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Abstract The problem of system identification concerns
with the design of adaptive infinite impulse response (IIR)
system by determining the optimal system parameters of
the unknown system on the minimization of error fitness
function. The conventional system identification techniques
have stability issues and problem of degradation in perfor-
mance when modeled using a reduced-order system. Hence,
a meta-heuristic optimization method is applied to overcome
such drawbacks. In this paper, a new meta-heuristic opti-
mization algorithm, called bat algorithm (BA), is utilized
for the design of an adaptive IIR system in order to approxi-
mate the unknown system. Bat algorithm is inspired from the
echolocation behavior of bats combining the advantages of
existing optimization techniques. A proper tuning of control
parameter has been performed in order to achieve a balance
between intensification and diversification phases. The pro-
posed BA method for system identification is free from the
problems encountered in conventional techniques. To valuate
the performance of the proposed method, mean square error,
mean square deviation and computation time are measured.
Simulations have been carried out considering four bench-
marked IIR systems using the same-order and reduced-order
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systems. The results of the proposed BA method have been
compared to that of the well known optimization methods
such as genetic algorithm, particle swarm optimization and
cat swarm optimization. The simulation results confirm that
the proposed system identification method outperforms the
existing system identification methods.

Keywords Bat algorithm · IIR system identification ·
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1 Introduction

Adaptive infinite impulse response (IIR) filtering has main-
tained tremendous vitality over the past few decades, and
there is a clear indication that this trend will continue. Adap-
tive IIR systems are widely applied in system identification
and modeling problems in the field of signal processing.
It is also used to describe many phenomena in almost all
fields such as radar processing [1], robotics [2], parameter
estimation [3], signal processing, control system and com-
munication system [4,5]. This is due to the fact that an IIR
filter models an unknown system effectively with a few num-
ber of coefficients compared to an adaptive finite impulse
response (FIR) system [6].

Digital systems are classified in two categories, namely
finite impulse response (FIR) system and infinite impulse
response (IIR) system [6]. The output of the FIR system
depends only on the input signal (present and past inputs),
whereas the output of IIR system depends the not only on
the input (present and past) but also on the past outputs. IIR
system has two shortcomings. First, it is unstable due to the
inappropriate selection of denominator coefficients. Proper
selection of search space overcomes this problem. Second,
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it cannot provide an exact linear phase response. Apart from
these shortcomings, requirement of less number of system
coefficients compared to the FIR system makes it compu-
tationally efficient. Therefore, for the system identification
problem, adaptive IIR system is proven to be a better option.

The implementation of an adaptive IIR system identifi-
cation involves two processes. First, a suitable identification
plant is chosen. Further, the optimal filter coefficients are
computed using an efficient optimization algorithm. The
system identification problem is articulated as an error min-
imization problem. The objective is to obtain an optimal set
of coefficients such that the output of the adaptive IIR system
exactly tracks the output of the unknown system when both
the systems are subjected to the same input signal. Hence,
IIR system identification is based on minimizing error objec-
tive function between the output of the adaptive filter and the
output of the unknown system for the same input. In IIR
filtering, the error surface (objective function) is generally
non-quadratic and multimodal with respect to the filter para-
meters.

Traditionally, the gradient-based search algorithm such as
Quasi-Newton technique, least mean square (LMS) and its
variants were applied to minimize the error fitness function.
Most adaptive IIR filter applications are associated with the
nonlinear and multimodal error fitness function [7]. Mini-
mization of such error fitness function using gradient-based
search algorithms is difficult. This is due to the fact that
the gradient-based search algorithms cannot converge to the
global minima and get stuck in local minima. Moreover, the
higher-order systems are associated with the stability issues
as the poles of the systems are placed out of the unit circle.

To overcome these drawbacks, several practitioners rely
on metaheuristic algorithms [8], which are based on natural
evolution. The metaheuristic algorithms are nature inspired
population-based search techniques which have the ability to
provide a global optimal solution with fast convergence by
incorporating random search and selection principle. Such
algorithms are widely applied in solving many complex and
unsolved constrained optimization problems [8].

These population-based search methods include genetic
algorithm [9–11], particle swarm optimization [12], differ-
ential evolution (DE), cat swarm optimization [13], cuckoo-
search algorithm [14–17], harmony search [18], gravitational
search algorithm (GSA) [19,20], seeker optimization algo-
rithm (SOA) [21] and many more. A new algorithm, BA [22],
employed in this work uses the concepts of localization and
tracking. The concept of localization has been explored in dif-
ferent applications [23–28]. The efficiency of meta-heuristic
algorithms can be attributed to the fact that they imitate the
best features in nature, especially the selection of the fittest in
biological systems which have evolved by natural selection
over millions of years.

The above-mentioned algorithms have been extensively
researched for the problem of system identification and fil-
ter modeling [29–48]. Karaboga et al. [29–31] presented ant
colony optimization (ACO), DE and artificial bee colony
(ABC) algorithm for several benchmark IIR systems in 2004,
2005 and 2009, respectively. In 2005, Kalinli and Karaboga
applied the artificial immune (AI) algorithm for the system
identification problem [32]. Fang et al. [33,34] employed
the quantum-behaved particle swarm optimization (PSO) and
mutated quantum-behaved PSO for IIR filter design problem.
The pole-zero system identification was presented by Majhi
et al. [35] using PSO in 2008. Dai et al. [21] demonstrated
the simulation results for modeling of standard IIR plants
using SOA. Parameter value of unknown system was com-
puted by means of PSO algorithm for the test functions in
Chen et al. [36]. In [37], PSO with quantum infusion scheme
for the coefficient value optimization of the unknown system
model was investigated. In [38,39], PSO-based parameter
value selection method has been applied for adaptive IIR
system design to obtain a lesser mean square error value.
Panda et al. [13] formulated the system identification task
as an optimization problem using cat swarm optimization
(CSO) on some standard IIR plants in 2011. Further, in 2011,
a relatively new optimization technique, GSA, was utilized
to model the nonlinear and linear IIR system [40]. Recently,
new strategies were introduced by Saha et al. [41,42], utiliz-
ing the concepts of opposition-based bat algorithm (OBA)
and HS algorithm for IIR filter design. In this work, the
authors have made an attempt to apply the metaheuristic
algorithms productively for IIR system modeling in signal
processing applications. Another strategy inspired by the
breeding behavior of cuckoo species, CSA, was studied in
Patwardhan et al. [43]. Upadhyay et al. [44–47] presented a
comparative study on IIR system design with different meta-
heuristic algorithms, DEWM, CRPSO, FFA and OHS. The
latest attempt was made by Jiang et al. [48] in 2015 using a
hybrid algorithm, combining the characteristics of PSO and
GSA to achieve a better quality of system response by opti-
mizing IIR filter coefficients.

In this paper, efficiency of bat algorithm is demonstrated in
system identification problem. BA is inspired from the mag-
ical echolocation characteristics of the flying mammal, bats,
with which they easily locate their targets, distance from the
target, its speed, texture and direction. Here, four benchmark
functions are tested using GA, PSO, CSO and BA for approx-
imating the same-order and reduced-order IIR systems. The
proposed BA method for system identification is testified to
be the best among others on the basis of computing the mean
square error (MSE), mean square deviation (MSD) and com-
putation time. In addition, it is affirmed that the proposed BA
method is superior in performance in comparison with some
of the other existing system identification techniques.
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The rest of the paper is organized as follows: Following
a detailed literature survey in Sect. 1, mathematical for-
mulation of adaptive IIR system identification problem is
presented in Sect. 2. In Sect. 3, a brief review of the basic
principles of bat algorithm and implementation steps are
presented for the system identification problem. The perfor-
mance of the proposed system identification method using
bat algorithm is tested using four benchmark functions, and
detail analysis is presented in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Problem Formulation

In this section, some basic concepts of IIR system identifica-
tion are reviewed briefly. In system identification problem,
the aim is to find the adaptive IIR filter coefficients such that
it matches the transfer function of an unknown system. In
other words, the meta-heuristic optimization algorithms are
applied to alter the coefficients of an adaptive IIR system
in such a way that its output matches the unknown system
output, when both the systems (unknown system and adap-
tive IIR system) are subjected to same input signal. Figure 1
shows the schematic of an IIR system identification problem
using metaheuristic optimization algorithm.

Consider IIR filter with the input–output relationship
given by the following difference equation

y(m) +
M∑

i=1

bi y(m − i) =
N∑

i=0

ai x(m − i) (1)

where ai (i = 0, 1, 2, . . . , N ) and bi (i = 1, 2, . . . , M) are
the filter coefficients, x(m) and y(m) are the input and output
of the filter at a time instant m, respectively, N and M are
the order of the numerator and denominator, respectively.
Transfer function of the estimated adaptive IIR filter can be
written as

Fig. 1 Block diagram of adaptive IIR filter for system identification

HE (z) =

N∑
i=0

ai z−i

1 +
M∑
i=1

bi z−i

= NE (z)

DE (z)
= ΘT(i)ai

ΦT(i)bi
(2)

where

NE (z) = ΘT(i)ai

DE (z) = ΦT(i)bi

ΘT(i) = [z−1, z−2, . . . , z−N ]T,

ΦT(i) = [1, z−1, z−2, . . . , z−M ]T,

ai = [a0, a1, a2, . . . , aN ]T

and

bi = [1, b1, b2, . . . , bM ]T.

It is assumed that the actual system is known by consid-
ering some standard IIR plants. Hence, the transfer function
of the unknown system is expressed as follows:

HA(z) =

N∑
i=0

âi z−i

1 +
M∑
i=1

b̂i z−i

(3)

where âi (i = 0, 1, 2, . . . , N ) and b̂i (i = 1, 2, . . . , M) are
coefficients of the actual system. Here, we considered that
all the coefficients are real valued.

Now, the objective is to find the optimal filter coefficient
vector [ai ,bi ] such that the response of the estimated adap-
tive IIR filter HE (z) approaches the actual system response
HA(z). To accomplish this objective, a fitness function which
is a mean square error (MSE) between the estimated adaptive
IIR filter and the actual system is articulated and the meta-
heuristic optimization algorithm considered in this work is
applied to determine the filter coefficient vector [ai ,bi ]. The
fitness function is minimized such that the output of the
estimated IIR filter closely approximates the actual system
output. The mean square error objective function is defined
as

J (ai ,bi ) = 1

L

L∑

m=1

e2(m)

= 1

L

L∑

m=1

(
ŷ(m) − y(m)

)2 (4)

where e(m) is the error signal, ŷ(m) and y(m) are the are
response of the actual system and the adaptive IIR filter,
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respectively, L is the number of samples utilized to com-
pute the fitness function. In this paper, coefficients of the IIR
filter are iteratively varied by BA in a manner such that the
error between adaptive IIR filter output and the actual system
output is minimized.

3 Bat Algorithm

A new metaheuristic algorithm, inspired from the natural
echolocation behavior of the microbats, was developed by
Yang [22]. The bat algorithm is a population-based sto-
chastic search approach for solving constrained optimization
problem with multimodal fitness function. The echoloca-
tion process performed by bats investigates the presence
of prey for their survival. It allows them to sense nearby
movements and vibrations, even in the dark. It is similar to
the principles of sonar signaling where the bat emits very
high frequency sound waves and learns from the reflected
echoes. They account for three parameters (i) time delay
between the transmitted and detected waves, (ii) time dif-
ference between their ears and (iii) the variation in loudness,
to create a three-dimensional perception of the environment.
With these parameters, they inherently determine the obsta-
cle/target size, direction and distance from the target, its
speed and texture. With the efficient performance of BA,
it has been applied in various applications such as image
processing, feature selection, data mining, parameter esti-
mation and many other engineering optimization problems
[49–54].

The algorithm follows some idealistic rules for its suc-
cessful operation.

1. The bats use their inherent magical potential to classify
between an obstacle and prey, in their path.

2. In the process of searching, bats fly randomly with veloc-
ity vi to achieve the position xi , with a fixed frequency
fmin, variable wavelength λ and a loudness parameter
A0. Based on the propinquity of the target, bats reflex
toward adjusting the wavelength of emitting waves and
the pulse rate r ∈ [0, 1].

3. The loudness values can be constant or decreasing from
a maximum limit.

4. There is a limit to the maximum and minimum fre-
quency/wavelength of emitting waves.

In order to formulate BA according the adaptive system iden-
tification problem, the flowchart of bat algorithm is shown in
Fig. 2 and the implementation steps are outlined below.

Step 1: Initialization. Set population size of bats, ni , max-
imum number of iterations and number of parameters to be
optimized (depending on the order of the system). Specify

Fig. 2 Flowchart of the bat algorithm

the control parameters, Ai , ri , fmin, fmax and search space
(upper and lower bound of system parameters).
Step 2: Initial Generation. Generate the initial bat popu-
lation specifying their positions, xi , (i = 1, 2, . . . , n), and
velocities, vi . Compute the fitness function, F(xi ), to evalu-
ate the effectiveness of each bat position in search of the best
solution.

Step 3: Movement. After evaluating the fitness for each bat
position, the best location known as the current global solu-
tion, x j , is selected. In the next iteration, update the new
solutions, xl+1

i , and velocities, vl+1
i , using the following

equations.

fi = fmin + ( fmax − fmin) β (5)

vl+1
i = vli +

(
xl+1
i − x j

)
fi (6)

xl+1
i = xli + vl+1

i (7)

where β is a uniformly distributed random number in [0,1].
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Table 1 Control parameters of GA, PSO, CSO and BA for IIR system identification

Parameters Symbol GA PSO CSO BA

Initial population ni 25 25 25 25

Maximum iterations Ni 400 400 400 400

Tolerance ε 10−5 10−5 10−5 10−5

Lower bound Lmin −2 −2 −2 −2

Upper bound Lmax 2 2 2 2

Elite count – 1 – – –

Creation function – Feasible population – – –

Crossover fraction – 0.90 – – –

Crossover function – Scattered – – –

Scaling function – Rank – – –

Selection function – Roulette – – –

Mutation function – Constraint dependent – – –

Cognitive constant C1 – 2.0 – –

Social constant C2 – 2.0 – –

Initial velocity νmin
i – 0.01 – –

Final velocity νmax
i – 1.0 – –

Lower frequency (for PSO) wmin – 0.2 – –

Higher frequency (for PSO) wmax – 1.0 – –

Seeking memory pool SMP – – 5 –

Counts of dimensions to change CDC – – 0.6 –

Seeking range of selected Dimension SRD – – 2 –

Mixture ratio MR – – 0.1 –

Inertia weight ω – – 0.4 –

Acceleration constant C – – 1.5 –

Initial velocity (for CSO) Vmin – – −0.1 –

Final velocity (for CSO) Vmax – – 0.1 –

Loudness Ai – – – 0.5

Pulse rate ri – – – 0.5

Lower frequency (for CSO) fmin – – – 0

Higher frequency (for CSO) fmax – – – 2

Stopping criteria – Maximum
itera-
tion/best
solution

Maximum iteration Maximum iteration Maximum iteration

Table 2 Optimized coefficients
in Example 1 for identification
of second-order IIR system
using the same-order system

Coefficients Exact value Optimized value

GA PSO CSO BA

a0 0.0500 −0.0877 0.0536 0.0493 0.0501

a1 −0.4000 −0.4112 −0.4184 −0.4021 −0.4002

b1 1.1314 1.1820 1.0876 1.1248 1.1306

b2 −0.2500 −0.3050 −0.2077 −0.2433 −0.2497

Step 4: Local Search. If a random number rand > ri , then
select a solution among the best solution. If rand < ri , gener-
ate new solutions for each bat using the random walk, given
by

xnew = xold + εAl (8)

where ε ∈ [−1, 1] and Al = 〈Al
i 〉 is the average loudness for

all the bats at the current iteration.
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Fig. 3 Comparison of optimized coefficient values in Example 1
obtained by employing different evolutionary algorithms

Step 5: Compare. Compute the fitness of the new solutions,
F(x j ). If F(x j ) < F(xi ) and a random number rand < Ai ,
then retain the new solutions, x j , as best solutions, otherwise
goto step 3 if the maximum iterations has not reached.

Step 6: Update. The loudness, Ai , and pulse rate, ri , are
updated according the following equations.

Al+1
i = αAl

i (9)

rl+1
i = r0

i

[
1 − e−γ l

]
(10)

where α = γ = 0.8 for the problem under consideration.
Approaching the prey, the loudness of the bat decreases,
whereas the pulse rate increases.
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Fig. 4 Convergence profile for Example 1 modeled using same-order
system obtained by employing different evolutionary algorithms

Step 7: Solution. Record the best solution if the maximum
number of iterations has reached. Otherwise, go to step 3. The
best solution corresponds to the minimum fitness function are
used to identify the unknown system.

4 Simulation Results

The system identification problem described in Sect. 2 has
been implemented in MATLAB. To evaluate the perfor-
mance of BA for system identification, it is examined using
four established benchmark systems. In order to model an
unknown system, two cases are considered: (i) using a sys-

Table 3 Statistical comparison of MSE performance matric in Example 1 for identification of second-order IIR system using the same-order system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 2.1569 × 10−5 2.2014 × 10−5 2.1815 × 10−5 2.1501 × 10−5 2.3365 × 10−7

CSO 6.3639 × 10−5 6.4629 × 10−5 6.3849 × 10−5 6.3806 × 10−5 2.8906 × 10−7

PSO 1.0116 × 10−4 2.7405 × 10−4 1.5491 × 10−4 1.4519 × 10−5 5.1800 × 10−5

GA 2.6428 × 10−4 4.9228 × 10−3 1.4671 × 10−3 8.2421 × 10−4 1.5489 × 10−3

Table 4 Statistical comparison of MSD performance matric in Example 1 for identification of second-order IIR system using the same-order
system

Algorithm Mean square deviation (MSD)

Best Worst Average Median Standard deviation

BA 2.2500 × 10−8 2.4815 × 10−8 2.3157 × 10−8 2.3085 × 10−8 1.1930 × 10−9

CSO 1.1998 × 10−6 2.8118 × 10−5 1.3085 × 10−5 1.3728 × 10−5 9.9418 × 10−6

PSO 3.5700 × 10−5 5.9713 × 10−3 1.8691 × 10−3 1.4839 × 10−3 1.7985 × 10−3

GA 4.9903 × 10−4 2.8144 × 10−2 7.9963 × 10−3 5.1482 × 10−3 8.9938 × 10−3
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Table 5 Statistical comparison of MSE performance matric in Example 1 for identification of second-order IIR system using the reduced-order
system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 7.9178 × 10−3 7.9178 × 10−3 7.9178 × 10−3 7.9178 × 10−3 6.9831 × 10−19

CSO 1.7515 × 10−2 1.7515 × 10−2 1.7515 × 10−2 1.7515 × 10−2 4.9100 × 10−18

PSO 1.7515 × 10−2 5.5841 × 10−2 3.8807 × 10−2 5.5841 × 10−2 2.0199 × 10−2

GA 2.7122 × 10−2 5.7830 × 10−2 4.6893 × 10−2 5.7285 × 10−2 1.3236 × 10−2
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Fig. 5 Convergence profile for Example 1 modeled using reduced-
order system obtained by employing different evolutionary algorithms

tem of the same order as that of the benchmark system and
(ii) using a reduced-order system. The proposed BA-based
system identification method is compared with the genetic
algorithm, particle swarm optimization and cat swarm opti-
mization [13]. The control parameters selected for optimal
results are summarized in Table 1. The tuning of control para-
meters is distinctive, and there is no explicit method available
in the vast literature to obtain an optimal set of parameter val-
ues for optimal performance. Moreover, optimal parameter
values can differ for different problems. Thus, after perform-
ing extensive simulations with different parameter values in
the range specified by the researchers in this field, the para-
meter values mentioned in Table 1 are computed for IIR
system identification problem. The ability to model a sys-
tem using reduced-order determines the effectiveness of the
algorithm. Here, the same-order system identification results
are analyzed in terms of computation time, mean square
error and mean square deviation, whereas the results of the
reduced-order system are provided in terms of computation
time and mean square error. The mean square deviation is
defined as

Fig. 6 Percentage improvement for Example 1 in terms of MSE and
MSD as compared to other reported algorithms for same-order and
reduced-order systems

MSD = 1

L

L−1∑

k=0

[
Ψ (k) − Ψ̂ (k)

]2
(11)

where Ψ is the vector of actual parameters, Ψ̂ is the vector
of approximated parameters and L be the total number of
parameters to be optimized.

4.1 Design Examples and Modeled System

Example 1 A second-order system is considered and its
transfer function is given by

Ht (z) = 0.05 − 0.4z−1

1 − 1.314z−1 + 0.25z−2 (12)

Ht (z) is modeled in this example to testify the superiority of
BA using the same-order system as described in case 1 and
reduced-order system in case 2.

Case 1: Same Order
In this case, the second-order system is modeled using a
second-order unknown system with the transfer function
given by
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Table 6 Percentage
improvement for different
performance measures in
Example 1 in comparison with
other reported algorithms

Parameters Percentage improvement in Example 1

BA compared to CSO BA compared to PSO BA compared to GA

MSE (same order) 66.11 78.67 91.84

MSD (same order) 98.12 99.94 99.99

MSE (reduced order) 54.61 54.61 70.81

Table 7 Optimized coefficients
in Example 2 for identification
of third-order IIR system using
the same-order system

Coefficients Exact value Optimized value

GA PSO CSO BA

a0 −0.2000 −0.2258 −0.2105 −0.2050 −0.2066

a1 −0.4000 −0.2717 −0.3778 −0.3927 −0.3996

a2 0.5000 0.4643 0.4670 0.5038 0.4994

b1 0.6000 0.7742 0.6123 0.6077 0.5983

b2 −0.2500 −0.4379 −0.3134 −0.2519 −0.2497

b3 0.2000 0.3206 0.2249 0.2031 0.1991
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Fig. 7 Comparison of optimized coefficient values in Example 2
obtained by employing different evolutionary algorithms

HSO(z) = a0 + a1z−1

1 − b1z−1 − b2z−2 (13)

The problem of system identification is reduced to optimize
the numerator and denominator coefficients a0, a1 and b1, b2,
respectively. The coefficients obtained are reported in Table 2
which leads to the best approximation to the unknown system
using the evolutionary algorithms. From Table 2 and Fig. 3,
it can be observed that BA contributes to the best approxima-
tion of the actual value of system coefficients compared to the
reported algorithms. Statistical analysis of the performance
of all algorithms is measured in terms of best, worst, mean,
median and standard deviation of computed MSE and MSD
of the identified system. The MSE and MSD values are sum-
marized in Tables 3 and 4, respectively. The best MSE values
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Fig. 8 Convergence profile for Example 2 modeled using same-order
system obtained by employing different evolutionary algorithms

obtained are 2.1569×10−5, 6.3639×10−5, 1.0116×10−4,
and 2.6428×10−4 for BA, CSO, PSO and GA, respectively.
The best MSD values noticed for BA, CSO, PSO and GA are
2.25×10−8, 1.1998×10−6, 3.57×10−5, and 4.9903×10−4,
respectively. It is evident from the above observations that the
proposed BA-based system identification method yields the
best results in terms of MSE and MSD as compared to GA,
PSO and CSO. Convergence profiles for the least MSE val-
ues using different algorithms are demonstrated in Fig. 4.
It is apparent from Fig. 4 that BA required 170 iterations to
converge to the minimum fitness value of about −73 dB. Fur-
thermore, based on the precipitousness it is concluded that
the convergence speed of BA is much higher than that of the
CSO, PSO and GA.
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Table 8 Statistical comparison of MSE performance matric in Example 2 for identification of third-order IIR system using the same-order system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 2.3037 × 10−5 2.3045 × 10−5 2.3039 × 10−5 2.3482 × 10−5 2.9143 × 10−12

CSO 6.35201 × 10−5 6.35201 × 10−5 6.35201 × 10−5 6.35201 × 10−5 1.68717 × 10−18

PSO 6.35202 × 10−5 6.35206 × 10−5 6.35203 × 10−5 6.35202 × 10−5 1.47673 × 10−10

GA 7.32034 × 10−4 6.15287 × 10−3 2.51099 × 10−3 2.19245 × 10−3 1.48508 × 10−3

Table 9 Statistical comparison of MSD performance matric in Example 2 for identification of third-order IIR system using the same-order system

Algorithm Mean square deviation (MSD)

Best Worst Average Median Standard deviation

BA 1.3501 × 10−7 1.3755 × 10−7 1.3592 × 10−7 1.6810 × 10−7 2.2795 × 10−12

CSO 1.22363 × 10−5 1.22363 × 10−5 1.22363 × 10−5 1.22363 × 10−5 8.24073 × 10−12

PSO 1.21551 × 10−5 1.23941 × 10−5 1.22585 × 10−5 1.22488 × 10−5 7.30148 × 10−8

GA 4.25648 × 10−3 2.60326 × 10−2 1.28355 × 10−2 1.03561 × 10−2 8.08953 × 10−3

Table 10 Statistical comparison of MSE performance matric in Example 2 for identification of third-order IIR system using the reduced-order
system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 8.3264 × 10−4 8.3264 × 10−4 8.3264 × 10−4 8.3264 × 10−4 4.2975 × 10−20

CSO 1.3938 × 10−3 1.3938 × 10−3 1.3938 × 10−3 1.3938 × 10−3 1.0842 × 10−19

PSO 1.3938 × 10−3 1.3938 × 10−3 1.3938 × 10−3 1.3938 × 10−3 2.9692 × 10−19

GA 1.6505 × 10−2 6.6687 × 10−2 3.2599 × 10−2 2.4585 × 10−2 1.6105 × 10−2
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Fig. 9 Convergence profile for Example 2 modeled using reduced-
order system obtained by employing different evolutionary algorithms

Case 2: Reduced Order

In this case, the second-order system is modeled using a first
order unknown system with the transfer function given by

HRO(z) = a0

1 − b1z−1 (14)

Here, MSE and convergence profile are the performance met-
ric that are considered to valuate the performance of reduced-
order system identification problem. Statistical results are
taken into consideration to analyze the comparative perfor-
mance of the BA, CSO, PSO and GA. Table 5 presents the
MSE values. The best MSE values observed for BA, CSO,
PSO and GA are 7.9178 × 10−3, 1.7515 × 10−2, 1.7515 ×
10−2, and 2.7122×10−2, respectively. From the above obser-
vation, it is inferred that BA algorithm gives the best results
for system identification problem compared to CSO, PSO
and GA. Figure 5 depicts the convergence behavior of MSE
values. It is observed from Fig. 5 that BA reaches the mini-
mum fitness value of about −43 dB in 180 iterations.

The percentage improvement in the performance of BA
over CSO, PSO and GA is graphically presented in Fig. 6
and listed in Table 6 for both same-order and reduced-order
system identification. The percentage improvement observed
in MSE for same-order system is 66.11 %, 78.67 % and
91.84 % for BA compared to CSO, PSO and GA, respec-
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Fig. 10 Percentage improvement for Example 2 in terms of MSE and
MSD as compared to other reported algorithms for same-order and
reduced-order systems

tively. The percentage improvement obtained in MSD for
BA compared to CSO, PSO and GA is 98.12 %, 99.94 %
and 99.99 %, respectively, for same-order system. The per-
centage improvement noticed in MSE for the reduced-order
system is 54.61 %, 54.61 % and 70.81 % for BA compared
to CSO, PSO and GA, respectively. The above-mentioned
results are verified from Table 6.

Example 2 Transfer function of the third-order IIR system,
which is modeled below using the same-order and reduced-
second-order systems, is given by

Ht (z) = −0.2 − 0.4z−1 + 0.5z−2

1 − 0.6z−1 + 0.25z−2 − 0.2z−3 (15)
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Fig. 11 Comparison of optimized coefficient values in Example 3
obtained by employing different evolutionary algorithms

Case 1: Same Order
The third-order system is approximated using a third-order
unknown system with the transfer function given by

HSO(z) = a0 + a1z−1 + a2z−2

1 − b1z−1 − b2z−2 − b3z−3 (16)

In this case, the optimization of system parameters,
a0, a1, a2, b1, b2, b3, is executed using four algorithms. The
estimated coefficients are enlisted in Table 7. Observations
are made from Fig. 7 that the coefficient values obtained
using BA approaches to the actual parameter values as com-
pared to other methods. Figure 8 depicts the comparison

Table 11 Percentage
improvement for different
performance measures in
Example 2 in comparison with
other reported algorithms

Parameters Percentage improvement in Example 2

BA compared to CSO BA compared to PSO BA compared to GA

MSE (same order) 63.23 63.23 96.85

MSD (same order) 98.89 98.89 99.99

MSE (reduced order) 40.26 40.26 94.96

Table 12 Optimized
coefficients in Example 3 for
identification of fourth-order IIR
system using the same-order
system

Coefficients Exact value Optimized value

GA PSO CSO BA

a0 1.0000 1.0670 1.1587 0.9951 1.0004

a1 −0.9000 −0.7493 −0.6562 −0.8839 −0.9002

a2 0.8100 0.7214 0.3380 0.8206 0.8099

a3 −0.7290 −0.4350 −0.9309 −0.7253 −0.7286

b1 −0.0400 −0.2308 −0.6264 −0.0506 −0.0399

b2 −0.2775 −0.3064 −0.6618 −0.2930 −0.2768

b3 0.2101 0.1065 0.5165 0.1962 0.2102

b4 −0.1400 −0.0489 −0.0067 −0.1461 −0.1396
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Table 13 Statistical comparison of MSE performance matric in Example 3 for identification of fourth-order IIR system using the same-order
system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 1.7315 × 10−5 1.8029 × 10−5 1.7615 × 10−5 1.7660 × 10−5 3.4863 × 10−9

CSO 5.9421 × 10−5 5.9444 × 10−5 5.9428 × 10−5 5.9425 × 10−5 8.3021 × 10−9

PSO 6.1146 × 10−5 1.4251 × 10−4 8.7325 × 10−5 7.7249 × 10−5 2.6268 × 10−5

GA 7.1586 × 10−3 4.4913 × 10−2 1.7415 × 10−2 1.2474 × 10−2 1.2255 × 10−2

Table 14 Statistical comparison of MSD performance matric in Example 3 for identification of fourth-order IIR system using the same-order
system

Algorithm Mean square deviation (MSD)

Best Worst Average Median Standard deviation

BA 2.0015 × 10−8 2.3761 × 10−8 2.1386 × 10−8 2.1397 × 10−8 5.3168 × 10−9

CSO 1.3908 × 10−5 1.4134 × 10−5 1.44037 × 10−5 1.4052 × 10−5 9.6703 × 10−8

PSO 1.1272 × 10−4 1.3378 × 10−3 4.7619 × 10−4 2.4282 × 10−4 4.7374 × 10−4

GA 2.5197 × 10−2 1.6039 × 10−1 8.4828 × 10−2 7.6787 × 10−2 3.8506 × 10−2
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Fig. 12 Convergence profile for Example 3 modeled using same-order
system obtained by employing different evolutionary algorithms

of the convergence profiles of BA, CSO, PSO and GA. It
is seen that the least fitness value nears to −80 dB is pre-
vailed by BA at 225th iteration. Moreover, the values of
MSE and MSD ascertained are given in Tables 8 and 9,
respectively. The best observed MSE for BA, CSO PSO
and GA are 2.3037 × 10−5, 6.3520 × 10−5, 6.3520 × 10−5

and 7.3203 × 10−4, respectively, and the best MSD val-
ues are 1.3501 × 10−7, 1.2236 × 10−5, 1.2155 × 10−5

and 4.2564 × 10−3, respectively. It can be concluded from
these measurements that the system identified using the BA
approach possesses least MSE and MSD and an optimal
approximation is delivered by BA.

Case 2: Reduced Order
Here, the system identification is based on modeling the third-
order system using a second-order unknown system whose
transfer function is given by

HRO(z) = a0 + a1z−1

1 − b1z−1 − b2z−2 (17)

The optimized coefficients yield a system with the MSE
values given in Table 10. The convergence plot for the
reduced-order approximation is shown in Fig. 9, and a min-
imum error of around −48 dB is obtained at 180th iteration
by BA.

Furthermore, the improvement in the performance of the
BA in the system identification problem over CSO, PSO and
GA is evaluated and demonstrated in Fig. 10. It indicates that
the results obtained in terms of MSE and MSD values for the
same-order and reduced-order system modeling using BA are
improved tremendously over GA. In addition, improvements
are also observed over PSO and CSO to a large extent. The
percentage values are reflected in Table 11.

Example 3 A fourth-order system is considered, and its
transfer function is given by

Ht (z) = 1 − 0.9z−1 + 0.81z−2 − 0.729z−3

1 + 0.04z−1 + 0.277z−2 − 0.2101z−3 + 0.14z−4 (18)

Case 1: Same Order
In this case, fourth-order system is modeled using a fourth-
order unknown system with the transfer function given by
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Table 15 Statistical comparison of MSE performance matric in Example 3 for identification of fourth-order IIR system using the reduced-order
system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 7.6325 × 10−4 7.6325 × 10−4 7.6325 × 10−4 7.6325 × 10−4 9.6156 × 10−12

CSO 6.7051 × 10−3 6.7051 × 10−3 6.7051 × 10−3 6.7051 × 10−3 2.9990 × 10−11

PSO 6.7051 × 10−3 1.5666 × 10−2 8.5485 × 10−3 6.8008 × 10−3 3.7473 × 10−3

GA 1.9375 × 10−2 9.2520 × 10−2 4.6595 × 10−2 4.4555 × 10−2 2.3287 × 10−2
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Fig. 13 Convergence profile for Example 3 modeled using reduced-
order system obtained by employing different evolutionary algorithms

HSO(z) = a0 + a1z−1 + a2z−2 + a3z−3

1 − b1z−1 − b2z−2 − b3z−3 − b4z−4 (19)

The problem of system identification is reduced to optimize
the numerator and denominator coefficients a0, a1, a2, a3

and b1, b2, b3, b4, respectively. The coefficients obtained
are listed in Table 12. From Table 12 and Fig. 11, it can
be noticed that BA gives the best approximation of the
actual value of system coefficients compared to the reported
algorithms. Tables 13 and 14 summarize the MSE and
MSD values, respectively. The best MSE values observed
are 1.7315 × 10−5, 5.9421 × 10−5, 6.1146 × 10−5, and
7.1586 × 10−3 for BA, CSO, PSO and GA, respectively.
The best MSD values noted for BA, CSO, PSO and GA
are 2.0015 × 10−8, 1.3908 × 10−5, 1.1272 × 10−4, and
2.5197×10−2, respectively. From the above observations, it
is apparent that the proposed BA-based system identification
method gives the best results in terms of MSE and MSD as
compared with GA, PSO and CSO. Figure 12 shows the con-
vergence profile for MSE values. It is evident from Fig. 12
that BA requires 85 iterations to converge to the minimum
fitness value of about −75 dB. Furthermore, based on the

Fig. 14 Percentage improvement for Example 3 in terms of MSE and
MSD as compared to other reported algorithms for same-order and
reduced-order systems

steepness it is inferred that the convergence speed of BA is
much higher than that of CSO, PSO and GA.

Case 2: Reduced Order
In this case, fourth-order system is modeled using a third-
order unknown system with the transfer function given by

HRO(z) = a0 + a1z−1 + a2z−2

1 − b1z−1 − b2z−2 − b3z−3 (20)

Here, MSE and convergence profile are the performance
metrics that are considered to valuate performance of the
reduced-order system identification problem. The MSE val-
ues obtained with BA, CSO, PSO and GA are reported in
Table 15. The MSE values observed for BA, CSO, PSO and
GA are 7.6325 × 10−4, 6.7051 × 10−3, 6.7051 × 10−3 and
1.9375×10−2, respectively. From the above fact, it is inferred
that BA yields best results compared to CSO, PSO and GA.
The convergence behavior of MSE values using BA, CSO,
PSO and GA is shown in Fig. 13. Figure 13 shows that BA
converges to the minimum fitness value of about −55 dB in
155 iterations. Moreover, BA has very fast convergence rate
compared to CSO, PSO and GA.

The percentage improvement in the performance of BA
over CSO, PSO and GA for both same-order and reduced-
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Table 16 Percentage
improvement for different
performance measures in
Example 3 in comparison with
other reported algorithms

Parameters Percentage improvement in Example 3

BA compared to CSO BA compared to PSO BA compared to GA

MSE (same order) 70.86 71.68 99.76

MSD (same order) 99.85 99.98 99.99

MSE (reduced order) 88.62 88.62 96.06

Table 17 Optimized
coefficients in Example 4 for
identification of fifth-order IIR
system using the same-order
system

Coefficients Exact value Optimized value

GA PSO CSO BA

a0 0.1084 0.5083 0.2484 0.1038 0.1064

a1 0.5419 0.7449 0.3789 0.5403 0.5326

a2 1.0837 1.0303 1.6960 1.0813 1.0774

a3 1.0837 1.0714 1.4109 1.0803 1.0925

a4 0.5419 0.7067 0.8467 0.5447 0.5513

a5 0.1084 0.3578 0.2684 0.1145 0.1091

b1 −0.9853 −0.6080 −1.0628 −0.9768 −0.9890

b2 −0.9738 −0.9316 −0.7275 −0.9632 −0.9709

b3 −0.3864 −0.3451 −0.4842 −0.3827 −0.3878

b4 −0.1112 −0.3382 −0.3291 −0.1137 −0.1093

b5 −0.0113 −0.1848 −0.2238 −0.0167 −0.0121
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Fig. 15 Comparison of optimized coefficient values in Example 4
obtained by employing different evolutionary algorithms

order systems are graphically presented in Fig. 14 and listed
in Table 16. To compute the percentage improvement of BA
over CSO, PSO and GA, MSE and MSD are the performance
measures that are considered for same-order system identifi-
cation, whereas in reduced-order system identification, MSE
is the only performance measure that is considered. The
percentage improvement obtained in MSE for same-order
system is 70.86 %, 71.68 % and 99.76 % for BA compared
to CSO, PSO and GA, respectively. The percentage improve-
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Fig. 16 Convergence profile for Example 4 modeled using same-order
system obtained by employing different evolutionary algorithms

ment noticed in MSD for BA compared to CSO, PSO and
GA is 99.85 %, 99.98 % and 99.99 %, respectively, for the
same-order system. The percentage improvement observed
in MSE for the reduced-order system is 88.62 %, 88.62 %
and 96.06 % for BA compared to CSO, PSO and GA, respec-
tively.

Example 4 The transfer function of the fifth-order IIR sys-
tem, which is modeled below using the same-order and
reduced-second-order system, is given by
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Ht (z) = 0.1084 + 0.5419z−1 + 1.0837z−2 + 1.0837z−3 + 0.5419z−4 + 0.1084z−5

1 + 0.9853z−1 + 0.9738z−2 + 0.3864z−3 + 0.1112z−4 + 0.0113z−5

(21)

Case 1: Same Order
The fifth-order system is approximated using a fifth-order

unknown system with the transfer function given by

HSO(z) = a0 + a1z−1 + a2z−2 + a3z−3 + a4z−4 + a5z−5

1 − b1z−1 − b2z−2 − b3z−3 − b4z−4 − b5z−5

(22)

In this case, optimization of system parameters,
a0, a1, a2, a3, a4, a5, b1, b2, b3, b4, b5 is performed using
BA, CSO, PSO and GA. The optimized coefficients are sum-
marized in Table 17. Figure 15 shows that the estimated
coefficient values obtained using BA approximately match
the actual parameter values. Comparison of the convergence
profiles for BA, CSO, PSO and GA is demonstrated in Fig. 16.
It is seen that the minimum fitness value of about −80 dB is

achieved by BA at 170th iteration. Furthermore, the values
of MSE and MSD noted are summarized in Tables 18 and 19,
respectively. The observed MSE values for BA, CSO, PSO
and GA are 5.4017 × 10−5, 6.3551 × 10−5, 7.2739 × 10−5

and 1.3336 × 10−2, respectively, and the best MSD val-
ues are 5.8182 × 10−6, 1.0109 × 10−4, 7.7019 × 10−4 and
2.9050 × 10−2, respectively.

Case 2: Reduced Order
Here, the system identification is based on modeling the

fifth-order system using a fourth-order unknown system
whose transfer function is given by

HRO(z) = a0 + a1z−1 + a2z−2 + a3z−3 + a4z−4

1 − b1z−1 − b2z−2 − b3z−3 − b4z−4 (23)

The MSE values corresponding to the optimized coefficients
are given in Table 20. The convergence plot for the reduced-

Table 18 Statistical comparison of MSE performance matric in Example 4 for identification of fifth-order IIR system using the same-order system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 5.4017 × 10−5 5.5102 × 10−5 5.4957 × 10−5 5.4899 × 10−5 1.2658 × 10−7

CSO 6.3551 × 10−5 6.4493 × 10−5 6.3937 × 10−5 6.3972 × 10−5 2.9027 × 10−7

PSO 7.2739 × 10−5 9.1496 × 10−5 7.7614 × 10−5 7.6137 × 10−5 5.7365 × 10−6

GA 1.3336 × 10−2 6.4171 × 10−2 3.3988 × 10−2 3.0856 × 10−2 1.4807 × 10−2

Table 19 Statistical comparison of MSD performance matric in Example 4 for identification of fifth-order IIR system using the same-order system

Algorithm Mean square deviation (MSD)

Best Worst Average Median Standard deviation

BA 5.8182 × 10−6 6.0214 × 10−6 5.8989 × 10−6 5.8981 × 10−6 8.6598 × 10−6

CSO 1.0109 × 10−4 2.3621 × 10−3 4.5339 × 10−4 2.3241 × 10−4 6.8032 × 10−4

PSO 7.7019 × 10−4 7.8223 × 10−3 4.6080 × 10−3 4.6871 × 10−3 2.7763 × 10−3

GA 2.9050 × 10−2 1.5968 × 10−1 6.8121 × 10−2 6.6429 × 10−2 3.6147 × 10−2

Table 20 Statistical comparison of MSE performance matric in Example 4 for identification of second-order IIR system using the reduced-order
system

Algorithm Mean square error (MSE)

Best Worst Average Median Standard deviation

BA 4.3986 × 10−5 2.6589 × 10−5 3.7621 × 10−5 3.2549 × 10−5 1.0268 × 10−5

CSO 6.9475 × 10−5 1.4516 × 10−4 7.8534 × 10−5 7.0347 × 10−5 2.4988 × 10−5

PSO 6.9373 × 10−5 3.8379 × 10−3 5.1656 × 10−4 9.7148 × 10−5 1.2458 × 10−3

GA 8.4596 × 10−2 2.9049 × 105 3.2386 × 104 5.8357 × 10−1 9.6788 × 104
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Fig. 17 Convergence profile for Example 4 modeled using reduced-
order system obtained by employing different evolutionary algorithms

Fig. 18 Percentage improvement for Example 4 in terms of MSE and
MSD as compared to other reported algorithms for same-order and
reduced-order systems

order approximation is shown in Fig. 17, and a minimum
error of around −63 dB is obtained at 135th iteration by BA.
From Fig. 17, it is noticed that the bat algorithm converges
faster to the minimum error fitness value compared to other
reported algorithms.

Furthermore, the improvement in the performance of the
BA in the system identification problem over CSO, PSO and
GA is shown in Fig. 18 and its numerical values are reported
in Table 21. A tremendous improvement in the performance
of BA in terms of MSE and MSD values for the same-order
and reduced-order system modeling is reported over GA,
PSO and CSO. From Table 21 and Fig. 18, it can be concluded
that the BA gives superior performance when compared to
the other reported algorithms.

Table 21 Percentage improvement for different performance measures
in Example 4 in comparison with other reported algorithms

Parameters Percentage improvement in Example 4

BA compared
to CSO

BA compared
to PSO

BA compared
to GA

MSE (same order) 15.01 25.74 99.59

MSD (same order) 94.24 99.24 99.97

MSE (reduced order) 36.69 36.59 99.95

Table 22 Computational time (in seconds) reported for different exam-
ples modeled using same-order system with different algorithms

Algorithm Example 1 Example 2 Example 3 Example 4

BA 3.9016 4.2091 4.5626 4.6935

CSO 29.3125 66.0000 99.4218 166.9218

PSO 9.5468 21.3125 32.2656 54.4531

GA 65.7013 171.2500 297.3437 598.0468

4.2 Comparative Analysis of Computation Time for the
Reported Algorithms

Table 22 summarizes the computation time observed with
BA, CSO, PSO and GA for all the four examples. The com-
putation time of BA for adaptive IIR system identification is
3.9016, 4.2091, 4.5626 and 4.6935 to model second-, third-,
fourth- and fifth-order unknown system, respectively. From
Table 22, it can be observed that the BA converges very
fast to the optimal solution as compared to other reported
algorithms. In addition, the percentage improvement in the
computation time of BA over CSA, PSO and GA is calculated
for all examples and given in Table 23 and demonstrated in
Fig. 19. As can be observed from Table 23 and Fig. 19, bat
algorithm exhibits a considerable improvement in the com-
putation time compared to the other reported algorithms.

4.3 Comparison with the Existing Methods

The superiority in the performance of the adaptive IIR sys-
tem identification using BA is proved by comparing its MSE
with the existing techniques for system identification prob-
lem using DE, ABC, SOA, QPSO, MuQPSO, PSO, PSO–QI,
CSA and GSA for both the same-order and reduced-order
unknown systems [30–40]. The MSE values are summarized
in Table 24.
For Example 1: Karaboga applied DE algorithm for the
design of adaptive IIR filter whose response matches the
second-order unknown system and reported the mean square
error of 6.8500 × 10−2 with reduced-order system [30].
Fang et al. [33] presented the design of adaptive IIR filter
using QPSO, and mean square error of 1.7300 × 10−1 is
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Table 23 Percentage
improvement in computation
time for all examples in
comparison with other reported
algorithms

Example Percentage improvement in computation time

BA compared to CSO BA compared to PSO BA compared to GA

Example 1 86.69 59.13 94.06

Example 2 93.62 80.25 97.54

Example 3 95.41 85.86 98.47

Example 4 95.61 91.38 99.22

Fig. 19 Percentage improvement in computational time for different
examples as compared to other reported algorithms

achieved with reduced-order system. Fang et al. [34] intro-
duced the design of second-order adaptive IIR filter using
MuQPSO, and MSE of 2.0600 × 10−1 is obtained for a
reduced-order system. Majhi et al. [35] reported the design
of second-order adaptive IIR filter using PSO and MSE of
1.5849 × 10−4 has been archived. Karaboga [31] imple-
mented ABC algorithm for reduced-order system modeling,
and MSE of 7.0600 × 10−2 is attained. Dai et al. [21]
investigated the design of adaptive IIR filter using SOA and
yields MSE value of 8.2773 × 10−2 for reduced-order sys-
tem identification. Chen et al. [36] employed PSO for the
reduced-order system modeling and reported the MSE value
of 2.7500×10−1. PSO algorithm is utilized for the reduced-
order system identification by Durmus and Gun [39], and
MSE value of 1.5000 × 10−2 is attained. CSO algorithm is
applied for the same-order and reduced-order system iden-
tification by Panda et al. [13] which gives the MSE value
of 6.3639 × 10−5 and 1.7515 × 10−2, respectively. The
MSE of 1.7200 × 10−1 was reported by Rashedi et al. [40]
for reduced-order system modeling which utilizes GSA. In
this work, we employed BA which yields MSE value of
2.1569 × 10−5 and 7.9178 × 10−3 for same- and reduced-
order system modeling, respectively.
For Example 2: Fang et al. [34] presented the design of the
third-order IIR filter using mutated quantum-behaved PSO

with MSE value of 2.0410 × 10−3. Luitel et al. introduced
PSO–QI technique for modeling of same- and reduced-order
systems which leads to the MSE value of 7.7910 ×10−4 and
4.0000 × 10−3, respectively [37]. Panda et al. [13] applied
CSO algorithm for same- and reduced-order system model-
ing which gives MSE of 6.3520 × 10−5 and 1.3938 × 10−3,
respectively. In this work, we employed BA which yields
MSE value of 2.3037 × 10−5 and 8.3264 × 10−4 for same-
and reduced-order system modeling, respectively.
For Example 3: Majhi et al. [35] introduced PSO algo-
rithm for same-order system identification and best MSE
value of 1.5849 × 10−4 is obtained. The PSO–QI tech-
nique was presented by Luitel et al. [37] for same- and
reduced-order system modeling which gives the MSE value
of 7.2450 × 10−4 and 5.0000 × 10−3, respectively. The best
MSE vales of 5.9421×10−5 and 6.7051×10−3 are archived
by Panda et al. [13] with same- and reduced-order system,
respectively. In this work, we employed BA which yields
MSE value of 1.7315 × 10−5 and 7.6325 × 10−4 for same-
and reduced-order system modeling, respectively.
For Example 4: Krusinski et al. [38] applied PSO algorithm
for the design of the fifth-order IIR filter which yields a MSE
value of 3.1623 × 10−4. Panda et al. [13] applied CSO algo-
rithm for same- and reduced-order system modeling which
gives MSE of 6.3551 × 10−5 and 6.9475 × 10−5, respec-
tively. In this work, we employed BA which yields MSE
value of 5.8182 × 10−6 and 4.3986 × 10−5 for same- and
reduced-order system modeling, respectively.

5 Conclusions

In this paper, we have articulated IIR system identification
as an optimization-based IIR system approximation problem
using a new evolutionary optimization tool, bat algorithm.
Next, BA is introduced for modeling the unknown system and
is tested on four benchmarked systems to evaluate its perfor-
mance. To measure the sustainability of the proposed method,
extensive simulations have been carried out for modeling
the unknown system using the same-order and reduced-order
models. Comparison of simulation results is assessed in terms
of mean square error, mean square deviation and computation
time. It is observed that the BA-based IIR system identifica-
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Table 24 Comparison in the performance of different reported algorithms for all examples in terms of MSE using same-order and reduced-order
system

Example Reference Year Algorithm MSE

Same order Reduced order

Example 1 Karaboga [30] 2005 DE NR∗ 6.8500 × 10−2 (−11.6431 dB)

Fang et al. [33] 2006 QPSO NR∗ 1.7300 × 10−1 (−7.6196 dB)

Majhi et al. [35] 2008 PSO 1.5849 × 10−4 (−38 dB) NR∗

Karaboga [31] 2009 ABC NR∗ 7.0600 × 10−2 (−11.5120 dB)

Fang et al. [34] 2009 MuQPSO NR∗ 2.0600 × 10−1 (−6.8613 dB)

Dai et al. [21] 2010 SOA NR∗ 8.2773 × 10−2 (−10.8211 dB)

Chen et al. [36] 2010 PSO NR∗ 2.7500 × 10−1 (−5.6067 dB)

Durmus et al. [39] 2011 PSO NR∗ 1.5000 × 10−2 (−18.2391 dB)

Panda et al. [13] 2011 CSO 6.3639 × 10−5 (−41.9628 dB) 1.7515 × 10−2 (−17.5659 dB)

Rashedi et al. [40] 2011 GSA NR∗ 1.7200 × 10−1 (−7.6447 dB)

Present study – BA 2.1569 × 10−5 (−46.6617 dB) 7.9178 × 10−3 (−21.0140 dB)

Example 2 Fang et al. [34] 2009 MuQPSO 2.0410 × 10−3 (−26.9016 dB) NR∗

Luitel et al. [37] 2010 PSO–QI 7.7910 × 10−4 (−31.0841 dB) 4.0000 × 10−3 (−23.9794 dB)

Panda et al. [13] 2011 CSO 6.3520 × 10−5 (−41.9709 dB) 1.3938 × 10−3 (−28.5580 dB)

Present study – BA 2.3037 × 10−5 ( −46.3757 dB) 8.3264 × 10−4 ( −30.7954 dB)

Example 3 Majhi et al. [35] 2008 PSO 1.5849 × 10−4 (−38 dB) NR∗

Luitel et al. [37] 2010 PSO–QI 7.2450 × 10−4 (−31.3996 dB) 5.0000 × 10−3 (−23.0103 dB)

Panda et al. [13] 2011 CSO 5.9421 × 10−5 (−42.2606 dB) 6.7051 × 10−3 (−21.7359 dB)

Present study – BA 1.7315 × 10−5 ( −47.6158 dB) 7.6325 × 10−4 (−31.1733 dB)

Example 4 Krusinski et al. [38] 2004 PSO 3.1623 × 10−4 (−35 dB) NR∗

Panda et al. [13] 2011 CSO 6.3551 × 10−5 (−41.9688 dB) 6.9475 × 10−5 (−41.5817 dB)

Present study – BA 5.8182 × 10−6 (−52.3521 dB) 4.3986 × 10−5 (−43.5669 dB)

*NR not reported

tion exhibits superior performance compared to the existing
evolutionary algorithms, GA, PSO and CSO. Furthermore,
the incorporation of BA requires less number of control para-
meter tuning, which increases the flexibility of IIR system
identification and reduces its computational time.

Further, this work can be extended for the identification
of complex fractional systems. In addition, the proposed
method needs to be explored as a future scope, for Volterra-
based nonlinear system identification problem.

References

1. Frost, V.S.; Stiles, J.A.; Shanmugan, K.S.; Holtzman, J.: A model
for radar images and its application to adaptive digital filter-
ing of multiplicative noise. IEEE Trans. Pattern Anal. Mach.
Intell. PAMI-4(2), 157–166 (1982)

2. Soltanpour, M.R.; Khooban, M.H.: A particle swarm optimization
approach for fuzzy sliding mode control for tracking the robot
manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013)

3. Lin, J.; Chen, C.: Parameter estimation of chaotic systems
by an oppositional seeker optimization algorithm. Nonlinear
Dyn. 76(1), 509–517 (2014)

4. Paulo, S.R.D.: Adaptive filtering algorithms and practical
implementation. In: The International Series in Engineering
and Computer Science (2008), Springer, US. doi:10.1007/
978-1-4614-4106-9

5. Regalia, P.: Adaptive IIR Filtering in Signal Processing and Con-
trol. Vol. 90. CRC Press, New York (1994)

6. Mitra, S.K.; Kuo, Y.: Digital Signal Processing: A Computer-Based
Approach. Vol. 2. McGraw-Hill, New York (2006)

7. Widrow, B.; Strearns, S.D.: Adaptive Signal Processing. Prentice-
Hall, Englewood Cliffs (1985)

8. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver
Press, (2011)

9. Goldberg, D.B.: Genetic Algorithms in Search Optimization and
Machine Learning. Addison-Wesley, San Francisco (1989)

10. Aggarwal, A.; Rawat, T.K.; Kumar, M.; Upadhyay, D.K.: Optimal
design of FIR high pass filter based on L1 error approximation using
real coded genetic algorithm. Int. J. Eng. Sci. Technol. 18(4), 594–
602 (2015)

11. Aggarwal, A.; Rawat, T.K.; Kumar, M.; Upadhyay, D.K.: Design
of optimal band-stop FIR filter using L1-norm based RCGA. Ain
Shams Eng. J. (2016). doi:10.1016/j.asej.2015.11.022

12. Kennedy, J.; Eberhart, R.C.: Particle swarm optimization. In: Proc.
IEEE Int. Conf. Neural Net., pp. 1942–1948 (1995)

13. Panda, G.; Pradhan, P.M.; Majhi, B.: IIR system identification
using cat swarm optimization. Expert Syst. Appl. 38(10), 12671–
12683 (2011)

123

http://dx.doi.org/10.1007/978-1-4614-4106-9
http://dx.doi.org/10.1007/978-1-4614-4106-9
http://dx.doi.org/10.1016/j.asej.2015.11.022


3604 Arab J Sci Eng (2016) 41:3587–3604

14. Yang, X.S.; Deb, S.: Cuckoo search via Lévy flights. In: Ajith, A.,
Andre, C., Francisco, H., Vijayalakshmi, P (eds.) Proceedings of
World Congress on Nature and Biologically Inspired Computing,
pp. 210–214. IEEE Publications, USA. doi:10.1109/NABIC.2009.
5393690 (2009)

15. Kumar, M.; Rawat, T.K.: Optimal design of FIR fractional
order differentiator using cuckoo search algorithm. Expert Syst.
Appl. 42(7), 3433–3449 (2015)

16. Kumar, M.; Rawat, T.K.: Optimal fractional delay-IIR filter design
using cuckoo search algorithm. ISA Trans. 59, 39–54 (2015)

17. Aggarwal, A.; Rawat, T.K.; Upadhyay, D.K.: Design of optimal
digital FIR filters using evolutionary and swarm optimization tech-
niques. Int. J. Electron. Commun. 70(4), 373–385 (2016)

18. Geem, Z.W.; Kim, J.H.; Loganathan, G.V.: A new heuristic
optimization algorithm: harmony search. Simulation 76(2), 60–
68 (2001)

19. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: GSA: a gravita-
tional search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

20. Kumar, M.; Rawat, T.K.; Singh, A.A.; Mittal, A.; Jain, A.: Optimal
design of wideband digital integrators using gravitational search
algorithm. In: International Conference on Computing, Communi-
cation and Automation (ICCCA-2015), pp. 1314–1319 (2015)

21. Dai, C.; Chen, W.; Zhu, Y.: Seeker optimization algorithm for
digital IIR filter design. IEEE Trans. Ind. Electron. 57(5), 1710–
1718 (2010)

22. Yang, X.S.: A new metaheuristic bat-inspired algorithm. Nat.
Inspired Cooperative Strateg. Optim. 284, 65–74 (2010)

23. Chen, H.; Gao, F.; Martins, M.; Huang, P.; Liang, J.: Accurate and
efficient node localization for mobile sensor networks. Mob. Netw.
Appl. 18(1), 141–147 (2013)

24. Chen, H.; Liu, B.; Huang, P.; Liang, J.; Gu, Y.: Mobility-
assisted node localization based on TOA measurements without
time synchronization in wireless sensor networks. Mob. Netw.
Appl. 17(1), 90–99 (2012)

25. Zhang, W.; Yin, Q.; Chen, H.; Gao, F.; Ansari, N.: Distributed angle
estimation for localization in wireless sensor networks. IEEE Trans.
Wirel. Commun. 12(2), 527–537 (2013)

26. Chen, H.; Wang, G.; Wang, Z.; So, H.C.; Poor, H.V.: Non-
line-of-sight node localization based on semi-definite program-
ming in wireless sensor networks. IEEE Trans. Wirel. Com-
mun. 11(1), 108–116 (2012)

27. Wang, C.; Yin, Q.; Chen, H.: Robust Chinese remainder theo-
rem ranging method based on dual-frequency measurements. IEEE
Trans. Veh. Technol. 60(8), 4094–4099 (2011)

28. Wang, G.; Chen, H.: An importance sampling method for
TDOA-based source localization. IEEE Trans. Wirel. Com-
mun. 10(5), 1560–1568 (2011)

29. Karaboga, N.; Kalinli, A.; Karaboga, D.: Designing digital IIR
filters using ant colony optimisation algorithm. Eng. Appl. Artif.
Intell. 17(3), 301–309 (2004)

30. Karaboga, N.: Digital IIR filter design using differential evolution
algorithm. EURASIP J. Appl. Signal Process. 8, 1269–1276 (2005)

31. Karaboga, N.: A new design method based on artificial bee colony
algorithm for digital IIR filters. J. Frankl. Inst. 346(4), 328–
348 (2009)

32. Kalinli, A.; Karaboga, N.: Artificial immune algorithm for IIR filter
design. Eng. Appl. Artif. Intell. 18(8), 919–929 (2005)

33. Fang, W.; Sun, J.; Xu, W.B.: Analysis of adaptive IIR filter design
based on quantum behaved particle swarm optimization. In: Proc.
IEEE World Cong. Intell. Cont. Aut., pp. 3396–3400 (2006)

34. Fang, W.; Sun, J.; Xu, W.B.: A new mutated quantum-behaved
particle swarm optimizer for digital IIR filter design. EURASIP J.
Adv. Signal Process. 1, 1–7 (2009)

35. Majhi, B.; Panda, G.; Choubey, A.: Efficient scheme of pole-zero
system identification using particle swarm optimization technique.
In: Proc. IEEE Cong. Evol. Comput., pp. 446–451 (2008)

36. Chen, S.; Luk, B.L.: Digital IIR filter design using particle swarm
optimisation. Int. J. Model. Identif. Control 9(4), 327–335 (2010)

37. Luitel, B.; Venayagamoorthy, G.K.: Particle swarm optimization
with quantum infusion for system identification. Eng. Appl. Artif.
Intell. 23(5), 635–649 (2010)

38. Krusienski, D.J.; Jenkins, W.K.: Particle swarm optimization for
adaptive IIR filter structure. IEEE Cong. Evol. Comput. 1, 965–
970 (2004)

39. Durmus, B.; Gun, A.: Parameter identification using particle swarm
optimization. In: Proc. 6th Int. Advanc. Tech. Symp., pp. 188–192
(2011)

40. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S.: Filter mod-
eling using gravitational search algorithm. Eng. Appl. Artif.
Intell. 24(1), 117–122 (2011)

41. Saha, S.K.; Kar, R.; Mandal, D.; Ghoshal, S.P.: A new design
method using opposition-based BAT algorithm for IIR system
identification problem. Int. J. Bio-Inspired Comput. 5(2), 99–
132 (2013)

42. Saha, S.K.; Kar, R.; Mandal, D.; Ghoshal, S.P.: Harmony search
algorithm for infinite impulse response system identification. Com-
put. Electr. Eng. 40(4), 1265–1285 (2014)

43. Patwardhan, A.P.; Patidar, R.; George, N.V.: On a cuckoo
search optimization approach towards feedback system identifi-
cation. Dig. Signal Process. 32, 156–163 (2014)

44. Upadhyay, P.; Kar, R.; Mandal, D.; Ghoshal, S.P.: IIR system iden-
tification using differential evolution with wavelet mutation. Int. J.
Eng. Sci. Technol. 17(1), 8–24 (2014)

45. Upadhyay, P.; Kar, R.; Mandal, D.; Ghoshal, S.P.: Craziness based
particle swarm optimization algorithm for IIR system identification
problem. Int. J. Electron. Commun. 68(5), 369–378 (2014)

46. Upadhyay, P.; Kar, R.; Mandal, D.; Ghoshal, S.P.: A new design
method based on firefly algorithm for IIR system identification
problem. J. King Saud Univ. Eng. Sci. doi:10.1016/j.jksues.2014.
03.0015 (2014)

47. Upadhyay, P.; Kar, R.; Mandal, D.; Ghoshal, S.P.; Mukherjee,
V.: A novel design method for optimal IIR system identifica-
tion using opposition based harmony search algorithm. J. Frankl.
Inst. 351(5), 2454–2488 (2014)

48. Jiang, S.; Wang, Y.; Ji, Z.: A new design method for adaptive
IIR system identification using hybrid particle swarm optimization
and gravitational search algorithm. Nonlinear Dyn. 79(4), 2553–
2576 (2015)

49. Zhang, J.W.; Wang, G.G.: Image matching using a bat algorithm
with mutation. Appl. Mech. Mater. (Editted by Z. Y. Du and Bin
Liu) 203(1), 88–93 (2012)

50. Nakamura, R.Y.M.; Pereira, L.A.M.; Costa, K.A.; Rodrigues, D.;
Papa, J.P.; Yang, X.S.: BBA: a binary bat algorithm for feature
selection. In: SIBGRAPI Conf. on Graphics, Patterns and Images,
pp. 291–297 (2012)

51. Mishra, S.; Shaw, K.; Mishra, D.: A new meta-heuristic bat
inspired classification approach for microarray data. Proced. Tech-
nol. 4, 802–806 (2012)

52. Yang, X.S.; He, X.: Bat algorithm: literature review and applica-
tions. Int. J. Bio-Inspired Comput. 5(3), 141–149 (2013)

53. Yang, X.S.; Gandomi, A.H.: Bat algorithm: a novel approach
for global engineering optimization. Eng. Comput. 29(5), 464–
483 (2012)

54. Gandomi, A.H.; Yang, X.S.; Alavi, A.H.; Talatahari, S.: Bat
algorithm for constrained optimization tasks. Neural Comput.
Appl. 22(6), 1239–1255 (2013)

123

http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1109/NABIC.2009.5393690
http://dx.doi.org/10.1016/j.jksues.2014.03.0015
http://dx.doi.org/10.1016/j.jksues.2014.03.0015

	Bat Algorithm: Application to Adaptive Infinite Impulse Response System Identification
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Bat Algorithm
	4 Simulation Results
	4.1 Design Examples and Modeled System
	4.2 Comparative Analysis of Computation Time for the Reported Algorithms
	4.3 Comparison with the Existing Methods

	5 Conclusions
	References




