consumption tracker, i.e.,
JouleMeter, is used to measure and record power consump-
tion of any application, we can track power consumption of
any tool which is developed in any language. Again, energy
consumption calculator is also a developed tool which exe-
cutes the application/tool irrespective of any language. Our

Arab J Sci Eng (2017) 42:619-637

625

objective is to compute the energy consumption of our pro-
posed improved concolic testing. This testing technique uses
JPCT and JCUTE; therefore, we use Java language. Our
objective is to compute energy consumption of our proposed
improved concolic testing. This testing technique uses JPCT
and JCUTE; therefore, we use Java language. The exper-
iments are carried out on forty benchmark Java programs
taken from the Open Systems Laboratory Repository* and
some student assignments.

Table 4 lists the characteristics of Java programs that we
have considered for the experimental studies. From Columns
3 and 4 of Table 4, it is concluded that a total of 6064 lines of
code of the original programs have been analyzed. Similarly,
9601 lines of code have been analyzed for the transformed
programs. While lines of code (LOC) gives the size of orig-
inal program, LOC’ refers to the size of the transformed
version of the program. Since we focus on coverage-based
testing, it is essential to count the total number of predicates
and branches that are supposed to be covered. Both these
characteristics are mentioned in Columns 7 and 8, respec-
tively.

Tables 5 and 6 show the required test data [such as num-
ber of generated test cases (TC,TC'), computation time
(Time, Time’) and the speed of generating the test cases
(Speed, Speed’)] computed for the experimental Java pro-
grams. These test data are computed under two scenarios:
Scenario 1 (Table 5) corresponds to the test data generated for
the original programs using JCUTE, while Scenario 2 (Table
6) corresponds to the test data computed for the transformed
programs using JCUTE + JPCT. It can be inferred from the
tables that by integrating JPCT, we achieved an increase in the
generation of the test cases. This increase in the number of test
cases helps in covering more number of branches. Thus, the
program transformation technique using JPCT results in high
branch coverage percentage due to increase in the number of
generated test cases. The computation time (to generate test
cases and compute branch coverage) taken in case of both the
scenarios is shown as Time and Time'. In case of Scenario
1, the average computation time for the forty programs is
23,678.93 ms, while in Scenario 2, the average computation
time for the forty programs is 27,176.42 ms. Thus, the speed
of test case generation is given as the number of test cases
generated per second (TC/s). The average speed computed
for Scenario 1 is speed = 4.66 TC/s, and average speed for
Scenario 2 is speed’ = 2.27 TC/s for the forty programs.
This decrease in test case generation speed is attributed to
the increase in time for program transformation. However,
this decrease in speed is not a deterring factor as it results in
the increase in the number of generated test cases and branch
coverage.

2 http://osl.cs.illinois.edu/software/jcute/.

Table 4 Characteristics of different experimental programs

SIL. no. Program name LOC LOC' # of Predicate # of Branches

1 Condition 21 32 2 15
2 Weight 24 42 1 20
3 QuickSort 68 76 2 18
4 Nonce 286 350 25 146
5 StringBuffer 421 466 17 56
6 SwitchTest 59 71 4 15
7 ProducerConsumer 20 27 2 8
8 BSTree 255 297 6 28
9 ArraySort 27 33 2 15
10 StaticInstanceProblem 24 32 1 5
11 CAssume 43 65 1 2
12 CTest3 94 117 2 4
13 Deadlock 91 125 1 2
14 Demo 50 72 1 2
15 DemoLock 67 95 1 2
16 CTest2 9 114 2 4
17 CTestl 96 126 2 2
18 DemoL0ck2 60 971 1 2
19 DSort 95 121 4 18
20 ErrorTest 71 98 4 9
21 If-Else 77 118 1 6
22 InterfaceJava 51 350 1 2
23 LockHeld 73 97 4 12
24 MultiLock 62 106 2

25 NewlJava 61 118 1

26 NoPredictive 69 108 3 8
27 NoPredictive2 58 84 2 4
28 NS 313 715 24 146
29 NS2 403 806 28 188
30 FinallyTest 45 45 0 0
31 OneWrite 45 45 0 3
32 Regression 176 256 15 8
33 SampleXACMLPolicy 90 125 1 24
34 StackTest 33 47 1

35 StaticInstanceProblem2 51 68 1

36 StringBufferModule 1364 1896 9 52
37 StringBufferl 486 976 8 60
38 StringBuffer2 541 1012 10 64
39 Struct 47 95 2 8
40 Testme 51 78 1 4

The analysis of the branch coverage percentage is shown
in Table 7. Here, BC% corresponds to scenario 1 and BC'%
corresponds to scenario 2. The values of BC range from 0
to 100 %. Please note that BC% for some programs (such
as CTestl, ErrorTest, FinallyTest, OneWrite and StackTest)
is 0%; this is because none of the branches of these pro-

@ Springer

http://osl.cs.illinois.edu/software/jcute/

626

Arab J Sci Eng (2017) 42:619-637

Table 5 Generated test data for the original Java programs using
JCUTE

SI. no. Program name TC Time in ms Speed
1 Condition 4 1047 3.8
2 Weight 5 1295 3.8
3 QuickSort 1 305 3.2
4 Nonce 24 13,752 1.7
5 StringBuffer 8 128,124 0.07
6 SwitchTest 6 17,004 0.35
7 ProducerConsumer 1 171 5.18
8 BSTree 6 2637 2.2
9 ArraySort 4 2637 1.5
10 StaticInstanceProblem 3 530 5.6
11 CAssume 2 359 5.5
12 CTest3 2 125 16.0
13 Deadlock 1 344 2.9
14 Demo 1 156 6.4
15 DemoLock 1 249 4.01
16 CTest2 2 140 14.28
17 CTestl 1 145 6.89
18 DemoL0Ock2 3 499 6.01
19 DSort 5 3408 1.46
20 ErrorTest 1 156 6.41
21 If-Else 4 562 7.11
22 InterfaceJava 2 328 6.09
23 LockHeld 1 187 5.34
24 MultiLock 1 260 3.84
25 NewlJava 1 203 4.92
26 NoPredictive 2 646 3.09
27 NoPredictive2 4 572 6.99
28 NS 43 202, 155 0.21
29 NS2 30 205,284 0.14
30 FinallyTest 1 142 7.04
31 OneWrite 1 3557 0.28
32 Regression 5 320 15.62
33 SampleXACMLPolicy 11 2211 4.97
34 StackTest 1 170 5.88
35 StaticlnstanceProblem?2 3 481 6.23
36 StringBufferModule 6 206,291 0.02
37 StringBufferl 8 74,796 0.1
38 StringBuffer2 8 74,427 0.1
39 Struct 5 983 5.08
40 Testme 3 499 6.01

grams are covered by the generated test cases. This clearly
indicates the inefficiency of the test cases generated in sce-
nario 1. However, after program transformation, we are
able to successfully enhance the branch coverage for the
above-mentioned programs. For example, BC' for program

@ Springer

Table 6 Generated test data for the transformed Java programs using
(JPCT + JCUTE)

Sl.no. Program name TC' Time'inms Speed’
1 Condition 5 2338 2.13
2 Weight 6 4355 1.37
3 QuickSort 1 1128 0.88
4 Nonce 24 27,315 0.87
5 StringBuffer 8 160, 428 0.04
6 SwitchTest 7 18, 748 0.32
7 ProducerConsumer 2 639 3.12
8 BSTree 8 3296 2.42
9 ArraySort 5 3275 1.22
10 StaticInstanceProblem 3 660 4.54
11 CAssume 2 1541 1.29
12 CTest3 3 1012 2.96
13 Deadlock 2 2665 0.75
14 Demo 3 1873 1.6
15 DemoLock 3 1181 2.54
16 CTest2 5 988 5.06
17 CTestl 2 1028 1.94
18 DemoLock2 7 1490 4.69
19 DSort 12 4480 1.11
20 ErrorTest 2 256 7.81
21 If-Else 6 2606 2.30
22 InterfaceJava 3 1234 2.43
23 LockHeld 2 1274 1.56
24 MultiLock 1 1714 1.75
25 NewlJava 1 2297 0.43
26 No Predictive 5 2814 1.77
27 NoPredictive2 6 2343 2.56
28 NS 53 211, 542 0.20
29 NS2 47 215,434 0.13
30 FinallyTest 1 187 5.34
31 OneWrite 1 3750 0.26
32 Regression 12 2088 5.74
33 SampleXACMLPolicy 19 3858 4.92
34 StackTest 2 496 4.03
35 StaticInstanceProblem?2 4 780 3.8
36 StringBufferModule 11 232,818 0.02
37 StringBufferl 17 76, 649 0.22
38 StringBuffer2 19 82,754 0.22
39 Struct 7 2301 3.04
40 Testme 5 1424 3.51

OneWrite (refer Column 4) improved from 0 to 66 % approx-
imately. Please observe that the BC% value is 100 % only
for eleven programs, while BC'% is 100 % for fifteen pro-
grams. It means that all possible branches are covered. The
last column in Table 7 gives the difference of these two branch

Arab J Sci Eng (2017) 42:619-637

627

coverage percentages. It can be seen that there is no change
in the branch coverage percentage for some programs. The
possible reasons for this non-enhancement in the branch cov-
erage of these programs could be due to the fact that either all
the possible branches are already covered, or the number of
branches covered is same for both the scenarios. The remain-
ing programs successfully achieved an enhancement in the
branch coverage percentage. The average BC% is 66.5 % and
BC'% is 80 % for the forty programs. Here, we conclude that
the average increase in the percentage of branch coverage is
approximately 13.5% for the experimental programs. Fig-
ure 4 shows the branch coverage percentages for both the
scenarios. X-axis represents the program number and Y-axis
represents BC%.

To focus on the energy awareness, Tables 8 and 9 show
the energy consumption details for Scenarios 1 and 2,
respectively. Columns 3 to 5 of Table 9 show the recorded
timestamps. Column 6 shows the power consumption of our
tool while computing the test data for each experimental pro-
gram. Figure 5 shows the power consumption for different
experimental programs with respect to time (refer Column 5
of Table 9). Table 9 shows that the power consumption of our
tool for 7.5 % of the experimental programs crossed 100 W.
While the power consumption is below SO0W for 87.5 % of
the programs, only 5% of the programs consumed power
within 50 to 100 W. We show the box-plot of power con-
sumption with respect to the lines of code (LOC) of the
transformed program, number of predicates and total time
of power consumption. The result in Fig. 6 shows that the
power consumption does not increase appreciably with the
increase in the LOC (i.e., LOC’) due to code transforma-
tion. Hence, code transformation by JPCT to enhance the
branch coverage will not incur much power consumption.
Thus, JPCT is power efficient, whereas a small increase
in the number of predicates in the program shows a steep
rise in the power consumption (refer Fig. 7). Thus, more
is the number of predicates in the programs, more is the
power consumption. As the tool spends some time to cover
more predicates, the power consumption increases. This
increase in the power consumption as a function of the time
spent by the tool in analyzing the programs is evident from
Fig. 9.

The energy consumption computed using Eq. 1 is shown
in the last columns of Tables 8 and 9 for all the forty pro-
grams. The range of energy consumption varies from 0.1
to 70kJ. Figure 8 shows the programs on X-axis and their
corresponding energy consumption on Y-axis. The results
show that the energy consumption crossed 1kJ for 25 % of
programs. The average energy consumption of the tool with-
out code transformer is 5.2kJ and with code transformer
is 5.6kJ. Hence, the increase in energy consumption due
to code transformation is 0.4kJ. This increase in energy
consumption with respect to the increase in computational

Table 7 Computed branch coverage percentage

Sl. no. Program name BC% BC'% Difference %
1 Condition 40 % 93% 53 %

2 Weight 40 % 75 % 35%

3 QuickSort 83.33% 8333% 0%

4 Nonce 60.95% 72.60% 11.65%
5 StringBuffer 58.92% 60% 1.08 %
6 SwitchTest 80 % 86.66% 6.66 %
7 ProducerConsumer 62.50% 75% 12.5%
8 BSTree 67.85% 82.14% 14.29%
9 ArraySort 60 % 73.33% 13.33%
10 StaticnstanceProblem 60 % 80 % 20 %

11 CAssume 100 % 100 % 0%

12 CTest3 75 % 100 % 25%

13 Deadlock 100 % 100 % 0%

14 Demo 50% 50 % 0%

15 DemolLock 50 % 100 % 50 %

16 CTest2 75 % 100 % 25 %

17 CTestl 0% 50 % 50 %
18 DemoLock2 100 % 100 % 0%

19 DSort 100 % 100 % 0%

20 ErrorTest 0% 0% 0%

21 If-Else 100 % 100 % 0%

22 InterfaceJava 100 % 100 % 0%

23 LockHeld 91.66% 91.66% 0%

24 MultiLock 100 % 100 % 0%

25 NewlJava 50 % 75 % 25 %

26 NoPredictive 625% 81.5% 25%

27 NoPredictive2 75 % 100 % 25 %

28 NS 82.87% 90.41% 7.54%
29 NS2 6542% 8297% 17.55%
30 FinallyTest 0% 0% 0%

31 OneWrite 0% 66.66% 66.66 %
32 Regression 100 % 100 % 0%

33 SampleXACMLPolicy 95.83% 9583% 0%

34 StackTest 0% 0% 0%

35 StaticInstanceProblem2 100 % 100 % 0%

36 StringBufferModule 51.92% 673% 15.38%
37 StringBufferl 60 % 80 % 20 %

38 StringBuffer2 609% 81.25% 20.35%
39 Struct 100 % 100 % 0%

40 Testme 100 % 100 % 0%

time (Tables 5, 6) is shown in Fig. 10. Thus, with refer-
ence to the principles of Green software engineering, the
energy overhead incurred to achieve 13.5% of increase in
branch coverage is only 0.4kJ. Therefore, the testers can
opt for code transformation and still support Green software
testing.

@ Springer

628

Arab J Sci Eng (2017) 42:619-637

0 BC% (JCUTE)
100%

90%

80% |

70%

60% -

C 50% -

40%

30%

20%

10% -

0% T

Fig. 4 Comparison of branch coverages

5 Comparison with Related Work

In this section, we discuss and compare some of the existing
works that are related to our proposed work.

Lietal. [2] proposed a framework called Energy- Directed
Test Suite Optimization (EDTSO). They have minimized the
test cases by considering their energy efficiency. They have
presented a new test suite minimization technique for gen-
erating test suite with reduced energy consumption. Their
approach is based on casting the energy and test cover-
age requirements as an ILP problem. They have performed
their experiment using two applications, i.e., K-9 Mail and
MyTracks. For K-9 Mail, the most expensive test case con-
sumes almost 5000 mJ, the second almost 3,000 mJ , with
the remainder ranging from approximately 1000 mJ to just
under 5 mJ. Similarly, energy consumption of the test cases
for MyTracks ranged from ~5mJ to ~400,000mJ. From
this result, they conclude that test cases from a test suite are
likely to have a high amount of variance in their energy con-
sumption. Unlike the approach in [2], our proposed approach
computes the energy consumption of concolic testing tool
instead of computing the energy efficiency of individual test
cases, which is currently not supported by the tool.

Amsel et al. [1] proposed GreenTracker for estimating
the energy consumption of any software. They consider the
development of this tool to be critical for establishing which
software systems are the most environmentally sustainable.
They also aim to spread awareness about the potential envi-
ronmental hazards associated with software and to improve
software engineering techniques to reduce the energy con-
sumption of software. On their results and evaluation, they
have experimented for Mozilla Firefox 3.0.10 and Safari

@ Springer

|

1 2 3 45 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
PROGRAMS

[BC'% (JPCT+ICUTE)

4.0.3 Internet browsers. They found that, on their system,
the average CPU power of Firefox was lower that Safari. The
average CPU of Firefox over 5 trials was 28.63 % while Safari
was 30.98 %. GreenTracker is not suitable for the purpose of
testing, whereas our proposed tool focuses on enhancing the
branch coverage for effective concolic testing and shows the
energy consumed in this process.

Dick et al. [14] presented a method to measure and
rate software-induced energy consumption of stand-alone
applications on desktop computers as well as interactive
transaction-based application on servers. In both cases, real-
istic workloads are applied. Their test rig contains the tested
system, an appropriate power meter (PM), a workload gener-
ator (WG) and a data evaluation system (DES). Their method
is intended to support software developers, purchasers,
administrators and users in making informed decisions on
software architecture and implementation as well as on soft-
ware products they use or plan to use. For their experiment,
they have considered Firefox and Internet Explorer browsers.
The difference was significant 7(30.686) = —10.981, p <
0.01 (equal variances not assumed). In this scenario, the
average energy conservation of Firefox compared to Inter-
net Explorer is about 19 %, whereas our proposed approach
is to compute power consumption and energy consumption
of a software testing tool.

Chen et al. [15] developed a tool, named StreesCloud,
to measure energy consumption of applications. They have
observed that the energy consumption with deployment
configuration ‘“3Small(S)” increased by 0.8 % compared
to “3Small(D).” The system throughput of “3Small(S)”
decreased by 2.1% compared to “3Small(D).” This is
because in the client workload they have modeled in this

Arab J Sci Eng (2017) 42:619-637

629

Table 8 Power consumption and Energy consumption of proposed tool
with JCUTE

Sl. no. Program name Total time Power Energy (Joules)
(ms) (Watt)
1 Condition 80,456 13.4 1078.1104
2 Weight 63,422 17.5 1109.885
3 QuickSort 133,545 10.5 1402.2225
4 Nonce 80, 452 34.5 2775.594
5 StringBuffer 49,789 149 741.8561
6 SwitchTest 125,871 32.5 4090.8075
7 ProducerConsumer 44,895 5.2 233454
8 BSTree 33,754 10.4 351.0416
9 ArraySort 44,645 10.5 468.7725
10 StaticInstanceProblem 39,472 8.9 351.3008
11 CAssume 27,457 7.4 203.1818
12 CTest3 32,625 8.9 290.3625
13 Deadlock 38,589 4.5 173.6505
14 Demo 36,612 7.8 285.5736
15 DemoLock 31,278 4.2 131.3676
16 CTest2 37,895 6.5 2463175
17 CTestl 27,954 4.5 125.793
18 DemoL0ck2 32,586 4.2 136.8612
19 DSort 25,689 8.9 228.6321
20 ErrorTest 31,375 4.4 138.05
21 If-Else 41,689 9.5 396.04
22 InterfaceJava 47,892 8.6 411.8712
23 LockHeld 43,654 5.3 231.3662
24 MultiLock 25,436 12.8 325.5808
25 NewlJava 32,487 8.7 282.6369
26 NoPredictive 35412 7.8 276.2136
27 NoPredictive2 36,478 8.6 313.7108
28 NS 221,456 222.6 49,296.11
29 NS2 235,645 2343 55,211.62
30 FinallyTest 32,456 8.5 275876
31 OneWrite 38,724 12.6 487.9224
32 Regression 38,895 6.2 241.149
33 SampleXACMLPolicy 48,542 15.45 749.9739
34 StackTest 25,458 4.8 112.5964
35 StaticInstanceProblem2 30,578 9.2 281.3176
36 StringBufferModule 284,520 234.8 866,805.3
37 StringBuffer1 99,415 80.9 8042.679
38 StringBuffer2 100,325 80.2 8046.065
39 Struct 28,456 7.6 216.2656
40 Testme 25,789 7.9 203.7331

test, the majority of the tasks were communication-intensive.
Their experimental results demonstrated that, with the sup-
port of StressCloud, the performance and energy consump-
tion of cloud applications in realistic cloud environments can
be collected and analyzed in an effective and efficient manner.

Unlike the tool StreesCloud that measured the performance
of cloud base application, our tool measures the energy con-
sumption for simple stand-alone Java applications.

Capra et al. [16] identified an approach for measuring
application software energy efficiency, focusing on manage-
ment information systems (MIS). Their approach was a first
step toward defining application software energy efficiency
and providing developers with guidelines for designing
energy-efficient code. They have also developed a Java tool,
called the workload simulator (WLS). For a given applica-
tion, their tool can simulate a flow of operations and execute
it a certain number of times for a given number of simultane-
ous users, thus generating a benchmark workload. They have
measured power consumption using ammeter clamps (AC)
and a system that they called the virtual instrument machine
(VIM). Their experiments reveal that application software
has a non-negligible impact on energy consumption. The
power consumed by the server running the applications was
up to 72 % higher than the power the idle server absorbed.
Furthermore, different applications within the same category
required significantly different amounts of energy to per-
form the same set of operations. For example, OpenBravo
requires 17.5 W h, while Adempiere requires only 7.1 Wh on
Windows, with a gap greater than 100 %. These results are
consistent across application categories and operating sys-
tems, with an average gap of 79 %. In our proposed work,
we also developed our tool using Java language. Our tool is
able to perform testing task for Java programs. Our proposed
work results in total power and energy consumptions.

Brown et al. [17] discussed in their article an overall
approach to energy efficiency in computing systems. They
have proposed the implementation of energy optimization
mechanisms within systems software, equipped with a power
model for the system’s hardware and informed by appli-
cations that suggest resource-provisioning adjustments so
that they can achieve their required throughput levels and/or
completion deadlines. For example, a current four-socket
server system (based on the eight-core Sun Niagara2 CPU)
with 16 DIMM:s per socket using DDR2 dual-channel mem-
ory technology has 64 DIMM:s total. This would increase
to 24 DIMMSs per socket (96 total) if its faster successor
used DDR3 triple-channel memory instead. A representative
DDR2 DIMM consumes 1.65 W (or 3.3 W per pair), whereas
the lowest power edition of the current DDR3 DIMMs con-
sumes 1.3W (or 3.9W per trio). The result appears to be
an increase of only 20% power consumption from about
100-120 W total in their example. In our proposed work, we
concentrate on computation power and energy Consumptions
of Software Applications instead of hardware components.

Saxe et al. [18] proposed and developed PowerTop tool.
PowerTop shows the extent of the waste, while also showing
which software is responsible. System users can then report
the observed waste as bugs and/or elect to run more efficient

@ Springer

630

Arab J Sci Eng (2017) 42:619-637

Table 9 Power consumption and Energy consumption of proposed tool with JPCT+JCUTE

SL. no. Program name Timestamps Application Energy
From To Total time (ms) Power (Watt) Consumption (Joules)

1 Condition 63569182997999 63569183093347 95,348 12.3 1172.7804
2 Weight 63569188654831 63569188730053 75,222 16.3 1226.1186
3 QuickSort 63569189018202 63569189170647 152,445 11.1 1692.1395
4 Nonce 63569190679184 63569190760530 81,146 36.4 2953.7144
5 StringBuffer 63569191038982 63569191090740 51,758 15.3 791.8974
6 SwitchTest 63569194744377 63569194871158 126,781 33.9 4297.8759
7 ProducerConsumer 63569195206170 63569195253022 46,852 6.1 285.7972
8 BSTree 63569195628512 63569195662995 34,483 11.7 403.4511
9 ArraySort 63569196301754 63569196347411 45,657 11.4 520.4898
10 StaticInstanceProblem 63569196675389 63569196715962 40,573 10.7 434.1311
11 CAssume 63569209614454 63569209644924 30470 7.1 216.3370
12 CTest3 63569216007321 63569210052945 45624 7.2 328.4928
13 Deadlock 63569210305932 63569210348524 42592 9.2 391.8464
14 Demo 63569210593664 63569210636276 42612 6.9 294.0228
15 DemoLock 63569211268204 63569211301679 33475 44 147.2900
16 CTest2 63569211543687 63569211589249 40562 7.4 300.1588
17 CTestl 63569212080269 63569212108741 28472 5.2 148.0544
18 DemoL0ck2 63569212530259 63569212565744 35485 44 156.1340
19 DSort 63569212795596 63569212823152 27556 8.6 236.9816
20 ErrorTest 63569213213927 63569213246397 32470 5 162.3500
21 If-Else 63569213479918 63569213522539 42621 9.4 400.6374
22 InterfaceJava 63569213776108 63569213827910 51802 8.6 445.4972
23 LockHeld 63569214296410 63569214349198 52788 5.1 269.2188
24 MultiLock 63569386907220 63569386942754 35534 11.9 398.7763
25 NewlJava 63569387451868 63569387489345 33477 9.6 341.1264
26 NoPredictive 63569388631364 63569388667877 36513 8.7 317.6631
27 NoPredictive2 63569388911397 63569388948915 37518 9.6 360.1728
28 NS 63569390044291 63569390283628 239337 2333 55837.3221
29 NS2 63569389628499 63569389874903 246404 244.6 60270.4184
30 FinallyTest 63569390701523 63569390735086 33563 8.4 281.9292
31 OneWrite 63569390919680 63569390958207 38527 13.1 504.7037
32 Regression 63569391900297 63569391940889 40,592 6.2 251.6704
33 SampleXACMLPolicy 63569392159011 63569392208760 49,749 16.5 820.8585
34 StackTest 63569392389298 63569392415695 26,397 4.5 118.7865
35 StaticInstanceProblem?2 63569392640802 63569392672252 31,450 10 314.5000
36 StringBufferModule 63569392875182 63569393168289 293,107 241.9 70,902.5833
37 StringBuffer] 63569393418796 63569393519208 100,412 81.1 8143.4132
38 StringBuffer2 63569393690719 63569393801371 110,652 78.1 8641.9212
39 Struct 63569393953519 6356939398394 1 30,422 7.5 228.1650
40 Testme 63569394155321 63569394182701 27,380 7.7 210.8260

software. For an example of power usage, they have estimated
13.616 W on 3h of charging using OpenSolaris PowerTop
version 1.1. They have stated that PowerTop represents a
great first step by providing programmers and administra-
tors with observability into software inefficiency, a point of

@ Springer

reference for optimization, and awareness of the important
role software plays in energy-efficient computing. Through
our proposed work, we compute the energy consumptions
of different software testing tools. Whichever tool takes less
amount of energy will be preferable to use for further task.

Arab J Sci Eng (2017) 42:619-637

631

Fig. 5 Recorded power

m Power (Watts)

consumption versus execution 300
time

250

P 200

w 150

100

50

Fig. 6 LOC’ versus power
(note: LOC' is the lines of code
in the transformed program)

2000

1800

1600

1400

1200

1000

800

600

400

200

—

Loc

Sen et al. [5,12] developed concolic testers Concolic Unit
Testing Engine (CUTE) and JCUTE for C and Java programs,
respectively. In this paper, we have used the same version
of JCUTE as proposed by Sen et al. [5,12] to generate the
required test cases automatically for concolic testing.

Das et al. [19] used the program transformation tech-
nique to achieve high modified condition/ decision coverage
(MC/DC) for C programs. Das et al. proposed Boolean
Code Transformer (BCT) to enhance coverage. They have

Power (Watts)

used CREST to generate test cases and proposed cover-
age analyzer (CA) to measure MC/DC%. However, they did
not give an analysis of the time overhead incurred due to
code transformation. Godboley et al. [11] extended the code
transformer in [19] using Quine—-McCluskey minimization
technique that was later extended in [10] to transform Java
programs. Another approach of code transformation for dis-
tributed concolic testing can be referred in [20,21]. But, none
of the above approaches [10,11,19] focused on energy con-

@ Springer

632 Arab J Sci Eng (2017) 42:619-637

Fig. 7 Predicate versus power 300

250

200

150

100

50

—
0 _4; .
Predicates Power (Watts)
M Energy Consumption (Joules)
1000 -
900 -
800 -
700 -
600 -
EC
500 -
(loules)

400 -
300 -

200 -
100 -

0111213141516171819202122232425262728293031323334353637383940
Programs

Fig. 8 Energy consumption for forty programs

sumption awareness. In this paper, the authors extended the In this work, the experimentation is carried on forty Java
approachin [10] to support energy awareness in concolictest- programs as compared to five programs in [10].

ing. In our proposed approach, we used JPCT and JCUTE Sarkar et al. [22] proposed two new metrics RepQ and
to transform the code and generate test cases, respectively. ~ RDI to quantify whether the repetitions found in a trace are

Springer

Arab J Sci Eng (2017) 42:619-637 633

Fig. 9 Time versus power 350
300 —
250 —
200
150
100
50 -
0 T 1
Time(sec) Power (Watts)
N Energy
500
450
~ 400
g
s 350
!
5300
g 250
£
w
o 200
wn
]
@ 150
g
= 100 -
50 -
0-
ﬂomqummmowl\-—«t\NOJMﬂNOg(D&ﬁawﬂ&ommwhmmhmhwm
OV NWVWOTOWLMM mNﬁmamml\o o 0~ NTooLITNGGNDLNCSGN
NOOWLWMNgUOUOACSOMNO® WO A0 QOO TOANMGC ARNOUMNWLO®MMmQ
- m MmN oo b N o N A A NNHOO - o RN R
=0 Increase Time (ms) - N
Fig. 10 Increase in energy consumption versus increase in time
Ao

éi‘!‘}‘i) Springer

634

Arab J Sci Eng (2017) 42:619-637

good enough for loop restructuring. The empirical study also
shows that RepQ and RDI values can identify data-parallel
loops where loop structuring is not going to be effective.
Their result indicates that they achieved a significant perfor-
mance improvement in those data-parallel loops which are
favorable for divergent branch elimination. They have trans-
formed the application for GPU to achieve improved branch
coverage. In our approach, we proposed a transformation
technique for Java programs. So, we achieved high branch
coverage by integrating this transformer to concolic tester.

Benedict et al. [23] proposed an algorithm and energy
tuning mechanism. It helps the energy conscious scien-
tific application and tool developers. EnergyAnalyzer is an
online-based energy consumption analysis tool that is under
development at the HPCCLoud Research laboratory. 3 Sim-
ilarly, our tool also aims to enable the software testers to
remain aware of the energy consumed during testing.

Hassine et al. [24] proposed a suite of Asmetal.-specific
mutation operators. These are classified into four categories.
Their proposed operators are used to assess the adequacy of
test suites generated using the ATGT (ASM Tests Genera-
tion Tool), according to various test coverage criteria. They
have demonstrated the applicability of their approach through
eight publicly available Asmetal. case studies. Their results
of the case studies show that the proposed mutation oper-
ators can be used to compare different Asmetal.-based test
coverage criteria and successfully detect inadequacies in test
suites. In our proposed work, we performed concolic test-
ing and computed branch coverage. However, we extend our
experiment by evaluating time, speed, power and energy con-
sumption.

Mao et al. [25] mainly focused on software structural
testing and proposed a search-based test data generation tech-
nique. They have proposed a framework, in which particle
swarm optimization (PSO) technique is adopted due to its
simplicity and fast convergence speed. For test data genera-
tion problem, the inputs of program under test are encoded
into particles. After producing test data inputs, coverage
information is collected by test driver. After this, the fitness
value of branch coverage is calculated based on such infor-
mation. Therefore, the fitness is used for PSO to adjust the
search direction. At last, the test data set with the highest
coverage rate is yielded. In our approach, we used dynamic
symbolic execution to automatically select the input values.
JCute tool generates test cases and produces branch cover-
age as output report. In our approach, we have also computed
speed of test case generation.

Varshney et al. [26] proposed an elitist GA-based (Genetic
Algorithm) technique that used the concepts of dominance
and branch distance to generate test data for the data
flow dependencies (all-uses criterion) of a program. Their

3 http://www.sxcce.edu.in/hpccloud/.

S @ Springer

approach can be used for programs with/without loops and
procedures. In our proposed work, we use concolic testing
tool to generate test cases, which are further used to compute
branch coverage.

Khanetal. [27] proposed a model transformation approach
from UCM notation to a Unified Modeling Language (UML)
sequence diagram to facilitate the transition from require-
ments to high-level design artifacts. They also presented an
application of the proposed model transformation to an ele-
vator control system. In our proposed work, we transformed
a Java program to its transformed version. This transformed
program consists of nested if—else statements. By using the
transformed version of the input Java program, we achieved
higher branch coverage percentage.

Table 10 summarizes our survey on some of the available
related work proposed by different authors. The third column,
named Framework, lists the different tools and technologies
adopted by the researchers in their respective work fol-
lowed by a brief description given in the fourth column. The
research work listed in SI. No. I to 7 has their research based
on power and energy consumption. These works focused on
spreading awareness concerning GREEN IT and GREEN
Software Engineering. The research work listed in SI. No. 8
to 17 deals with concolic and coverage-based testing. The
last row in Table 10 shows that our proposed work imple-
mented on a tool, named Green-ABCE, confirms to both
energy awareness and concolic testing.

We compare our proposed work with the existing related
work in Table 11 based on some selected characteristics iden-
tified during the survey. This table clearly shows whether
these characteristics shown in the columns are incorporated
(v') or not (X) in the referred related work. Among all the
existing work, only Li et al. [2] have made an attempt to ana-
lyze the energy consumption in software testing. Please note
that research work referred in SI. No. 2 to 7 has proposed
some approaches to compute the consumption of energy and
power. But they do not focus on software testing techniques.
The research work listed in SI. No. 8 to 17 focuses on soft-
ware testing only without making any reference to the energy
consumption. The last row in Table 11 shows that our pro-
posed work (implemented on Green-ABCE tool) satisfies all
the mentioned characteristics. Our proposed work addresses
both the software testing and the Green computing aspects
of Software Engineering. To the best of our knowledge, our
developed tool (Green-ABCE) is the first concolic testing tool
that can show the amount of energy consumed while enhanc-
ing the branch coverage of object-oriented (Java) programs.
Thus, it is our first step toward Green software testing.

Overall, through our literature study, we conclude that
some existing works are done to spread the awareness on
Green Software Engineering. But, as per our knowledge and
study, our proposed work is the new step toward Green Soft-
ware Testing. We have integrated some open-source tools

http://www.sxcce.edu.in/hpccloud/

Arab J Sci Eng (2017) 42:619-637

635

Table 10 Summary of concolic and coverage based testing approaches

SI. no. Authors FrameWork Description

1 Lietal. [2] EDTSO Based on encoding minimization problem as integer linear programming
problem

2 Amsel et al. [1] GreenTracker Estimates the Energy Consumption of software in order to help concerned
uses make informed decision about the software they use

3 Dick et al. [14] PM, WG, DAE How to measure the Energy Consumption of software

4 Chen et al. [15] StressCloud Analyzing the performance and energy consumption of a cloud application

5 Capra et al. [16] WLS, AC, VIM Proposed method for software energy efficiency for application software

6 Brown et al. [17] — Article suggests an overview of all approaches to energy efficiency in
computing system

7 Saxe et al. [18] PowerTOP This work shows the extent of the waste, while also showing which software
is responsible

8 Dasetal. [19] BCT, CREST, CA Based on concolic testing and MC/DC testing BCT uses K-Map as
minimization technique

9 Bokil et al. [28] AutoGen Analysis of all coverage criteria with time effort

10 Godboley et al. [10] JPCT, JCUTE Based on concolic testing and branch coverage testing. JPCT uses QM as the
minimization method

11 Burnim et al. [7] CREST Worked on Heuristic Concolic Testing and branch coverage

12 Kim et al. [29] CREST Based on concolic testing

13 Kim et al. [30] CONBOL Based on concolic testing. Analysis for branch coverage and time taken

14 Majumdar et al. [6] CUTE Worked on HCT and branch coverage

15 Kim et al. [31] SCORE Approach is build on distributed concolic testing

16 Sen et al. [5] CUTE,JCUTE Concolic Tool developed for C and Java Programs

17 Kim et al. [4] SMT Solver, CREST Based on HCT and analysis on reduction ratio

18 Proposed work Green-ABCE Spread the awareness on energy consumption analysis on Software testing

techniques

Table 11 Characteristics of different approaches on concolic and coverage based testing

Sl.no. Authors Generatedtest ~ Measuring Determined time Measured Computed power Computed energy
cases coverage% constraints speed consumption consumption
1 Lietal. [2] v v v X v
2 Amsel et al. [1] X X X X v v
3 Dick et al. [14] X X X X v v
4 Chen et al. [15] X X X X X v
5 Capra et al. [16] X X v X v v
6 Brown et al. [17] X X X X v v
7 Saxe et al. [18] X X X X v v
8 Das et al. [19] v v X X X X
9 Bokil et al. [28] v X v X X X
10 Godboley et al. [10] v v v v X X
11 Burnim et al. [7] v X X X X X
12 Kim et al. [29] v X X X X X
13 Kim et al. [30] v v v X X X
14 Majumdar et al. [6] v X X X X X
15 Kim et al. [31] v v X v X X
16 Sen et al. [5] v v v X X X
17 Kim et al. [4] v X X X X X
18 Proposed Work v v v v v v

@ Springer

636

Arab J Sci Eng (2017) 42:619-637

and developed some tools to perform Green Software Testing
process. Our proposed tool produces several useful outputs,
which are important in testing domain as well as Green
Computing domain. We can observes that only Li et al. [2]
have computed testing parameters along with energy report.
None of the authors listed in Table 11 worked on both the
domains (Software Testing and Green Computing). This is
the main difference between our proposed work with other.
Our main contribution is to achieve high branch coverage
along with the power and energy reports. Therefore, we have
developed Green-ABCE using some open-source and our
developed tools (JPCT,jCUTE,JouleMeter and Energy Cal-
culator), which are already discussed previously in detail in
Sect. 3. In our proposed work, in case of Scenario 1, the
average computation/execution time for the forty programs
is 23,678.93 ms, while in Scenario 2, the average computa-
tion/execution time for the forty programs is 27,176.42ms.
The average speed computed for Scenario 1 is, speed = 4.66
TC/s, and average speed for Scenario 2 is speed’ = 2.27
TC/s for the forty programs. Our proposed approach achieved
approximately 13.5 % higher branch coverage for the forty
programs we tested with an overhead of 0.4 kJ of energy con-
sumption. The average energy consumption of the tool for all
the programs is approximately 5.6kJ.

6 Threats to Validity

Like many other existing works, this proposed work also
suffers from some limitations. These are mentioned below
as existing threats to the validity of Green-ABCE.

1. The primary threat to our approach is related to the target
programs. The programs chosen for this experimenta-
tion are amenable to concolic testing and do not reveal
the characteristics (such as multi-threaded, distributed
programs) that, if present, may not be suitable for the pro-
posed approach. While concolic testing is indispensable
for safety critical systems, our experimental programs do
not represent the safety critical category.

2. There are certain limitations of the symbolic execution
engine used in JCUTE that forms another threat to the
validity of our approach.

3. The constraint solver that is utilized in the tool may not be
powerful enough to compute the concrete values that sat-
isfy the constraints in very large industrial applications.
We are still working to overcome this limitation.

4. The low speed of Green-ABCE (due to code transfor-
mation) in generating the test cases is another concern
with this proposed work. Even though the results do not
establish a direct relationship of decrease in speed with
that of the increase in the program size, still the speed
is expected to become slower for very large programs as

S @ Springer

the experimental programs are not good representative of
industrial programs.

5. JouleMeter is developed for Windows 7 operating system.
Asaresult, our tool is currently restricted to this particular
platform only.

6. Another threat to the validity is that the readings of
JolueMeter are only suggestive values for the power con-
sumption. But the manual of JouleMeter suggests the
integration of electronic pro model such as Wattsup for
a more accurate reading. The proposed work has not uti-
lized any such model. Our framework uses only the proxy
readings of JouleMeter owing to the cost of the electronic
pro model and unavailability in the local market.

7 Conclusion and Future Work

We proposed a concolic testing framework for Java pro-
grams and implemented in a tool, named Green-ABCE. The
proposed framework is designed and developed to mea-
sure the energy consumption while analyzing the increase in
branch coverage using concolic testing. An overall view of
Green-ABCE followed by a discussion on the working of its
different components has been presented in detail. The exper-
imental results show that the proposed approach of test case
generation achieved better branch coverage in comparison
with the existing methods. Our proposed method achieved
approximately 13.5 % of the increase in branch coverage for
the forty programs with an overhead of 0.4 kJ of energy con-
sumption. The average energy consumption of the tool for
all the programs is approximately 5.6kJ.

In future, we focus on overcoming the identified threats
to the validity of our approach. We will extend this work to
implement the proposed approach with other energy-efficient
transformation techniques such as Java version of Exclusive-
Nor Code Transformer (EX-NCT) so that we will achieve
high branch coverage. We are also planning to work on energy
consumption for MC/DC testing method. Further, we also
aim to develop a distributed framework to increase the scal-
ability of our approach.

References

1. Amsel, N.; Tomlinson, B.: Green tracker: a tool for estimating the
energy consumption of software. In: Proceedings of the 28th Inter-
national Conference on Human Factors in Computing Systems,
CHI, pp. 3337-3342, Atlanta, Georgia, April 10-15 (2010)

2. Li, D.; Sahin, C.; Clause, J.; Halfond, W.G.J.: Energy-directed test
suite optimization. In: 2nd International Workshop on Green and
Sustainable Software (GREENS), pp. 62—69, New York, USA, May
(2013)

3. Kan, E.Y.Y.; Chan, W.K_; Tse, T.H.: EClass: an execution classifi-
cation approach to improving the energy-efficiency of software via
machine learning. J. Syst. Softw. 85(4), 960-973 (2012)

Arab J Sci Eng (2017) 42:619-637

637

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Kim, M.; Kim, Y.; Choi, Y.: Concolic testing of the multi-sector
read operation for flash storage platform software. Form. Asp.
Comput. 24(3) (2012)

Sen, K.; Agha, G.: CUTE and JCUTE: concolic unit testing and
explicit path model-checking tools (Tools Paper). DTIC Document
(2006)

Majumder, R.; Sen, K.: Hybrid concolic testing. In: Proceedings of
the 29th International Conference on Software Engineering, IEEE
Computer Society, Washington, DC, USA, pp. 416-426 (2007)
Burnim, J.; Sen, K.: Heuristics for scalable dynamic test genera-
tion. In: Proceedings of ASE, pp. 443-446, Washington, DC, USA
(2008)

RTCA, Inc.: RTCA/DO-178B, Software Considerations in Air-
borne Systems and Equipment Certification, Washington, D.C.
December (1992)

Kern, E.; Dick, M.; Naumann, S.; Guldner, A.; Johann, T.: Green
software and green software engineering—definitions, measure-
ments, and quality aspects. In: Proceedings of ICT4S, ETH Zurich,
pp. 87-94, February 14-16 (2013)

Godboley, S.; Sahani, A.; Mohapatra, D.P.: ABCE: a novel frame-
work for improved branch coverage analysis. In: SCSE, Procedia
Computer Science, Elsevier, University of California, Berkley,
USA 62, 266-273 (2015)

Godboley, S.; Prashanth, G.S.; Mohapatra, D.P.; Majhi, B.: Increase
in modified condition/decision coverage using program code trans-
former. In: IEEE 3rd International Advance Computing Conference
(IACC), pp. 1400-1407, Feb (2013)

Sen, K.: Automated test generation using concolic testing. ISEC,
Bangalore, India, p. 9, February 18-20 (2015)

Liu, C.L.; Mohapatra, D.P.: Elements of Discrete Mathematics: A
Computer Oriented Approach, 3rd edn. Tata McGraw-Hill Educa-
tion, New York (2013)

Dick, M.; Kern, E.; Drangmeister, J.; Naumann, S.; Johann, T.:
Measurement and rating of software induced energy consumption
of desktop PCs and servers. In: Envirolnfo 2011: Innovations in
Sharing Environmental Observations and Information, Shaker Ver-
lag Aachen (2011)

Chen, F.; Grundy, J.; Schneider, J.G.; Yang, Y.; He, Q.: Auto-
mated analysis of performance and energy consumption for cloud
applications. In: Proceedings of the 5th ACM/SPEC Interna-
tional Conference on Performance Engineering, ACM, pp. 39-50,
Dublin, Ireland (2014)

Capra, E.; Francalanci, C.; Slaughter, S.A.: Measuring Application
Software Energy Efficiency. IT Prof. 14(2), 54-61 (2012)

Brown, D.J.; Reams, C.: Toward energy-efficient computing. Com-
mun. ACM 53(3), 50-58 (2010)

Saxe, E.: Power-efficient software. Commun. ACM 53(2), 44-48
(2010)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

Das, A.; Mall, R.: Automatic generation of MC/DC test data. In:
Proceeding of International Journal of Software Engineering, Acta
Press 2,(1) (2013)

Godboley, S.; Prashanth, G.S.; Mohapatra, D.P.; Majhi, B.:
Enhanced modified condition/decision coverage using exclusive-
NOR code transformer. In: 2013 International Multi-Conference
on Automation, Computing, Communication, Control and Com-
pressed Sensing (iMac4s), pp. 524-531, March (2013)

Godboley, S.; Panda, S.; Mohapatra, D.P.: SMCDCT: a frame-
work for automated MC/DC test case generation using distributed
concolic testing. In: International Conference on Distributed Com-
puting and Internet Technology, LNCS, Springer, KIIT Bhhub-
neshwar, India 8956, 199-202 (2015)

Sarkar, S.; Mitra, S.: A profile guided approach to optimize branch
divergence while transforming applications for GPUs. ISEC, Ban-
galore, India, pp. 176-185, February 18-20 (2015)

Benedict, S.: Threshold acceptance algorithm based energy tuning
of scientific applications using energy analyzer. ISEC, Chennai,
India, pp. 11:1-11:6, February 19-21 (2014)

Hassine, J.; Alkrarha, O.: A mutation-based approach for test-
ing Asmetal specifications. Arab. J. Sci. Eng. 40(12), 3523-3544
(2015)

Mao, C.: Generating test data for software structural testing based
on particle swarm optimization. Arab. J. Sci. Eng. 39(6), 4593—
4607 (2014)

Varshney, S.; Mehrotra, M.: Search-based test data generator for
data-flow dependencies using dominance concepts, branch distance
and elitism. Arab. J. Sci. Eng. 41(3), 853-881 (2015)

Khan, Y.; Mahmood, S.: Generating UML sequence diagrams from
use case maps: a model transformation approach. Arab. J. Sci. Eng.
41(3), 965-986 (2015)

Bokil, P.; Darke, P.; Shrotri, U.; Venkatesh, R.: Automatic test
data generation for C programs. In: 3rd IEEE International Confer-
ence on Secure Software Integration and Reliability Improvement
(2009)

Kim, M.; Kim, Y.; Jang, Y.: Industrial application of concolic
testing on embedded software: Case studies. In: IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation
(ICST), pp. 390-399 (2012)

Kim, Y.; Kim, Y.; Kim, T.; Lee, G.; Jang, Y.; Kim, M.: Automated
unit testing of large industrial embedded software using concolic
testing. In: IEEE/ACM 28th International Conference on Auto-
mated Software Engineering (ASE), pp. 519-528, Nov (2013)
Kim, M.; Kim, Y.; Rothermel, G.: A scalable distributed concolic
testing approach: an empirical evaluation. In: IEEE Fifth Interna-
tional Conference on Software Testing, Verification and Validation
(ICST), pp. 340-349, April (2012)

@ Springer

	An Automated Analysis of the Branch Coverage and Energy Consumption Using Concolic Testing
	Abstract
	1 Introduction
	2 Fundamental Ideas
	2.1 Green Software Engineering
	2.2 Energy Consumption
	2.3 Branch Coverage
	2.4 CONCOLIC Testing

	3 Proposed Framework
	3.1 Overview of Green-ABCE
	3.2 Detailed Description of Green-ABCE
	3.2.1 Green-ABCE
	3.2.2 JPCT
	3.2.3 JCUTE
	3.2.4 JouleMeter

	4 Experimental Studies
	5 Comparison with Related Work
	6 Threats to Validity
	7 Conclusion and Future Work
	References

