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Abstract Metamorphic viruses are equipped with morph-
ing engine responsible for transforming the structure of the
code in subsequent generations, thereby retaining the mali-
cious behavior. Thus, commercial anti-virus software based
on signature approach is unable to identify the unknown
or zero-day malware. Each metamorphic malware has its
own unique pattern since its internal structure changes
from generation to generation. Hence, detection of these
viruses is a challenge for researchers working on com-
puter security. The degree of metamorphism in the dataset
is estimated by aligning the locations of common opcodes
usingSmith–Waterman sequence alignmentmethod suggest-
ing that a generic pattern representing malware or benign
classes cannot be extracted, thus demonstrating the failure
of signature-based approach. The proposed statistical non-
signature-based detector creates two different meta feature
spaces each comprising 25 attributes for their detection.
Three categories of opcode features are extracted from each
sample: (a) branch opcodes, (b) unigrams and (c) bigrams.
Insignificant features are initially eliminated using the Naïve
Bayes approach; obtained feature space is further reduced
using two feature reduction techniques: (1) Discriminant
Feature Variance-based Approach (DFVA) and (2) Markov
Blanket. Learning models are created using the promi-
nent attributes obtained from each dimensionality reduction
methods. The models which provided the highest accu-
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racy at minimum feature length were retained, and unseen
instances are classified using these optimal models. Later,
two meta feature spaces were generated by ensembling the
prominent branch, unigram and bigram opcodes obtained
from DFVA and Markov Blanket. Both feature reduction
techniques were found to be equally efficient in detecting
the metamorphic malware samples. The proposed system
detected Metamorphic Worm and Next Generation Virus
Construction Kit viruses with 100% accuracy, Precision 1.0,
Recall 1.0 and a promising F1-score of 1.0 is achieved. The
results demonstrate the efficiency of the proposed meta-
morphic malware detector, and we thus recommend that
this approach can be used to assist commercial AV scan-
ners.

Keywords Metamorphic malware · DFVA · Markov
blanket · Feature reduction · Sequence alignment · Meta
feature space

1 Introduction

Computer virus is a piece of malicious code that replicates
and injects itself into legitimate programs [1]. Metamorphic
viruses employ diverse techniques to obfuscate their code
while maintaining the same functionality in the later genera-
tion. Traditional signature-based approach cannot help in the
detection of zero-day malware [2] due to structural diversifi-
cation.Hence, it also fails to detect themetamorphicmalware
samples [3].

In the case of a metamorphic virus, malware mutates
the entire virus body; hence, no constant sequence is pre-
served in the new variants [4]. Hidden Markov Model
(HMM)-based method [3] was used to detect the meta-
morphic malware samples in the earlier times. The exper-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-016-2264-6&domain=pdf
http://orcid.org/0000-0001-6078-2014


538 Arab J Sci Eng (2017) 42:537–558

iments demonstrated that viruses created using the Next
Generation Virus Construction Kit (NGVCK) exhibited a
higher degree of metamorphism. Profile Hidden Markov
Model was proposed in [5] for metamorphic malware
detection. This detector recognized the variants created
by PS-MPC and VCL-32 but failed to identify NGVCK
viruses.

However, it was experimentally proved that Metamor-
phic Worm (MWORM) developed by authors in [6] can
thwart the HMM-based detection. This was achieved by
padding the MWORM with blocks of subroutine instruc-
tions from benign files. Padding is done in a way that
the metamorphism of the worms is retained and new mal-
ware files thus generated appear structurally similar to
legitimate programs. Later, structural entropy [7]-based
method was proposed for identifying the metamorphic vari-
ants. Entropy score measures the statistical variation in
bytes within the files. This method detected the MWORM
with better accuracy but resulted in few false positive
errors.

The contributions of this study are as follows:

1. Development of an efficient statistical detector for iden-
tifying metamorphic viruses using DFVA and Markov
blanket method. These methods generate robust models
for identifying future instances.

2. Generation of two meta opcode space each of 25 features
from training set that detected the malware and benign
unseen instances in the test set.

3. Evaluation of the performance of malware and benign
learning models at varying feature length.

4. Validation of unseen instances was carried out using the
individual optimal models as well as the meta feature
space.

5. Investigation of the applicability of discriminantmalware
opcodes in classification.

6. Validation of degree ofmetamorphism in the dataset used
to conduct experiment.

7. Investigation of the applicability of non-signature
approach that resulted in the pruned opcodes obtained
by feature selection methods to obtain better outcomes.

The structure of this paper is as follows: Sect. 2 dis-
cusses related works done in this area. Section 3 describes
the proposed methodology. The experimental setup used for
carrying out the study is explained in Sect. 4. Results of
the experiment are described in Sects. 5 and 8. Compara-
tive analysis with prior works is done in Sect. 6. Finally in
Sect. 7, we discuss the inferences and concluding remarks
are covered in Sect. 9.

2 Related Works

Daniel Bilar [8] reported that opcode (operational code)
frequency distributions can be used to classify malware
instances. A total of 67 malware executables were disas-
sembled, and the frequency distribution of opcodes was
compared with the histogram of opcodes in normal pro-
grams. It was showed that the malicious opcode frequency
distributions vary significantly from that of benign samples
and rare opcodes were a stronger predictor for classifica-
tion. Igor Santos et al. [9,10] designed a novel system
to identify the malware variants of familiar families using
the distribution and appearance of opcode sequences. They
reported that certain opcodes occurrence varied in benign
and malicious executables. Hence, similarity score calcu-
lated based on opcode frequency might fail in differentiating
the samples. To avoid such situations, the relevance of each
opcode was determined by multiplying the term frequency
of each opcode sequence by its calculated weight. Robert
Moskovitch et al. [11] introduced a technique where the
benign andmalware executables were represented by opcode
expressions by streamlining an executable into a sequence
of opcodes. The authors treated n-grams of the opcodes
as features for classifying the unknown instances. Their
method achieved an accuracy greater than 99% on a train-
ing set with malicious file contents lower than 15%. This
method was found to be superior to the byte sequential n-
gram representation technique. In [12], Asaf Shabtai et al.
also used opcode n-gram patterns for classification. Authors
performed an extensive analysis of this method with the
help of a test set constituting more than 30,000 files. The
2-gramopcodes outperformed compared to othern-gram pat-
tern.

Sushant Priyadarshi and Mark Stamp in [13] developed
an emulator to identify the dead code inserted in malware
instances. If the virus files were completely unmorphed,
the HMM tool was able to detect them. However, gen-
erating a precise program normalizer is a complex task.
In [6], the authors designed a prototype of metamorphic
worm which was capable of evading the HMM-based scan-
ner. The worm carried a morphing engine that was morphed
on each replication. This metamorphic worm employed
two morphing techniques: (a) equivalent instruction sub-
stitution and (b) insertion of dead code. The worm also
uses blocks of dead code from benign executable files
making the malicious files structurally similar to benign
executable files. Since the patterns of malware files were
more similar to benign population, HMM-based scanner
raised higher false alarms. Shanmugam et al. [14] designed
and implemented an opcode-based similarity technique for
metamorphic malware detection. The detection system was
trained based on opcodes of a specific metamorphic fam-
ily. An unknown file was scored using the trained model to
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determine if the file belongs to same virus family. Authors
in [15] developed a new static method for the classification
of malware files that employed common segment analysis.
With the help of common segment analysis, the system dis-
cards the code segments that originated from benign code.
A new feature termed ‘meta-feature’ is used by the sys-
tem to capture the features of analyzed segments. Vinod
et al. [16] addressed the problem of detection of meta-
morphic malware using multiple sequence alignment. The
system identifies the unseen instances using the signatures
extracted for a malware family. These signatures created
using their proposed technique were superior to that gen-
erated by the commercial AV engines. Neha Runwal et
al. [17] implemented a similarity score-based approach for
malware detection. A weighted opcode graph was con-
structed where opcodes represented the nodes in the graph.
Edges represented the probability of co-occurrence of two
opcodes.

In [7], the authors utilized the structural entropy theory to
study the dissimilarities of data in an instance. The detection
system works in two stages namely file segmentation and
sequence comparison. File segmentation phase uses entropy
scores and wavelet analysis for segmenting a file. During
the second phase, the edit distance between the sequence
of segments is computed and it was employed for measur-
ing the similarity between files. Sayali Deshpande et al. [18]
proposed an approach for identifying metamorphic viruses
based on a well-known facial recognition technique which
uses eigenvalue analysis. Using the opcode sequences which
were derived from the set of well-known viruses, eigenvec-
tors were computed. An executable was scored using these
eigenvectors.

In [19], HMMs were trained for several compilers and
malware generators. The malware instances were scored
using each model, and the samples were clustered based on
their scores. Clustering was performed using k-means clus-
tering algorithm. Each cluster represented certain features of
malware. Authors in [20] developed a non-signature-based
scanner that can detect the Metamorphic worm (MWORM)
and viruses created using Next Generation Virus Construc-
tion Kit (NGVCK) with 100% accuracy and precision.
Bigram opcodes were ranked using several feature rank-
ing techniques, and the significance of these feature ranking
approaches at varying feature length was investigated. Our
previous work [21] employs a two-phase feature reduction
technique for detecting the metamorphic malware instances.
In the first phase, we extract features having a higher feature
to class correlation score. Subsequently, redundant features
are eliminated from the earlier feature set during the next
phase.

3 Proposed Methodology

The architecture of the proposed system is illustrated in
Fig. 1. The proposed system consists of the phases such as:
(1) Preprocessing, (2) Rare feature elimination using Naïve
Bayes approach, (3) Dimensionality reduction with Discrim-
inant Feature Variance-based Approach (DFVA) andMarkov
Blanket, (4) Model generation, (5) Prediction and (6) Valida-
tion of location of opcode sequence to evaluate if the dataset
consisted of enough metamorphism.

3.1 Preprocessing

The metamorphic malware samples were collected from the
authors in [22], and the benign samples were downloaded
from The Internet. Initially, all samples are unpacked and
disassembled using IDA PRO disassembler [23]. The assem-
bly files obtained from IDA PRO are randomly divided into
a train and test sets in 50:50 ratio. The assembly files from
both train and test set are preprocessed, and features such
as (a) branch instructions, (b) unigrams and (c) bigrams are
extracted from each assembly files.

3.1.1 Branch Instructions

Control flow obfuscation can be introduced into malicious
files by the metamorphic engine by adding conditional or
unconditional branch instructions. It is assumed that the
frequency distribution of such branch opcodes might sig-
nificantly differ in malware and benign classes.

3.1.2 Unigram

From the assembly files, unigram opcodes are extracted.
Branch instructions are not considered here since they are
already extracted in the previous set.

3.1.3 Bigram

Bigram opcodes are generated by taking two consecutive
unigram opcodes in a sliding window fashion as shown
in Table 1. In prior works [20,24], it was experimentally
demonstrated that bigram features resulted in improved clas-
sification than unigram opcodes.

3.1.4 Unique List Creation

Next, we construct a unique list of branch opcodes, unigrams
and bigrams for samples of the train set. In total, 17 and 19
unique branch opcodeswere observed inmalware and benign
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Fig. 1 Architecture of proposed metamorphic malware detector

Table 1 Bigram generation

N-gram Opcode n-gram

Unigram add, mov, push, call, xor

Bigram addmov, movpush, pushcall, callxor

training set, respectively. A unique list of unigram opcodes
consisted of 130 malware and 271 benign features. The
legitimate software contains 5906 unique bigram opcodes,
whereas there existed 2276 unique opcodes in malware sam-
ples. Term frequency (tf) and document frequency (df) of
each opcode are later calculated (refer to Table 2). In Table 2,

Table 2 Term frequency and document frequency of unique bigram
opcodes

Bigram t fB d fB t fM d fM

adcpop 40 18 6 5

addjmp 12376 471 12367 434

jmpjmp 12960 405 0 0

movadc 0 0 62 62

addsub 3085 349 9698 433

tfB represents the term frequency of opcode in benign files,
and dfB depicts the document frequency of an opcode in
benign files. Similarly, tfM represents the term frequency of
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Table 3 Naïve Bayes Score of
each unique bigram opcode

Bigram NBB NBM

adcpop 0.783 0.217

addjmp 0.520 0.479

jmpjmp 1.0 0.0

movadc 0.0 1.0

addsub 0.446 0.554

opcode in malware files, and dfM refers to the document fre-
quency of an opcode in malware files.

3.2 Rare Feature Elimination Using Naïve Bayes
Method

Naïve Bayes (NB) can predict class membership probabil-
ities, i.e. the probability that a given tuple belongs to a
particular target class. The Naïve Bayes score [25] of each
unique opcode is calculated using Eq. 1. In the equation, C
denotes the target classes (Malware, Benign) and X repre-
sents the opcode. Table 3 shows the malware and benign NB
scores of the bigram. For example, if X = adcpop, then

P(Ci |X) = P(X |Ci ).P(Ci )

P(X)
(1)

P(adcpop|B) = d fB/No : of benign files in train set

P(adcpop|M) = d fM/No : of malware files in train set

P(B) = No : of benign files in train set/

(Total training files)

P(M) = No : of malware files in train set/

(Total training files)

P(adcpop) = (d fB + d fM )/(Total training files)

Opcodes are sorted in decreasing order of NBM and NBB

scores (refer Tables 4, 5). The opcode space is initially pruned
by selecting the prominent 60%opcodes fromboth the sorted
lists. Naïve Bayes pruning is performed to select the features
that have a higher possibility of identifying the target class.
The same process is repeated on the unique list of unigrams
and branch opcodes. Out of the 27 unique branch instructions
in the train set, 20 branch opcodes were selected from each
sorted list. In the case of unigram, 195opcodeswere extracted
out of 325 unique features in the train set. And for bigrams,
4854 opcodes were picked out of 6923 features.

3.3 Dimensionality Reduction of Opcode Space

Dimensionality reduction plays a significant role in various
domains such as pattern recognition, data compression and
machine learning. Dimension of data space may be huge in
many applications, whereas the meaningful part of the rep-

Table 4 Opcodes sorted based
on NBB score

Bigram NBB

jmpjmp 1.0

adcpop 0.783

addjmp 0.520

addsub 0.446

movadc 0.0

Table 5 Opcodes sorted based
on NBM score

Bigram NBM

movadc 1.0

addsub 0.554

addjmp 0.479

adcpop 0.217

jmpjmp 0.0

resentation of data lies at a lower-dimensional space. Thus,
we need to derive only optimal dimensions that can effec-
tively reflect the variability of data. Dimensionality reduction
achieves the following: (a) provides accurate representation
of high-dimensional data in low-dimensional space, (b) helps
in better data visualization, (c) eliminates noise and outliers
during learning phase and (d) improves classification accu-
racy also reduces time for model generation.

The optimal feature space should have a set of attributes
qualifying following conditions:

– Case 1: An attribute having higher frequency in a class
compared to the opponent class is considered useful.

– Case 2: An attribute present in majority of files in a class
but absent in another class is significant (also known as
discriminant attribute).

– Case 3: Attributes having same frequency (larger or
fewer) in both classes are termed as insignificant and
thus not considered for modelling.

In our feature selection approach, we try to determine
the attributes qualifying case 1 and 2. Feature set obtained
after Naïve Baye pruning is further reduced using proposed
Discriminant Feature Variance-based Approach (DFVA) and
Markov Blanket.

3.4 Discriminant Feature Variance-Based Approach
(DFVA)

Opcodes pruned with NBM score are treated as malware
features, whereas opcodes selected based on NBB are con-
sidered as benign. For investigating the efficiency of benign
and malware features individually in classification, DFVA
approach was applied separately on benign and malware fea-
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Table 6 Optimal Feature Vector obtained with DFVA Feature Selection

Features Total unique features Features after Naïve Bayes pruning Prominent features after applying DFVA

Benign Malware Benign Malware

Branch opcodes 27 20 20 17 17

Unigram 325 195 195 110 112

Bigram 8090 4854 4854 2038 2916

tures. Thus, individual benign and malware training models
were generated for DFVA and used for predictions.

For each opcode, we compute the DFVAscore as per the
Algorithm 1. This method initially considers two hypothe-
sis, null hypothesis and alternate hypothesis. Null hypothesis
(H0) assumes that the frequency distribution of an opcode is
same in both target classes. Alternate hypothesis (HA) states
that frequency distribution of an attribute is different in target
classes.

H0 : Fopcode
M = Fopcode

B

HA : Fopcode
M �= Fopcode

B

Here, F M
opcode and F B

opcode represent the frequency distrib-
ution of an opcode inmalware and benign class, respectively.
The confidence interval α is set to 0.05 level. If the calcu-
lated DFVAscore is not in the range of threshold δ (−1.96 &
+1.96) [26], then null hypothesis is rejected and we accept
the alternate hypothesis which states that the frequency dis-
tribution of that particular opcode differs significantly in
target classes. Hence, this feature is preserved and consid-
ered in optimal feature space. Thus, the reduced feature space
of bigrams has 2916 prominent malware and 2038 bigram
benign opcodes. There are 17 branch opcodes each in the
prominent set of both the classes. And the optimal set of
unigrams consists of 112 malware and 110 benign features.
The optimal feature space obtained with DFVA is shown in
Table 6.

3.5 Markov Blanket

A two-phase feature reduction method using Markov Blan-
ket [21,27]was proposed to determine the prominent features
that are relevant but have minimum redundancy. Two types
of correlationmeasures are thus estimated: (a) Feature–Class
correlation denoted as FCR and (b) Feature–Feature cor-
relation represented as FFR. In the first phase of feature
reduction, the relevant features that are highly correlated to
the target class are determined. In the second step, we try
to remove the redundant features among the relevant fea-
tures extracted in the previous step. The redundant features
are eliminated by applying Markov Blanket where approxi-
mate Markov Blankets for relevant features are determined.
A feature having larger feature–class correlation score car-

Algorithm 1 Proposed DFVA Method
Input:

– F ← {F1, F2...., FD}; F is the pruned set obtained after Naïve
Bayes method, where Fi represents each feature in Dimension D

– C ← {M, B}; target classes where M is Malware and B is Benign
– θ ← 1.96 at α ← 0.05 ; where θ is the threshold value and α

denotes the level of significance.

Output

– S: A set containing optimal features where |S| = k such that
1 ≤ k < D

1: S← {φ} � Optimal feature set initialised to null
2: for i ← 1 to |F | do � For each feature fi in set F
3: pB ← d f f i,B/|B| � d f f i,B denotes the document

frequency of feature fi in benign
files, |B| denotes the number of
benign files in train set

4: pM ← d f f i,M/|M | � d f f i,M denotes document frequency of
feature fi in malware files, |M |

denotes the number of malware
files in train set

5: qB ← 1 − pB
6: qM ← 1 − pM
7: p ← (|B|.pB + |M |.pM )/(|B| + |M |)
8: q ← 1 − p
9: SE ← √

p ∗ q ∗ [(1/|B|) + (1/|M |)]
10: DFV Ascore ← (pB − pM )/SE � Calculate DFV Ascore

for each fea-
ture

11: if −θ < DFV Ascore < θ then
12: discard feature f i
13: else
14: S= S U { fi} � Add feature fi to optimal set
15: end if
16: end for
17: Sort (S) � sort DFV Ascore in increasing order
18: Return S

ries more information about the target class than a feature
with lesser feature–class correlation value.

Relevance and redundancy analysis is performed as per
the Algorithm in 2. Feature–class correlation score is calcu-
lated using Eqs. 2, 3 and 4. Entropy score [28] of any event
‘x ′ can be computed by the Eq. 4 where p(k) is the probabil-
ity of the kth unit of information in event x ′s sequence of N
symbols. If FCR(Fi , C) > δ, then feature Fi is considered
as relevant, where δ is the experimentally determined rele-
vance threshold. The relevance threshold δ selected for the
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Table 7 Optimal Feature Space obtained with Markov blanket Approach

Features Total unique features Features after Naïve Bayes
pruning

Relevant features after
evaluating condition

Prominent features after
evaluating condition

SUi,c > δ SUi, j ≥ SUi,c

Branch 27 22 16 7

Unigram 325 303 77 33

Bigram 8090 6925 919 406

experiment is 0.005. If Fi and Fj are any two features such
that FCR(Fj , C) ≥ FCR(Fi , C), then we try to see whether
feature Fj can behave as an markov blanket for feature Fi .
Feature–Feature score is determined using Eqs. 5, 6 and 4. If
FFR(Fi , Fj ) ≥ FCR(Fi , C), then Fj forms a Markov Blan-
ket for feature Fi . Hence, feature Fi is considered to be a
redundant feature compared to Fj .Weeliminate Fi from rele-
vant feature set andkeep itsMarkovblanket attribute Fj in the
relevant feature set. The reduction in the feature space during
successive stages of Markov Blanket is reported in Table 7.

FCR(Fi , C) = 2 ∗ I n f Gain(Fi |C)

H(Fi ) + H(C)
(2)

I n f Gain(Fi |C) = H(Fi ) − H(Fi |C) (3)

H(x) = −
N∑

k=1

{
p(k) ∗ log2 p(k), p(k) �= 0

0 p(k) = 0
(4)

FFR(Fi , Fj ) = 2 ∗ I n f Gain(Fi |Fj )

H(Fi ) + H(Fj )
(5)

I n f Gain(Fi |Fj ) = H(Fi ) − H(Fi |Fj ) (6)

3.6 Model Generation

Initially, training models were created using the prominent
opcodes obtained from individual feature reduction tech-
niques. The pruned benign and malware features obtained
after applying the DFVA method are arranged in the ascend-
ing order of their DFVAscore. Training models (vector space
models) are created using the sorted features at different
lengths. The classifiers used are Rotation Forest [29] and
Random Forest [30], and the models are trained in WEKA
[31–33]. We selected the model that provided the maxi-
mum value of evaluationmetric at a minimum feature length.
Likewise, training models with prominent Markov Blanket
features were also constructed.

3.7 Prediction

Finally, the unseen samples were predicted with individual
learning models obtained at optimal feature length. Two dif-
ferent meta feature spaces were created by ensembling the
optimal set of unigram, bigram and branch features obtained

Algorithm 2 Proposed Markov Blanket Method
Input:

– F ← {F1, F2...., FD}; F is the pruned set obtained after Naïve
Bayes method, where Fi represents each feature in Dimension D

– C ← {M, B}; target classes where M is Malware and B is Benign
– δ ← 0.005; where δ is the relevance threshold

Output

– SP : selected prominent feature subset where |SP | = k such that
1 ≤ k < D

1: Srel ← {φ} � relevant feature set initialised to empty set
2: for i ← 1 to |F | do � For each feature fi in set F
3: FC R(Fi , C) = 2∗ I n f Gain(Fi |C)

H(Fi )+H(C)
� Calculate feature-class score

for each feature Fi
4: if FC R(Fi , C) > δ then � if feature-class score is greater

than relevance threshold
score

5: Append Fi to Srel list
6: end if
7: end for
8: order relevant feature set Srel in descending FC R(Fi , C) value
9: Fj = acquire_First_Feature(Srel )

10: repeat
11: Fi = acquire_Next_Feature(Srel , Fj );
12: if (Fi �= NU L L) then
13: repeat
14: F F R(Fi , Fj ) = 2 ∗ I n f Gain(Fi |Fj )

H(Fi )+H(Fj )
� Calculate

feature-
feature score

15: if F F R(Fi , Fj ) ≥ FC R(Fi , c) then
16: remove Fi from Srel ;
17: end if
18: Fi = acquire_Next_Feature(Srel , Fi );
19: until Fi = NU L L
20: end if
21: Fj = acquire_Next_Feature(Srel , Fj );
22: until Fj = NU L L
23: SP = Srel ;
24: Return prominent feature set SP ;

Fig. 2 Meta feature space

from individual feature reduction method (refer Fig. 2).
Finally, test instances were also predicted using the meta
feature space.
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4 Experimental Setup

The experiments were performed on an Intel Pentium Core 3
Duo 2.3 GHz processor, 4GB RAM with Linux 14.04 oper-
ating system. Following are the types of investigations:

– Impact of feature length on classification.
– The capability of each category of a feature in classifying

the metamorphic malware samples.
– Evaluation of malware/benign attribute for modelling.
– Empirical evaluation of the classifier which can ascertain

better detection rate with minimum false alarms.

4.1 Dataset

The benign dataset consists of 1218 executables including
files from System32 directory of Windows XP operating
system and files downloaded fromother internet sources. The
files were initially scanned in various commercial detectors
in order to ensure that all the samples are legitimate.Malware
dataset [22] consists of 868 files created using the NGVCK
and MWORM engine. The malware samples were prepared
by adding ‘dead codes’ by copying blocks of subroutines and
instructions from the benign programs. Authors used three
different code obfuscation techniques to create the virus sam-
ples : (a) equivalent instruction substitution, (b) dead code
insertion and (c) instruction transposition.Adynamic scoring
algorithm [22] was developed for comparing the similarity
of resulting malicious code against the benign program after
each morphing operation. The result of a code obfuscation
operation is applied only if it makes the new virus struc-
turally more similar to benign programs. Hence, this may
cause viruses to bypass signature-based AV. The parameters
used for evaluating the experimental results are discussed in
the subsequent subsection.

4.2 Evaluation Parameters

Information retrieval parameters such as precision and recall
are computed as follows,

Precision = TP/(TP + FP) (7)

Recall = TP/(TP + FN) (8)

F1 score is determined using the Eq. 9,

F1 score = (2× Precision × Recall)/(Precision + Recall)

(9)

Accuracy is the ratio of total number of files correctly clas-
sified to the total number of files in the dataset. It is calculated
using Eq. 10,

Accuracy = (TP + TN)/(TP + FN + TN + FP) (10)

Here, TP represents the files correctly classified as malware,
and FN denotes the files incorrectly classified as benign.
TN stands for the files correctly classified as benign and FP
means the files misclassified as malware.

5 Results and Discussions

In this section, the experimental results are discussed.Mainly,
two experiments were performed here: (a) Exploration of
metamorphism in the dataset and (b) Detection of metamor-
phic malware samples using the proposed feature selection
methods.

5.1 Estimation of Degree of Metamorphism in the
Dataset Using Sequence Alignment Method

Sequence alignment [34] is a fundamental approach used
in biological study for comparing two or more protein or
DNA sequences. This strategy attempts to discover similar
regions as a whole or part to infer the evolutionary associa-
tion among sequences. Metamorphic malware samples used
in dataset [22] contain fragments of code bindedwith subrou-
tines extracted from benign programs to defeat the detection
from the scanners. This implies similar code regions will
exist in themalware and benign instances. Hence, a threshold
cannot be defined to differentiate the instances, and therefore,
signature-based detection may fail. As the length of opcode
sequence differs from one file to other, local alignment
technique is used. Locations of non-discriminant opcodes
in malware and benign instances are aligned using Smith–
Waterman alignment method [35]. Following are the basic
steps involved in aligning opcode locations in malware and
benign files using this method:

– Initialization An alignment and a traceback matrix of
dimension (P + 1) × (Q + 1) are created where P and
Q are the length of two location sequences of a opcode
in any two instances. Let the score and directionmatrices
be AS(P +1, Q+1) and TB(P +1, Q+1), respectively.
First column andfirst rowof thesematrices are initialized
as 0.

– Populate score matrix and direction matrix Alignment
score of cell AS(i, j) in the score matrix is computed
with the scores of its neighboring three cells (left, diago-
nal and top). Its corresponding cell TB(i, j) in direction
matrix illustrates the direction of cell having maximum
value that contributes to the score of new cell AS(i, j).
Hence, each cell in the direction matrix can have the val-
ues L (left), D (diagonal) or U (up). Score AS(i, j) (refer
Eq. 11) for two sequence X and Y is computed as:
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AS(i, j) = max

⎧
⎪⎪⎨

⎪⎪⎩

0
AS(i − 1, j − 1) + σi j

AS(i − 1, j) + γ

AS(i, j − 1) + γ

(11)

whereσi j indicatesmatch/mismatch scorewhile aligning
locations of an opcode and γ is gap penalty. We used a
match score of+1, gap and mismatch score of−1 in our
experimentation.

– Direction: Trace back step will find the optimal align-
ment from the direction matrix. Traceback starts at
bottom–right cell TB(M + 1, N + 1) until first column
or row is reached.

For validation process, the locations of non-discriminant
opcodes (branch instructions, unigrams and bigrams) in each
malware file are aligned with the opcode locations in the
every other malware files. Average value (denoted by avg)
of alignment scores of an opcode in each malware file is cal-
culated. After obtaining the average alignment scores for all
the malware files, the minimum (minavg), maximum score
(maxavg) and average of average alignment scores (denoted
by Aavg) for each opcode among all malware files are com-
puted. Then, the number of instances that lie in the range
[minavg : Aavg] denoted by #minavg-Aavg. Likewise, number
of instances having value in the range [Aavg : maxavg] are also
ascertained; this is represented by #Aavg-maxavg. Similarly,
opcode locations in benign files are also aligned employing
the above mentioned procedure. Using the alignment scores,
we investigate whether appropriate threshold can be deter-
mined that can differentiate malware and benign files.

Validation results of fewnon-discriminant unigram, branch
and bigram opcodes are shown in Tables 8, 9 and 10, respec-
tively. Fig. 3 shows the possible cases that may occur while
aligning the opcode locations in malware and benign files. In
cases 1 and 2, we may be able to define a margin for discrim-
inating the malicious files from normal programs; thus, this
margin can be used for detection. In case 3, as the alignment
scores of malware and benign training instances overlap, a
threshold cannot be set to differentiate the unseen specimens.
From Table 8, it can be observed that in case of opcode bt,
more number ofmalware instances (327 out of 435 instances)
fall in the range [minavg : Aavg]. As depicted in case 3, we can
notice an overlap in the range of alignment scores [minavg :
Aavg] of malware ([0: 0.000685]) and benign [0 : 0.000094].
Similar trend as in case 3 was observed for all unigrams
branch and bigram non-discriminant opcodes.

The results imply that common fragments of code exist
in both malware and benign instances, and hence, we cannot
define a threshold to differentiate them and thus signature-
based detection fails. Tables 8, 9 and 10 ✘ represent that
threshold cannot be defined. Thus, this experiment also sug-
gests that the dataset used in here has enoughmetamorphism. Ta
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Moreover, the malicious files were structurally similar to
legitimate files suggesting that in future hackers might use
similar obfuscation strategy to bypass scanners and to fail
opcode-based pattern matching approach.

5.2 Results of Proposed Methods

We generated learning models with the prominent features at
variable feature length obtained using both the feature selec-
tion methods.

5.2.1 DFVA–Model Generation and Prediction Using
Optimal Models Developed with Independent Feature
Category

Branch Opcodes
(A) Benign Branch Opcodes
The prominent benign branch feature set consists of 17
opcodes. Three training models were created at varying fea-
ture lengths of 5, 10 and 17. The performance of themodels is
shown in Fig. 4. Random Forest (Random.F) classifier pro-
vided highest F1 score of 1.0 at feature lengths of 10 and
17, respectively. But out of these two models, preference is
given to model with smaller feature length (ie. FL = 10) and
hence utilized in prediction phase. In case of Rotation Forest
(Rotation.F) classifier, highest F1 score of 1.0 was gained at
a feature length of 17.

Unseen instances not used for modelling are classified
using theoptimalmodels constructedwithRandomandRota-
tion Forest classifiers. Table 11 shows the results of benign
branch opcodes, and it can be observed that both classifiers
provided an F1 score of 1.0 using their respective optimal
learning models.

(B) Malware Branch Opcodes
Seventeen pruned opcodes were obtained from the mal-

ware dataset. From Fig. 5, it can be noticed that both the
classifiers gave a F1 score of 1.0 in all feature lengths (ie. 5,
10 and 17). Hence, the model with minimum feature length
(ie. FL = 5) is preferred during the predictions.

Table 12 shows the prediction results using the prominent
malware branch features. It can be seen that both Random
Forest and Rotation Forest classifiers provided the same F-
measure of 1.0 at minimum feature length of 5. But Random
Forest took less time (0.11 s) for predicting sample compared
to Rotation Forest (0.18 s). Figure 6 shows the ROC curves
plotted for optimal malware and benign branch features.

Table 13 shows the significant branch opcodes in mal-
ware and benign classes. We can observe that seven opcodes
are common in both target classes. The Naïve Bayes score of
these non-discriminant branch opcodes is illustrated in Fig. 7.
Difference in the Naïve Bayes scores of branch opcodes
in malware and benign files clearly demonstrate that these
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(a) Case1

(b) Case2

(c) Case3

Fig. 3 Alignment score range
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Fig. 4 Model created for branch opcodes (benign training set)

instructions can be used for classification of metamorphic
malware samples.

Unigram The performance with unigram opcodes is dis-
cussed next for both benign and malware set.
(A) Benign Unigram Opcodes
The pruned set of unigram contains 110 opcodes. Maxi-
mum F-measure of 0.993 was gained with Random Forest
at full feature space (ie. 110 opcodes). With Rotation Forest,
F1 score of 0.997 was obtained again at full feature space.
From Fig. 8, it can be observed that the performance of both
classifiers degrades with decrease in the feature length since
at smaller feature space, there is lack of useful information
required for discriminating malware v/s benign.
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Fig. 5 Model created with branch opcodes (malware training
instances)

The prediction results obtained with benign unigram
opcodes are shown in Table 14. Random Forest provides the
highest F1 score of 0.997 at its optimal feature length of 110.
Rotation Forest could only produce a maximum F-measure
of 0.993 at the same feature length.
(B) Malware unigram opcodes
There were 112 opcodes in the pruned feature set. Both the
classifiers obtained highest F-measure of 1.0 at all feature
lengths (10, 20, 30, 40, 50, 60, 70, 80, 90, 100 and 112) refer
Fig. 9. Hence, the model with minimal feature length (ie. 10
opcodes) is selected as the optimal model.
Table 15 depicts the results obtained with malware unigram
opcodes. Both Random and Rotation Forests result in an F-
measure of 1.0 at their optimal feature length(i.e. 10). But
Random Forest is efficient since it consumes less time (0.02
s) for identification of new instances. On the other hand,
Rotation Forest takes 0.21 s for predicting test instances.
Figure 10 shows the ROC curves for optimal malware and
benign branch features.

Table 16 shows the top ten unigram opcodes for both
benign and malware samples. The top ten unigram malware
features were found to be discriminant. A feature is consid-
ered discriminant to a class if it is prominent in one class
compared to other.
Bigram
(A) Benign bigram opcodes
With Random Forest classifier, an optimal model is obtained
with 500 features as shown in Fig. 11. However, with
Rotation Forest, highest performance is obtained with 1500
features.

Table 11 Evaluation Metrics of
Benign Branch opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 10 100 1 1 1 0.06

Rotation.F 17 100 1 1 1 1.28

Bold font indicates the best performance obtained with different experimental setting
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Table 12 Evaluation metrics of
Malware Branch opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 5 100 1 1 1 0.11

Rotation.F 5 100 1 1 1 0.18

Bold font indicates the best performance obtained with different experimental setting

Fig. 6 ROC for Branch opcodes. a Malware Branch opcodes—Random Forest. b Malware Branch opcodes—Rotation Forest. c Benign Branch
opcodes—Random Forest. d Benign Branch opcodes—Rotation Forest

Table 13 Top ten branch opcodes

S. No Malware opcodes Benign opcodes

1 je jb

2 jne ja

3 jae jg

4 jb jl

5 ja jbe

6 jg jle

7 jl jmp

8 jbe jno

9 jle jo

10 jmp jnp

Outcome of prediction with bigram benign features is
shown in Table 17. Rotation Forest achieves F1 score of 1.0
at feature length of 1500, whereas Random Forest provides
F-measure of 0.995 with a feature space of 500.
(B) Malware bigram opcodes
FromFig. 12, it can be seen that similar F1 scores are obtained
with malware opcodes at varied feature length. Hence, the
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Fig. 7 Naïve Bayes score of common branch opcodes in Target Class

model at minimal feature length (ie. 10) is used for predict-
ing the unseen instances. From Table 18, it can be observed
that F1 score of 1.0 was obtained by both classifier at a fea-
ture length of 10. But Random Forest classifier is considered
superior since it identifies test samples faster compared to
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Fig. 8 Model created for unigram benign opcodes

Rotation Forest. ROC curves for prominent bigram features
are depicted in Fig. 13. Significant ten bigrams for both set
are shown in Table 19.

While comparing the results, it can be observed that
benign models require more number of features for precisely
predicting the newsamples.On the other hand,malwaremod-
els can be preferred since they need only less number of
features for classification. The reason behind this difference
is that benign files are distinct. So, the common opcodes are
limited due to their diversification. But malware samples are
either developed using metamorphic engines or created by
authors in low-level languages. Hence, there is a high proba-
bility for common opcodes to appear in variants of malicious
base files. So, these opcodes will be utilized by the metamor-
phic engine to retain themaliciousness. Also, it is too difficult
to mutate the complete x86 assembly codes with equivalent
opcodes. Hence, a malware model may be developed, but it
is hard to generalize a benign model.
Prediction Using Meta Feature Space Created by DFVA
It was observed that malware features are have established
more efficacy in classification than benign features. Hence,
the unseen samples were predicted using a meta feature
space formed by ensembling the prominent malware features
(known as meta features) obtained from the previous predic-
tion results. It consists of:

1. Five Malware branch opcodes
2. Ten Malware unigram opcodes
3. Ten Malware bigram opcodes
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Fig. 9 Model created for unigram malware opcodes

From Table 20, we could visualize that the proposed
system yielded an accuracy of 100% and F1 score of 1.0,
using the ensemble of malware features. Similar trends were
obtainedwithRandomForest classifier compared toRotation
Forest.

5.2.2 Markov Blanket–Model Generation and Prediction
Using Individual Models

Branch Opcodes
The prominent set of attributes contains seven branch instruc-
tions. As depicted in Fig. 14, we could see that two models
were generated with branch opcodes, one with a feature
length of seven (full feature space) and another consisting
of five opcodes. Random Forest yielded a F1 score of 1.0 for
both the learning models. Rotation Forest classifier resulted
in an F-measure of 1.0 for the model with feature space 7;
moreover, F1-value degraded to 0.969 with feature length 5
branch instruction.

Hence, the optimal feature length in case of Random For-
est and Rotation Forest is 5 and 7 instructions, respectively.
Now, the class of unlabelled samples is predicted using opti-
mal models. From Table 21, we can observe that F1 score
of 1.0 is obtained with both learning models. Again, model
developed with Random Forest is considered as it uses fewer
feature and consumes minimum time for classification. ROC
curves plotted for prominent branch opcodes are shown in
Fig. 15.

Table 14 Evaluation metrics of
benign unigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 110 99.808 0.995 1 0.997 0.16

Rotation.F 110 99.425 0.989 0.998 0.993 2.3

Bold font indicates the best performance obtained with different experimental setting
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Table 15 Results of Malware
Unigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 10 100 1 1 1 0.02

Rotation.F 10 100 1 1 1 0.21

Bold font indicates the best performance obtained with different experimental setting

Fig. 10 ROC curves for Unigram opcodes. aMalware unigram opcodes—RandomForest. bMalware unigram opcodes—Rotation Forest. cBenign
unigram opcodes—Random Forest. d Benign unigram opcodes—Rotation Forest

Table 16 Top ten unigram opcodes

S. No Malware opcodes Benign opcodes

1 ret cli

2 repz cmpsd

3 seta das

4 cmove fucom

5 data32 fucomp

6 cdqe movq

7 repz prefetchnta

8 seta rdtsc

9 sete scasd

10 movsxd ffree

Unigram Opcodes
There are 33 opcodes in the prominent unigram set. Four
training models are created at feature length of 10, 20, 30
and33opcodes.MaximumF-measure of 1.0was obtained for
all the four models with both classification algorithms (refer
Fig. 16). Hence, we select the model with minimum feature
length (10) for predicting unseen samples not involved in
modelling.
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Fig. 11 Optimal benign bigram model

Table 22 shows the results of prediction obtained for
unigram. F1 score of 1.0 is obtained with both classifiers
using ten significant opcodes. Random Forest takes less time
(0.04s) for prediction, whereas Rotation Forest takes 0.22s.
We again consider Random Forest model as superior in com-
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Table 17 Evaluation metrics of
Benign Bigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Rotation.F 1500 100 1 1 1 80.81

Random.F 500 99.90 1 0.99 0.995 0.44

Bold font indicates the best performance obtained with different experimental setting
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Fig. 12 Optimal malware bigram model

parison with Rotation Forest. Fig. 17 illustrates the ROC
curves for unigram features.
Bigram opcodes
As shown in Fig. 18, prominent set of bigram consists of 406
features and 13 training models were generated for bigram at
varying feature lengths of 406, 300, 200, 100, 90, 80, 70, 60,
50, 40, 30, 20 and 10. Both classifiers yielded a F1 score of
1.0 with all the 13 models generated. Again, the model with
smallest feature length (ie. 10) is selected.

From Table 23, it can be observed that both Random For-
est and Rotation Forest resulted in an F-measure of 1.0 with
bigrams. As in case of unigram, Random Forest predicts
faster (0.16 s) than Rotation Forest (0.89 s) and hence consid-
ered as precise formodelling.ROCcurves plotted for bigrams
are shown in Fig. 19.

5.2.3 Prediction Results with Meta Feature Space
Generated Using Markov Blanket

Unseen instances are also predicted using a meta feature
space model created by ensembling the prominent features
obtained fromoptimummodels considering independent cat-
egories of attributes. Therefore, ensemble attribute space
consisted of

1. Top 5 branch opcodes
2. Top 10 unigram features
3. Top 10 bi-gram features

The outcome of prediction for features pruned with
Markov Blanket is shown in Table 24. Thus, the proposed
system classified all the unseen samples with an accuracy
of 100%, precision 1.0, recall 1.0 and F1 score of 1.0 with
individual as well as with meta feature attribute set.

6 Comparison with Prior Works

Table 25 shows the performance of proposed scanner and
other metamorphic malware detection techniques utilizing
the similar dataset (synthetic metamorphic virus samples).
From the tabulated results, it can be found that the proposed
system is acceptable to other approaches.

7 Inference of Experiments

The conducted experiments revealed following answered
questions:

– What is the influence of feature length on classifica-
tion performance and accuracy? During preparation
of learning models, there aroused situations wherein
maximum performance was obtained at smaller feature
lengths. When opcodes were extracted from malware
and later used for modelling; then, higher accuracy was
gained. However, with benign models, better perfor-
mance was obtained at a larger feature length compared
to malware models. This denotes that generic benign
models are difficult to be constructed. Larger feature
space consisted of irrelevant attributes that appear as
noise and increases the misclassification rate.

– Which classifier provides best results? Random For-
est [30] was found to be the better classifier since it
provides highest value of evaluation metrics with min-
imum features and consumes less time for prediction
compared to Rotation Forest. Random Forest classifier

Table 18 Evaluation Metrics of
Malware Bigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 10 100 1 1 1 0.02

Rotation.F 10 100 1 1 1 0.24

Bold font indicates the best performance obtained with different experimental setting
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Fig. 13 ROC for Bigram opcodes. a Malware bigram opcodes—Random Forest. b Malware bigram opcodes—Rotation Forest. c Benign bigram
opcodes—Random Forest. d Benign bigram opcodes—Rotation Forest

Table 19 Top ten bigram opcodes

S. No Malware opcodes Benign opcodes

1 cmpje adcimul

2 cmpjne adcor

3 jemov andnop

4 jeadd bsrxor

5 retpush cdqeadd

6 jecmp cdqlea

7 jnejmp cdqsar

8 jnemov cmovbadd

9 testje cmovbtest

10 testjne cmovzxor

few features in random that have higher probability in
detecting the target class. This property of Random For-
est helps in scaling up a model. Also, original feature
space is expanded by the addition of diverse category
of features found to be minimally correlated. More-
over, Rotation Forest’s [36] prediction is slow since it
performs PCA (Principle Component Analysis) on the
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Fig. 14 Model created for branch opcodes

vector space model as a part of dimensionality reduction
for each tree in the forest.

– Which is the best feature ? Discriminant branch instruc-
tions, unigram and bigram opcodes pertaining to mal-
ware families are shown to be best in classification.
Malware files are coded in low-level language. There-

Table 20 Evaluation metrics of
Meta Malware Feature space
created using DFVA (branch
opcodes (5), unigram opcodes
(10), bi-gram opcodes (10))

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 25 100 1 1 1 0.14

Rotation.F 25 100 1 1 1 1.28

Bold font indicates the best performance obtained with different experimental setting
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Table 21 Evaluation Metrics
for branch opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 5 100 1 1 1 0.02

Rotation.F 7 100 1 1 1 0.22

Bold font indicates the best performance obtained with different experimental setting

Fig. 15 ROC for Branch opcodes. a Branch opcodes—Random Forest. b Branch opcodes—Rotation Forest
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Fig. 16 Model created for unigram opcodes

fore, few features are possibly preserved in viruses to
retain maliciousness in the generations, whereas benign
instances are distinct and are usually programmed in
high-level language. Hence, it is difficult to generalize
the benign models; however, generic malware models
may be developed. The role of branch instructions in
classification was investigated. Branch instructions were
used for obfuscating the malicious payload to compli-
cate analysis of malware files. It was discovered that
the prominent five malware branch features classified

the unseen instances with an accuracy of 100% and F1
score of 1.0. Likewise, unigram and bigram malware
instructions predicted the test samples with an accuracy
of 100% and F-measure of 1.0 at a feature length of 10.

– Whether the branch opcodes are capable enough in
detecting the metamorphic malware instances? It was
discovered that the prominent branch opcodes obtained
after applying the DFVA and Markov Blanket feature
reduction methods are efficient enough to identify the
samples (F1 score of 1.0 and accuracy 100%). Since
the branch opcodes are primarily used to introduce con-
trol flow obfuscation in a piece of malware code, also to
make malware appear structurally similar to legitimate
files.

– How is the classification performance influenced when
individual features (branch, unigram and bigram) and
meta feature space are used? Proposed system classified
all the unseen instances accurately with individual fea-
tures as well as with meta feature space (F1 score of 1.0
and accuracy 100%).

8 Analysis on Real Samples

In order to evaluate the performance on real malware dataset,
a total of 5514 Portable Executable (PE) files were collected.
The malware samples constituted 2217 executables gathered

Table 22 Evaluation Metrics
for unigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 10 100 1 1 1 0.04

Rotation.F 10 100 1 1 1 0.22

Bold font indicates the best performance obtained with different experimental setting
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Fig. 17 ROC for Unigram opcodes. a Unigram—Random Forest. b Unigram—Rotation Forest
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Fig. 18 Model created for bigram opcodes

from sources such as VX Heavens (http://vx.netlux.org) and
security agencies. Benign dataset (3307 executables) com-
prised executables obtained from diverse sources such as
System32 folder (Windows XP), games, browsers and media

players. Most of the real malware samples were packed to
obfuscate themalicious payload to thwart detection.Apacker
is software compresses the originalmalware file, thusmaking
the original code and data unreadable. The primary purpose
of customized or commercial packers is to introduce an addi-
tional layer over malware so as to deter detection.

Malware executablewere unpacked using signature-based
unpackers such as VMPackers, GUNPacker (http://www.
woodmann.com/collaborative/tools). Features are indepen-
dently extracted from malware and legitimate files; later,
the classification models are prepared using the algorithms
implemented in WEKA with default settings. Models are
evaluated using 10-fold cross-validation. The k-fold cross-
validation method partitions input data into k equal subsets
also known as folds. A model is trained on k − 1 folds
and validated against the last fold. The entire experiment is
repeated k times. The advantage of using cross-validation is
to provide an insight into how the classifier perform on vari-
able size input. Also, cross-validation is used to obtain large
number of test samples from a limited set of data. Finally,
experiments are conducted on prominent features of differ-

Table 23 Evaluation Metrics
for bigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random.F 10 100 1 1 1 0.16

Rotation.F 10 100 1 1 1 0.89

Bold font indicates the best performance obtained with different experimental setting

Fig. 19 ROC for Bigram opcodes. a Bigram—Random Forest. b Bigram—Rotation Forest
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Table 24 Evaluation metrics of the Meta Feature space created using Markov Blanket. Feature space comprises of five branch instructions, ten
unigram opcodes and ten bigram opcodes

Classifier Feature length ACC (%) Precision Recall F1 Time (s)

Random Forest 25 100 1 1 1 0.17

Rotation Forest 25 100 1 1 1 1.62

Bold font indicates the best performance obtained with different experimental setting

Table 25 Comparison of
proposed system with existing
work using similar dataset

References Proposed approach Outcome

Priyadarshi et al. [13] Emulator based approach Detection rate—100% at
morphing levels 15, 35%

Rate decrease at levels 55 and 75%

Shanmugam et al. [14] Opcode-based software similarity
technique

Accuracy—100% when tested
against MWOR, with

padding ratios 1.0 and below.
Misclassification increases

For padding ratios beyond 1.0

Tahan et al. [15], Common segment analysis Accuracy—0.986, FPR—0.006

Vinod et al. [16] Used multiple sequence alignment
method

For group signature, detection
rate—72.2%, FPR = 0.01

Donabelle et.al. [7] Utilized structural entropy The 8 KB NGVCK files resulted in
100% detection rate

Without any false positive

Deshpande et al. [18] Eigenvalue analysis The technique gave more than 94%
accurate detection of virus files

Zhao et al. [38] Employed control flow graph of
disassembled code

Accuracy—97%, 3.2% false rate

Kuriakose et al. [20] Used several feature ranking
methods

Detected MWORM and NGVCK
virus with accuracy of 100%

Proposed system Created meta feature spaces using
DFVA and Markov Blanket

Accuracy—100%, Precision—1.0,
Recall—1.0, F1 score—1.0

ent length and the effect of feature length on classification
accuracy is investigated. The results are tabulated for the out-
comes obtained with Random Forest classifier as it depicted
the similar trend with previous experiments. As with all ear-
lier experiments, Random Forest obtained elevated values of
performance metric compared to other classification algo-
rithms. Table 26 depicts an accuracy of 96.2% (low FPR
value 0.038) and 96.4% (low FPR value 0.036) obtained
with fewer benign and malware meta opcodes compared to
attribute consisting of more number of opcodes. This experi-
ment also justifies the importance of eliminating insignificant
attributes to attain higher classifier performance. We antici-
pate that the results can be further improved if the unpacking
of malware samples is performed with dynamic unpacker
such as ether [37]. However, the pivotal limitation is how
long a sample is required to be executed in the sandbox is
a real challenge. An alternative is to design a random input
generator for desktop malware detectors which could simu-
late the system and UI interactions satisfying complete code
coverage.

Table 26 Performance on real samples

Classifiers 50 100 150 200 250 300

RF–Benign 96.3 96.1 96.2 95.7 96.1 96.2

RF–Malware 96.4 96.4 96 96.3 95.6 96

9 Conclusions

Two meta feature spaces each consisting of twenty-five
prominent features were used by the proposed system for
metamorphic malware detection. Three sets of features were
extracted from the files: (a) branch instructions, (b) uni-
grams and (c) bigrams. The features were initially pruned
using Naïve Bayes approach, and then, the dimension of
feature space was further reduced using two different meth-
ods: (a) DFVA and (b) Markov Blanket. Training models
were created at different feature lengths, and the opti-
mal model at synthesized feature space was employed for
the prediction of unseen instances. Thus, the impact of
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variable feature length on detection accuracy was inves-
tigated in this study. The proposed system utilized the
relevant/prominent discriminant malware features for classi-
fication and detectedMWORMandNGVCK viruses with an
accuracy of 100% and F1 score of 1.0. From the results of the
experiments, it can be claimed that the degree of metamor-
phism present in NGVCK and MWORM viruses is strong
to defeat signature-based detection. But the non-signature-
based approach effectively removes unwanted instruction
added as dead code. In future, the work can be expanded
on a huge dataset and real metamorphic instances. Also,
other robust feature dimensionality reduction methods can
be explored. Another form of obfuscation that primarily will
be looked on is code packing. Also, malicious samples are
encoded using strong encoders such as XOR or Shikata-ga-
nai would be studied. To address this problem, we would
initially learn the scanning behavior of the commercial AV
to identify whether anti-virus scan the samples using fixed
order (i.e. top, bottom) or perform random search. Once
this is ascertained the entropy analysis of a fragment of the
samples can be investigated to flag an unknown file as mal-
ware.
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