Arab J Sci Eng (2016) 41:3279-3295
DOI 10.1007/s13369-016-2180-9

@ CrossMark

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Scheduling of Parallel Tasks with Proportionate Priorities

Muhammad Khurram Bhatti! - Isil Oz> - Konstantin Popov® - Mats Brorsson

Umer Farooq®

4 .

Received: 30 October 2015 / Accepted: 19 April 2016 / Published online: 21 May 2016

© King Fahd University of Petroleum & Minerals 2016

Abstract Parallel computing systems promise higher per-
formance for computationally intensive applications. Since
programmes for parallel systems consist of tasks that can be
executed simultaneously, task scheduling becomes crucial
for the performance of these applications. Given dependence
constraints between tasks, their arbitrary sizes, and bounded
resources available for execution, optimal task scheduling
is considered as an NP-hard problem. Therefore, proposed
scheduling algorithms are based on heuristics. This paper
presents a novel list scheduling heuristic, called the Noodle
heuristic. Noodle is a simple yet effective scheduling heuris-
tic that differs from the existing list scheduling techniques in
the way it assigns task priorities. The priority mechanism of
Noodle maintains a proportionate fairness among all ready
tasks belonging to all paths within a task graph. We conduct
an extensive experimental evaluation of Noodle heuristic
with task graphs taken from Standard Task Graph. Our ex-
perimental study includes results for task graphs comprising
of 50, 100, and 300 tasks per graph and execution scenarios
with 2-, 4-, 8-, and 16-core systems. We report results for av-
erage Schedule Length Ratio (SLR) obtained by producing
variations in Communication to Computation cost Ratio. We
also analyse results for different degree of parallelism and

<] Muhammad Khurram Bhatti
khurram.bhatti @itu.edu.pk

Information Technology University, Lahore, Pakistan
Marmara University, 34722 Istanbul, Turkey

3 SICS ICT, Isafjordsgatan 22, Box 1263, 164 29 Kista,
Sweden

4 KTH Royal Institute of Technology, 100 44 Stockholm,
Sweden

> COMSATS Institute of Information Technology (CIIT),
Lahore, Pakistan

number of edges in the task graphs. Our results demonstrate
that Noodle produces schedules that are within a maximum
of 12% (in worst-case) of the optimal schedule for 2-, 4-,
and 8-core systems. We also compare Noodle with existing
scheduling heuristics and perform comparative analysis of
its performance. Noodle outperforms existing heuristics for
average SLR values.

Keywords List scheduling - Static task scheduling -
Directed acyclic graph (DAG) - Multiprocessor - Multicore -
Parallel computing

1 Introduction

Over the years, the trend in architecture design is to inte-
grate more processing elements onto a single chip to meet
the higher performance demand of computationally intensive
applications [1]. Programming such parallel systems for the
execution of a single application becomes more challenging
than programming a single processor. The target application
must be divided into subtasks to allow the distribution of the
application’s computational load among the processing units.
This has led to extensive work on software parallelisation
techniques that can better exploit multicore and multiproces-
sor systems for higher application performance.
Parallelisation of a programme involves three steps,
namely task decomposition, inter-task dependence analysis,
and scheduling [2]. The process of assigning tasks to the
processing units (i.e. spatial assignment) and defining their
execution order (i.e. temporal assignment) is referred to as
task scheduling [3,4]. Generally, there are dependences be-
tween the tasks that impose a partial order on their execution.
Scheduling algorithms must also ensure that tasks adhere to

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-016-2180-9&domain=pdf

3280

Arab J Sci Eng (2016) 41:3279-3295

this partial order, which is essential for the correct execution
of the application [3].

Due to arbitrary task sizes, precedence constraints, and
bounded resources for execution, task scheduling is consid-
ered as an NP-hard problem, i.e. it is not possible to find an
optimal schedule in polynomial time (unless NP=P) [2-6].
Therefore, scheduling algorithms have been proposed based
on heuristics that try to produce near-optimal schedules for
bounded computing resources [5,6]. While the heuristics
usually provide fair results, there is no guarantee that the solu-
tions are always close to optimal [3,4,7]. Therefore, heuristic
algorithms should be consistent in their performance and pro-
vide good solutions within acceptable bounds with respect
to the optimal solution.

Most of the proposed task scheduling algorithms fall into
one of the two broad categories, namely List Scheduling and
Clustering [3,5]. The most common category, however, is the
traditional list scheduling [4,5,8—10]. The basic structure of
list scheduling is rather simple and consists of two parts.
The first part sorts the tasks of the application according
to certain priority scheme while respecting their precedence
constraints such that the resulting task list is in a topological
order containing all ready tasks. A task is said to be ready, if
all its precedence constraints are met. In the second part, each
task on the list is successively scheduled onto a processing
unit (a core) chosen for the task that allows its earliest start
time. Note that the priorities for tasks are determined a priori
and they do not depend on the status of the list or a partial
schedule. The computed priorities remain static for tasks, i.e.
they do not change at runtime.

In this paper, we present a novel list scheduling heuristic,
called the Noodle (No Node is Left Behind) heuristic, which
provides an alternate and effective way of attributing task pri-
orities compared to the existing priority attribution schemes.
The priority mechanism of Noodle heuristic maintains a pro-
portionate fairness among all ready tasks belonging to all
paths within a task graph. Thus, no particular path in a task
graph is either completely stranded or unnecessarily allowed
the execution of deeply spawned tasks. The Noodle heuristic
uses properties of task graph, which are detailed in subse-
quent sections, to attribute task priorities such that, on one
hand, Noodle’s resulting schedule minimises the overall ex-
ecution time for the target application and on the other hand,
it maximises the utilisation of constrained resources (cores)
available to the application. We summarise the main contri-
butions of this work as follows:

— We propose a novel list scheduling heuristic for parallel
applications represented as directed acyclic task graphs.
The proposed heuristic combines the benefits of both
depth-first and breadth-first approaches while assigning
priorities to ready tasks.

Springer

— We conduct experimental evaluation of Noodle heuristic
with task graphs with 50, 100, and 300 tasks per graph
taken from Standard Task Graph (STG). We analyse
results for execution scenarios with 2-, 4-, 8-, and 16-
core systems and different degree of parallelism and
number of edges in the task graphs. We report results
demonstrating that Noodle produces schedules that are
within a maximum of 12 % (in worst-case) of the op-
timal schedule for 2-, 4-, and 8-core systems. We also
compare Noodle with existing scheduling heuristics and
perform comparative analysis of its performance. Noo-
dle outperforms existing heuristics for average value of
Schedule Length Ratios (SLRs).

Rest of this paper is organised as follows: Section 2 pro-
vides related research work on task scheduling heuristics.
Section 3 presents our system model and related definitions.
Section 4 presents the Noodle heuristic in detail. Section 5
provides experimental support and explanation of results and
Sect. 6 concludes this paper.

2 Background and Related Work

While there are many comparisons of scheduling algorithms,
heuristics are compared in classes. List scheduling [3] is tra-
ditionally the most studied heuristic class of algorithms. For
instance, The Heterogeneous Earliest Finish Time (HEFT)
scheduling algorithm [9] uses a recursive approach in the
bottom-up direction to determine the nodes ordering, which
are based on computation costs. The tasks are then processed
in accordance with their node order. HEFT is basically built
on the notion of preferring the critical path nodes which leads
it to DFS-based ordering of nodes and subsequent execution.
Authors in [11] propose an algorithm, where critical path
nodes are scheduled first and non-CP nodes are scheduled
according to their bottom level first. Another algorithm, the
Critical Path/Most Immediate Successors First (CP/MISF)
algorithm by authors in [12], is also based on bottom-level
node ordering with ties being broken by giving precedence
to the node with the higher number of successors. Authors in
[13] propose a scheduling heuristic for heterogeneous sys-
tems named Constrained Earliest Finish Time (CEFT). Their
heuristic is based on the notion of a constrained critical path
(CCP), which is a small task window representing ready tasks
at one instance. CEFT finds critical paths in the DAG, and
subsequently, the tasks in the CCPs are scheduled using the
finish time of the entire CCP. Authors in [5] analyse various
priority schemes that are based on node orders according
to the (computation) bottom level augmented with metrics
based on the entering communication of a node and critical
path-based orders as proposed by authors in [11,14].

Arab J Sci Eng (2016) 41:3279-3295

3281

The Dynamic Critical Path (DCP) scheduling algorithm
presented in [15] is based on a critical pattern traversal ap-
proach. It attempts to minimise the schedule length at each
step by using remaining critical path. A final schedule is
not produced until all the nodes have been processed. The
DCP uses the Absolute Earliest Start Time (AEST) and the
Absolute Latest Start Time (ALST) that represent, respec-
tively, the possible execution of a task at the earliest or the
latest time. These values are computed through breadth-first
traversal of the task graph. Another algorithm, called the
Modified Critical Path (MCP) heuristic, is proposed by au-
thors in [16], where the nodes are ordered by their bottom
level and for nodes with equal bottom levels, the bottom level
of the successor nodes are considered and so on.

Clustering algorithms [17] on the other hand, consider col-
lections of tasks termed as clusters to be mapped to appropri-
ate processing resources. In general, these algorithms work
for homogeneous type of systems with unbounded number of
processors. The clusters are then processed further to adapt
for a bounded number of processors. For instance, the Domi-
nant Sequence Clustering (DSC) algorithm in [17] schedules
tasks for unbounded number of processors by creating clus-
ters of tasks. It works for homogeneous processing systems
and also requires the clusters to be merged so as to adapt
schedule to the existing number of processors. Another al-
gorithm proposed in [18] works by performing level sorting.
The level sorting arranges the tasks in an order so that the
tasks at one particular level of the task graph are independent
of each other. This algorithm allocates the processor using
the minimum value of the finish time of a level. At one level,
the tasks with low execution costs are merged to conform
to the number of processors. The processor assignment then
uses the criteria based on minimising the sum of execution
costs and the communication costs.

3 System Model and Definitions
3.1 Application Model

Given an application programme, we can represent the pro-
gramme as a Directed Acyclic Graph (DAG) in which the
nodes represent code segments, and edges represent depen-
dencies among the segments as shown in Fig. 1. Such a task
graph can be represented by G = (V, E, w, c), where each
node n € V represents a nondivisible sequential task of the
programme. An edge ¢; ; € E in Fig. 1 represents the prece-
dence constraint between task n; and n;. Such precedence
can be due to both data or control-flow dependency. The pos-
itive weight w(n;) of task n; € V represents its computation
workload in terms of time. A nonnegative weight c(e;, ;) on
the edge ¢; ; € E is used to represent an explicit communi-
cation cost between tasks n; and n, such as used in [6,19].

Fig. 1 TIllustration of a synthetic application represented as Directed
Acyclic Task Graph (DAG)

In our system model, we presume that the computation and
communication structure of the programme and the target
parallel system are completely known at compile time. No
restrictions are imposed on the input task graph—it may have
arbitrary computation and communication costs as well as an
arbitrary structure.

3.2 Architecture Model

Our model for target parallel system consists of a set of iden-
tical processors connected by acommunication network. The
system has the following properties:

— The parallel system is dedicated to the execution of the
scheduled task graph. No other programme or task is
executed on the system while the scheduled task graph
is executed.

— A processor can execute only one task at a time and the
execution is not preemptive.

— The cost of communication between tasks executed on
the same processor, hence called local communication,
is negligible and therefore considered as zero. This as-
sumption is based on the observation that for many par-
allel systems, remote communication (i.e. interproces-
sor communication) is one or more orders of magnitude
more expensive than local communication (i.e. intra-
processor communication) [3].

— Interprocessor communication is performed by a dedi-
cated communication subsystem. The processors are not
involved in communication.

— Interprocessor communication in the system is performed
concurrently; there is no contention for communication
resources.

@ Springer

3282

Arab J Sci Eng (2016) 41:3279-3295

— The communication network is fully connected. Every
processor can communicate directly with every other
processor via a dedicated identical communication link.

Given the identical processors and the fully connected
network of identical communication links, the system is com-
pletely homogeneous. Note that earlier research work has
used such system model as well in order to analyse the per-
formance of scheduling algorithms such as [3,9,20,21]. We
consider this model to permit a fair comparison with state-
of-the-art algorithms.

3.3 Definitions

In the following, we discuss some important definitions that
are frequently used in the rest of this paper related to the task
graph representation of target applications.

Paths and Path Lengths In a given task graph G as shown in
Fig. 1, there exist multiple paths of arbitrary length leading
to the sink node (such as ng) from the source node (such as
n1). The total length of a path p in G is the sum of the weights
of its nodes and edges from the source node to the sink node
and can be expressed by Eq. 1.

pl(p) = Z w(n) + Z c(e) (D

nep,V eep E

The computational length of a path p in G, i.e. without
including communication, is the sum of the weights of its
nodes only from the source node to the sink node and can be
expressed by Eq. 2.

Plo(p) = D win) 2)

nep,V

Due to the sequential order inherent in a path p, none of the
nodes belonging to p is executed concurrently with any other
node of p. Thus, the path length pl,,(p) can be interpreted as
the amount of time a path p takes for the sequential execution
of all nodes (only) belonging to p and the path length pl(p)
can be interpreted as the time the path p takes for the execu-
tion of all its nodes if all communications between its nodes
are interprocessor communications. For instance, when each
node of p is allocated to a different processor, the communi-
cation cost between nodes is nonzero.

Another important concept related to task graphs is the
Critical Path (cp). A critical path in G refers to the longest
path from the source node to the sink node. The length of
critical path can be expressed by Eq. 3.

pl(cp) = max{pl(p)} 3)
peG

Springer

From the scheduling perspective, constrained sequential
execution (due to precedence) of nodes that belong to the
critical path takes at least the execution time of any other
path in the task graph [3,5]. Thus, the computational length
of critical path (i.e., without including communication cost)
serves as a lower bound on the minimum execution time
achievable for the application on a parallel machine. Note
that this lower bound does not necessarily specify the opti-
mal schedule length under constrained resources. Since a late
execution start of any node on critical path directly results in
an extended schedule length, these nodes are important for
the scheduler to minimise overall execution time.

4 The Noodle Heuristic

The order, in which nodes of task graph are considered for
scheduling, has a significant influence on the resulting sched-
ule length. Gauging the importance of nodes with a priority
scheme 1is therefore a fundamental part of list scheduling
schemes.

Many existing list scheduling techniques [4,5,8-10] eval-
uate the importance of nodes in different ways. Earlier a node
is considered for scheduling, and sooner it can acquire a com-
puting resource for its execution. The challenge, however,
is to find priorities that well reflect the importance of the
node. The provision of relative importance to nodes results
in smaller SL (Schedule Length) of the application.

Authors in [5] show that attribution of higher priority to
the nodes belonging to the critical path in a task graph can
yield a minimum SL (not necessarily the optimal length).
Such heuristics, however, are based on a Depth-First Search
(DFS) execution that has its own merits and demerits. For in-
stance, on the one hand, such heuristics prioritise execution
of nodes on critical path that helps avoiding any direct exten-
sion in the SL. On the other hand, a DFS-based execution of
nodes causes a delay in execution of relatively less important
nodes belonging to the non-critical paths. This results in the
underutilisation of constrained resources, i.e. some cores be-
come idle due to insufficient number of ready nodes available
in the ready queue at any point during execution.

Contrary to the DFS-based approach, Breadth-First Search
(BES) approach can better exploit the inherent parallelism of
the target application as shown in [15]. BFS-based schedul-
ing heuristics schedule all ready nodes before proceeding to
the next spawn level, which may result in better resource
utilisation. Such heuristics, however, are not always able to
select nodes from critical paths, which may directly extend
the SL.

Both DFS-based and BFS-based heuristics cannot simul-
taneously address the twofold objective of improved utili-
sation and minimisation of SL for the target application. A
possible solution would be to assign priorities by provid-

Arab J Sci Eng (2016) 41:3279-3295

ing proportionate fairness to ready nodes belonging to all
paths. The Noodle heuristic strives to maintain this propor-
tionate fairness in priority attribution to ready nodes. In the
following, we present an example hypothetical task graph to
motivate the Noodle heuristic by demonstrating the impact
of both DFS- and BFS-based prioritisation approaches on the
resource utilisation and SL.

4.1 Example Task Graph

Figure 2 presents our example task graph for illustration pur-
pose. In this example, we assign the same execution time
for all nodes (i.e. 1—unit) and do not include communica-
tion cost at the edges for simplicity. Precedence constraints,
however, are preserved. The task graph includes four sepa-
rate paths A={1, 2, 4, 7, 10, 14, 15, 16}, B={1, 2, 4, 7, 11,
14, 15, 16}, C={1,2, 5,8, 12, 15, 16}, and D={1, 3, 6, 9, 13,
16}, with path lengths pl,, (A)=pl,, (B)=8, pl,,(C)=7, and
ply (D)=6, respectively. Paths A and B are the critical paths
in Fig. 2 (calculated by Eq. 3).

At first, we attribute priorities to the nodes according to
the depth-first approach as used in [5]. Such priority attribu-
tion would result in a schedule for a 2-core execution case as
shown in Fig. 3. In Fig. 3, first column represents the time
flow (one time unit for each row) and other two columns in-
dicate tasks assigned to the cores (C0 and C'1) with respect to
time. Additionally, grey boxes refer to the unused time units.
The resulting schedule in Fig. 3 shows sequential execution
of nodes 9, 13, and 16 belonging to path D towards the end
(i.e. between time units 8 and 10). Note that the prioritisation
mechanism in this case leaves relatively less important path D

Fig. 2 Example task graph used to illustrate differences in priority
attribution mechanism of Noodle, DFS-, and BFS-based scheduling
heuristics

3283
Fig. 3 Schedule for DFS-based time o c1
prioritisation p p
2 2 3
3 4 5
4 7 8
5 10 1
6 14 12
7 15 6
8 9
9 13
10 16
Fig. 4 Schedule for BFS-based time o c1
prioritisation 7 1
2 2 3
3 4 5
4 6 7
5 8 9
6 10 "
7 12 13
8 14
9 15
10 16

stranded. Stranded paths might not have enough parallelism
and therefore can claim less resources that results in extended
SL even when sufficient resources are available. Similarly,
the attribution of priorities to nodes using the breadth-first
approach results in the schedule shown in Fig. 4. Again, this
schedule shows that towards the end task graph does not have
enough parallelism at certain depth that could be exploited by
the scheduler. Therefore, nodes 14, 15, and 16 had to execute
sequentially. The resulting schedule length (SL=10) happens
to be the same in both cases.

The Noodle heuristic attributes priorities to ready nodes
belonging to all paths in such a way that the priority decays
along the path whose nodes are being executed. Therefore,
it prevents the execution of nodes too deep into the criti-
cal path(s) before executing nodes belonging to non-critical
paths in a proportionately fair manner. Thus, no path will be
stranded and no node is left behind (noodle) as the schedule
proceeds towards the sink node. In the following, we elabo-
rate this priority attribution principle.

4.2 Priority Attribution Mechanism of the Noodle
Heuristic

The Noodle heuristic, in its priority attribution phase, uses
the concept of paths and path lengths presented in [3,6,19] to
gauge the importance of nodes in an offline analysis. Noodle
assigns priorities to ready nodes such that the priority level
decreases in an exponential fashion at every spawn level on
those paths whose (ready) nodes are being executed. Relative

@ Springer

3284

Arab J Sci Eng (2016) 41:3279-3295

priority of other paths, however, does not decay and remains
the same.

This relative priority is determined for each particular path
p based on its path length p/(p), which is reflective of the
cumulative weight of all nodes and edges belonging to p (see
Eq. 1), compared to other paths in the graph. Greater the
length of a path p, lower the (exponential) decay in the prior-
ity level of nodes belonging to p. We formalise this priority
attribution in the following.

Let us associate an exponential decay function [22] to each
path p in G. Exponential decay is a mathematical property
under which a quantity is subject to decrease at a rate propor-
tional to its current value. Equation 4 presents quantity N(t)
as a function of time ¢ that decays at a rate A from its initial
value Ny. Variable A is a positive rate called the exponential
decay constant. We adapt Eq. 4 to introduce a priority func-
tion (pf) associated with each node n; that belongs to path
pj in a task graph G as expressed by Eq. 5.

N(t) = Noe~ ™1 “
pf (i) = pfni—y e V) P

Using Eq. 5, the priority function pf(n; ;) is computed
for each node n; that belongs to path p; by considering the
path p; in isolation. That is, starting from the source node
(n1), the pf(n; ;) is calculated for each subsequent node n;
along the path p; as a function of its current value, which is
pf(ni_1 ;). Here, there are two very important parameters
to be assigned for the computation of pf(n;), namely the
initial value pf (no, ;) for the very first node (i.e. n1) on each
path p; and the decay constant A for p;. The initial value
for computation of pf(n; ;) on any path p; is assigned as
pf (no,j)=pl(cp), i.e. equals to the length of critical path in
the task graph G. As mentioned in Sect. 3, the pl(cp) serves
as a lower bound on the minimum execution time achievable
on a parallel machine. Assigning pl(cp) as the initial value
of priority function makes all paths to advance towards this
lower bound on execution time with respect to their own
decay constant. The exponential decay constant is assigned
as shown in Eq. 6.

rj=plpj) (6)

The decay constant A ; for path j is equal to the path length
of p;. Note that decay constant A is a path-specific parameter
and itis different for different paths in the task graph (though,
multiple paths may have the same path lengths and therefore,
same value for A). Also note that Eq. 5 uses the reciprocal
value of X as decay constant (i.e. 1/A), which implies that
greater the length of any path p;, smaller the decay in the
priority functions pf (n; ;) associated to individual nodes
belonging to p;.

Springer

The priority function pf(n; ;) does not specify the final
priority level of any node n; in the task graph. The value
of pf(n; ;) is assigned to nodes while each path of the task
graph is considered in isolation. Considering paths in isola-
tion allows to assess the relative importance of nodes with
respect to that particular path. However, there can be nodes,
such as forking and joining nodes, that belong to multiple
paths simultaneously. For instance, in Fig. 2, node n; is a
shared node among two paths (A and B). Therefore, for all
shared nodes, the final priority level is attributed as shown in
Eq. 7. The final priority level of any node i has to be equal
to the maximum priority function assigned to node i among
all paths going through the node. Here, m refers to the total
number of paths to which the node i belongs. Since shared
nodes possess different levels of importance with respect to
different paths they belong, assigning the maximum of avail-
able priorities to these nodes ensures that the proportionate
fairness in priority to relatively important paths is always
maintained.

priority(n;) = max m{pf(ni,j)} (7

nieV,1<j<

Letus reconsider the priority attribution of task graph used
in our illustrative example task graph of Fig. 2 under the
Noodle heuristic. The resulting pf (n; ;) for each node are
listed in Table 1. Figure 5 shows the resulting schedule pro-
duced by Noodle heuristic. One can notice that the resulting
SL produced by Noodle is shorter than the one produced by
DFS- and BFS-based approaches in Fig. 2 while respecting
all precedence constraints of the application tasks. Moreover,
computing resources are fully utilised and no core remains
idle except when source (n1) and sink (71¢) nodes are ex-
ecuting alone. The schedule produced by Noodle in Fig. 5
also happens to be an optimal schedule. However, Noodle
does not guarantee to produce always an optimal schedule
for bounded computing resources.

Figure 6 shows the pseudocode representation for the al-
gorithm used to identify and create various paths in the task
graph. The algorithm implements a function called
AddToPathList(v, p, P) for every node v belonging to
task graph G. After initialising a path with first node, each of
its children nodes are analysed (lines 6 to 14). If a node is the
last child of parent node v, then it becomes part of the created
path p, otherwise, each such node creates a new path. Once
all paths are created, Noodle can use these paths to perform
priority attribution.

Figure 7 presents pseudocode representation of the Noo-
dle heuristic algorithm. After computing the lengths of all
paths in the task graph, the first part (lines 4 to 8) identifies
the critical path in the task graph composed of a path set
P={p1, p2, P3, - .., pm}. Once the length of critical path is
known, the second part (lines 9-15) computes the priority

Arab J Sci Eng (2016) 41:3279-3295

Table 1 Calculated priority function for nodes of task graph in Fig. 2
while considering each path in isolation. First four sub-tables show the
computed values of pf (n; ;) for path A to D. Fifth and sixth sub-table
show the final priorities for all nodes being calculated using Eq. 7

Node (n;) pf(ni.a) Node (n;) pf(niB)

1 7.059 1 7.059

2 6.230 2 6.230

4 5.498 4 5.498

7 4.852 7 4.852

10 4.282 11 4.282

14 3.779 14 3.779

15 3.334 15 3.334

16 2.943 16 2.943

Node (n;) pf(nic) Node (n;) pf(nip)

1 6.935 1 6.771

2 6.011 3 5.732

5 5.211 6 4.852

8 4.517 9 4.107

12 3.916 13 3.476

15 3.394 16 2.943

16 2.943

Nodes priority(n;) Nodes priority(n;)

1 7.059 9 4.107

2 6.230 10 4.282

3 5.732 11 4.282

4 5.498 12 3916

5 5.211 13 3.476

6 4.852 14 3.779

7 4.852 15 3.394

8 4.517 16 2.943

Fig. 5 Improved schedule in time co o

terms of (a) schedule length and

(b) resource utilisation produced !

by Noodle heuristic for the task 2 2 3

graph used in Fig. 2 on a 3 4 5

dual-core system 4 6 7
5 8 10
6 1" 9
7 12 14
8 13 15
9 16
10

function for each node belonging to each path in P in iso-
lation. In the last part (lines 16-20), priorities for all shared
nodes are computed using Eq. 7.

As shown in [5], the node ordering based on decreas-
ing bottom-level order also results in a topological order of
nodes. Similarly, the Noodle heuristic achieves node order-
ing based on the decreasing priority function, which also

3285
1: v < root node in G
2: p < 0, current path
3: P« 0, set of all paths in G
4: function AddToPathList(v, p, P)
S5:p—puUv
6: for each child node of v, n; do
7: if n; is the last child then
8: AddToPathList(n;, p, P)
9: else
10: px — all nodes in p, create a new path
11: P—PUpx
12: AddToPathList(n;, px, P)
13: end if
14: end for
15: end function

Fig. 6 Pseudocode representation of path creation algorithm in the task
graph

: P« set of all paths {p1, p2,p3,...,pm} in G
: pl(pj) < length of each path p;
pl(cp) < 0, initial value for cp length
: for each path j in P do
if pl(p;) > pl(cp) then
pl(cp) < pl(p))
end if
: end for
9: for each path p; in P do
10: pf(no,;)=pl(cp)
1z 4= pl(pj)
12: for each node n; in path p; do

A ol e

13: pf(nij)=pf(ni-1;) e 1/4)
14: end for
15: end for

16: for each node n; in the task graph G do
17: if n; belongs to multiple paths then

18: priority(n;) = maxlSjgw.ze(m{pf(ni#j)}
19: endif
20: end for

Fig. 7 Pseudocode representation of Noodle heuristic algorithm

results in a topological order of nodes that respects node de-
pendences. Thus, the complexity to determine the node list
is similar to the one presented in [5], i.e. O(V + E) to calcu-
late the node levels and O (V1ogV) for the sorting operation.
The resulting overall complexity for the Noodle heuristics is
O(VlogV + E).

4.3 Resource Allocation Under The Noodle Heuristic

Like any other list scheduling heuristic, the second part of
Noodle heuristic is to successively schedule each ready task
onto a processing unit. In general, for a ready task, a process-
ing unit (a core) is chosen directly that allows its earliest start
time. Noodle, however, does this resource allocation in two
phases. In the first phase, it sorts the ready queue in descend-
ing priority order of tasks. Out of the sorted ready queue, top
m tasks are selected for allocation (here, m refers to the num-

@ Springer

3286

Arab J Sci Eng (2016) 41:3279-3295

: TaskList < all tasks {n;,na,...,n;} from G
: CoreSet « all cores {C0,C1,C2,...,Cm}
: IdleCoreSet < CoresSet
ReadyQueue «— 0
: Start with the root node
: for each SchedEvent do
ReadyQueue « all ready tasks from TaskList
Sort ReadyQueue in descending order of priority(n;)
if Task Priorities Tie then
Higher priority goes to task with larger wn;)
end if
Update IdleCoreSet
: end for
: ExecutableTasks « Size of IdleCoreSet
: for Top ExecutableTasks from ReadyQueue do
Assign core that offers minimum communication cost w.r.t.
parent task
17: end for

SYENUAELD S

— e

Fig. 8 Pseudocode representation of runtime system for Noodle
heuristic

ber of cores available for execution). In the second phase,
Noodle computes, for each of the m tasks, the total commu-
nication cost incurred per task-core combination with respect
to its parent tasks (parent tasks can be more than one and may
have executed on different cores). The task-core combination
that offers minimum communication cost for selected task is
chosen for its execution.

Figure 8 shows pseudocode of the runtime system for Noo-
dle heuristic. It maintains two separate task queues, namely
the TaskList and Ready Queue. Where TaskList contains
all tasks from the DAG while ReadyQueue contains only
ready tasks. Runtime system also maintains two lists: one
list for all cores available in the system, called the CoreSet,
and another for idle cores in the system, called /dleCoreSet.
Atevery scheduling event (i.e. start and completion of tasks),
both ReadyQueue and IdleCoreSet are updated (lines 6-10).
Once updated, ready tasks equal to the number of cores avail-
able in IdleCoreSet are assigned to the cores such that a task is
executed on the core which offers minimum communication
cost with its parent task(s). Note that the ties between task
priorities are broken in favour of task having larger workload,
and for tasks with exactly the same workload, ties are broken
at random.

4.4 DAG Scheduling Under Noodle Heuristic: A
Complete Example

For better understanding of the reader and reproducibility
of results, we demonstrate all steps of Noodle heuristic by
producing schedule of an example directed acyclic task graph
thatincludes communication cost. Our example DAG is shown
in Fig. 9. In Fig. 9, the number mentioned around each node
refers to the computation cost (w;) whereas the number men-
tioned around the edge between nodes (underlined values)

@ Springer

Fig. 9 An example DAG to be scheduled under Noodle Heuristic—a
complete example

Table 2 Creation of paths and computation of path lengths in the DAG
using Noodle heuristic

Path name Member Nodes Length
pl a, b, f,j,k 41
p2 ab,j.k 32
p3 ac gk 26
p4 a,d, h k 35
pS a, e, h k 35
p6 a,e ik 32

refer to the communication cost (c(e;, j)) as explained in Sec-
tion 3.

As afirst step, using algorithm shown in Fig. 6, all paths in
the task graph are created. Resultant paths and their member
nodes are listed in columns one and two of Table 2, respec-
tively. Once all paths are created in the task graph, Noodle
heuristic learns the lengths of each path as well as the length
of critical path using algorithm presented in Fig. 7. Computa-
tions show that p1 happens to be the critical path in this DAG.
After learning the lengths of all paths, Noodle applies Eq. 5
to compute priority function (pf (n; ;)) for each node while
considering each path p; in isolation. Resulting pf(n; ;)
value for each node are provided in Table 3. Using Table 3
and Eq. 7, we calculate the final priorities for each node as
shown is Table 4. Based on these priorities, Noodle produces
the final schedule as shown in Fig. 10. In Fig. 10, c(e;,)
refers to the communication cost on the edge e; ; between
nodes n; and n; as explained in Sect. 3. Note that Noodle
breaks the ties between nodes in favour of the node incur-
ring more computation cost. For instance, node b and d have
equal priority level; therefore, in case of tie, node » would
have been preferred for execution over node d.

Arab J Sci Eng (2016) 41:3279-3295

3287

Table 3 Calculated priority function for nodes of task graph in Fig. 9
while considering each path in isolation

Node (n;) pf(ni p1) Node (n;) pf(ni p2)

a 40.012 a 39.738

b 39.047 b 38.515

f 38.107 j 37.330

j 37.188 k 36.182

k 36.292

Node (n;) pf(nip3) Node (n;) pf(ni pa)
a 39.453 a 39.845

c 37.964 d 38.722

g 36.531 h 37.632

k 35.153 k 36.572
Node (1) pf(nips) Node (1) p/ (nip6)
a 39.845 a 39.738

e 38.722 e 38.515

h 37.632 i 37.330

k 36.572 k 36.182
Table 4 Final priorities of Node Priority level

nodes of task graph in Fig. 9
using Eq. 7 40.012
39.047
37.964
38.722
38.722
38.107
36.531
37.632
37.330
37.330
36.572

5o 0o o0 o o

e e e

Moreover, during runtime, a node is preferably executed
on the resource having maximum number of its parent nodes
in order to reduce data transfer cost. For instance, in Fig. 10
at time instant 14, runtime system could chose any core for
the execution of nodes ¢ and . However, node c is allocated
core CO for execution due to the earlier execution of its parent
node a on the same core. For node &, however, the choice
of core does not make any difference as the communication
cost from at least one of its parent node will incur anyway.

5 Experimental Evaluation

In this section, we present our experimental results for the
evaluation of Noodle. We start with providing brief informa-

Time C0 Cl1
0 a
2 b c(€aq)
4 b c(€qq)
6 b c(€40)
(S
s e c(€y0)
10 e d
f
12 f d
14 c c(€en)
16 c c(€cn)
18 i c(een)
20 i c(een)
2 J C(cc,h)
2 i h
g
26 g h
28 h
cleny)
30 clepy)
32 cleny)
k
34 k
35

Fig. 10 Final schedule produced by Noodle for the example DAG
shown in Fig. 9

tion on our experimental set-up and benchmark task graphs
considered in our experimental study in Sect. 5.1.

5.1 Experimental Setup

We use task graphs from Standard Task Graph Set (STG) [23]
for our performance evaluation and comparison study. STG,
which is frequently used for evaluation of multiprocessor
scheduling algorithms [24,25], provides randomly gener-
ated task graphs with different number of tasks. STG also
includes pre-computed optimal schedule lengths (using ex-
haustive search) and some parameters related to task graphs.
For the current version, STG does not include communication
costs. We perform experiments using task graphs comprising
of 50 tasks, 100 tasks, and 300 tasks. We use 308 task graphs
in total: 154 task graphs with 50 tasks, 138 task graphs with
100 tasks, and 16 task graphs with 300 tasks.

Some properties of these task graphs are given in Table
5, with minimum, maximum, and average values of listed
parameters in descending order, respectively. We evaluate
Noodle results for these task graphs by considering 2-core,
4-core, 8-core, and 16-core execution scenarios.

Our experimental results can be divided into two distinct
parts. In the first part, we provide results on schedule length
of task graphs obtained under Noodle and compare them

@ Springer

3288

Arab J Sci Eng (2016) 41:3279-3295

Table 5 Values of parameters
related to STG task graphs used

TGs with 50 tasks

TGs with 100 tasks TGs with 300 tasks

in our experiments

Number of edges 46/953/262.02 93/1677/629.81 309 /2958 /1835.69
Max. predec. 3/42/14.23 4/40/18.05 6/32/19.06
Max. proc. time. 717072227 71/83/24.09 8/76/27.81

Parallelism

1.66/11.92/5.62

2.85/19.55/7.06 7.16/27.27/13.55

with optimal schedule length. Note that in this part of evalu-
ation, we take into account the computation cost of tasks only
and we consider that there is no data transfer/communication
cost between tasks. These results allow us to demonstrate that
Noodle produces optimal and near-optimal schedule length
in most cases. For analysis, the obtained schedule length un-
der Noodle is compared with the optimal solution provided
by the STG for their task graphs. In the second part, we pro-
vide results on the schedule length of task graphs obtained
under Noodle including communication cost between tasks.
Since STG includes only computation cost for its tasks, we
add communication costs to the available task graphs. In or-
der to study the impact of variation in the amount of data
transfer among tasks, the communication cost is taken into
account by using the Communication to Computation cost
Ratio (CCR). The value for communication cost is computed
using Eq. 8. Here, w (n ;) refers to the computation cost of the
node n; and c(e; ;) is the communication cost on the edge
between task 7 ; and its parent task n;. Note that task 7 ; can
have more than one parents (for instance, tasks representing
join nodes). In this case, communication cost with all parents
is calculated to be the same and data reception is considered
in parallel.

c(ej,j) = CCR *w(n;) (3)

Generally, scheduling strategies are evaluated in terms of
a metric termed as Schedule Length Ratio (SLR) [13], which
is the ratio of the schedule length or makespan to the length
of critical path (pl(cp)) of the task graph as expressed in
Eq. 9. The scheduling strategy producing the smaller SLR
value therefore implies to produce better schedule.

SL
R= i ©

In the second part, we evaluate the performance of Noodle
heuristic using SLR values and compare results with other
heuristics.

5.2 Part-I: Evaluation of Noodle Compared to Optimal
Schedule Lengths (without communication cost)

In this section, we evaluate the resulting schedule lengths of
task graphs under Noodle with different number of proces-

@ Springer

M A=0 00<A<=0.05 00.05<A<=0.10 W0.10<A<=0.12

160
140
120
100
80
60
40
‘H =
0

2 core 4 core 8 core

Number of task graphs

16 core

Number of cores

Fig. 11 Results with task graphs comprising of 50 tasks per graph

sors and compare them with optimal schedule lengths pro-
vided by the STG benchmark. Since STG includes task graphs
with only computation costs and provides optimal schedule
lengths for these graphs, we assume that there is no commu-
nication cost (CCR=0) and execute Noodle on the STG task
graphs. In order to demonstrate the difference between the
schedule lengths, we calculate the ratios of the changes for
each case.

Figures 11, 12, and 13 present the distribution of differ-
ences for the task graphs with 50 tasks, 100 tasks, and 300
tasks, respectively. To better analyse the variations in pro-
duced schedule lengths (SL), we observe the number of task
graphs that end up having the difference (A) in the same
range. Therefore, we define four ranges or intervals for A
such that:

— A = 0: the SL produced by the Noodle and the optimal
SL are the same.

— 0 < A <0.05: the SL produced by the Noodle is larger
than the optimal SL by at most 5 %.

— 0.05 < A <0.10: the SL produced by Noodle is larger
than optimal SL by more than 5 % and at most 10 %.

— 0.10 < A <0.12: the SL produced by Noodle is larger
than optimal SL by more than 10 % and at most 12 %.

As shown in Figs. 11, 12, and 13, the schedule length pro-
duced by the Noodle remains within a maximum difference
of 12 % with respect to the optimal schedule length for all task
graphs used in the experiments. For instance, the first column
inFig. 11 demonstrates that the Noodle results in the optimal

Arab J Sci Eng (2016) 41:3279-3295

3289

140

120
100
80

60
40

Number of task graphs

20
0 [

2 core 4 core 8 core

16 core

Number of cores
Fig. 12 Results with task graphs comprising of 100 tasks per graph

20

16
8
4
0 I

2 core 4 core 8 core

N

Number of task graphs

16 core

Number of cores

Fig. 13 Results with task graphs comprising of 300 tasks per graph

SL for 45 task graphs (with 50 tasks per graph in a 2-core
execution scenario), while it ends up with an SL that is larger
than optimal by at most 5 % for 112 task graphs out of 159
task graphs. There are only 2 task graphs for which the SL
produced by Noodle falls in the interval 0.05 < A < 0.10.
For 2-core system, Noodle never resulted in a SL beyond
A < 0.10, i.e. 10% of the optimal length. Noodle performs
similarly for 4-core and 8-core systems. With sufficiently
large number of cores, such as the case with 16 cores, Noo-
dle performs the same as optimal schedule for all task graphs.
We observe similar behaviour for task graphs with 100 tasks
and 300 tasks (Fig. 12, 13).

5.3 Part-II: Evaluation of Noodle Compared to Other
Heuristics (with communication cost)

In this section, we present our comparison study of Noodle
with existing scheduling heuristics in the literature. We select
scheduling heuristics whose working principles are based on
the concept of paths and path length information similar to
Noodle. The heuristic algorithms used in our comparison
study are as follows [5]:

— BL: A heuristic in which nodes are ordered by their
computation bottom levels. The bottom level, bi(n), of
node neV is the length of the longest path starting from
n, including weight of node n itself.

— CP_BL_TL: A heuristic in which nodes on the critical
path are prioritised among all ready nodes, while the

other nodes are ordered by their bottom levels. Ties are
broken by considering top levels of nodes. The top level,
tl(n),of node neV is the length of the longest path ending
in n, excluding weight of node n itself.

— CP_TL: A heuristic that also prioritises the nodes on the
critical path, while the other nodes are ordered by their
top levels.

— Noodle: Our proposed Noodle heuristic such that the
nodes are ordered by priority function described in Sect. 4
and ties are broken by prioritising the nodes with larger
task weights.

We execute these heuristics and Noodle for STG task
graphs with different number of tasks. Our experimental
study includes results for task graphs with 50 tasks, 100 tasks,
and 300 tasks. We generate communication costs by using
different CCR values. Specifically, weuse 0.1, 0.5, 1,2, 5, 10
for CCR value. In order to analyse the scheduling perfor-
mance for different number of cores, we execute each task
graph with different number of cores, such as 2-core, 4-core,
8-core, and 16-core executions. Finally, we have 154 x 6 x
4 = 3696, 138 x 6 x 4 = 3312, 16 x 6 x 4 = 384 cases for
task graphs with 50 tasks, 100 tasks, and 300 tasks, respec-
tively.

We report average SLR values for a set of configuration
parameters. While we include results for different number
of cores and CCR values, we also report results for different
parallelism and number of edges provided by the STG bench-
mark. Since task graphs with different number of tasks have
different ranges (inclusive-lower-bound) for parallelism and
number of edges, we create four distinct ranges for each set
of task graphs with 50 tasks, 100 tasks, and 300 tasks.

5.3.1 Task Graphs with 50 Tasks

Table 6 presents configuration parameters and values for task
graphs with 50 tasks. Since parallelism differs between 1.66
and 11.92 (given in Table 5), we collect the results in the
following four ranges in our analysis: 1-2, 2—4, 4-8, and 8-
12. Similarly, we report average SLR values in the range of
different number of edges.

Figures 14, 15, 16, and 17 present the average SLR values
for different parameter values for graphs with 50 tasks. Noo-

Table 6 Configuration parameters for task graphs with 50 tasks

Parameter Values

Number of cores 2,4,8,16

CCR 0.1,0.5,1,2,5,10

Parallelism 1-2,2-4,4-8, 8-12

Number of edges <100, 100-250, 250-500, >500

@ Springer

3290

Arab J Sci Eng (2016) 41:3279-3295

EBL OCP_BL_TL BCP_TL MENoodle

IS

Average SLR

Number of cores

Fig. 14 Results for the given number of cores

EBL OCP_BL_TL BCP_TL HNoodle

immmmmm

CCR

Average SLR
w

N

Fig. 15 Results for the given CCR values

45
EBL OCP_BL_TL BCP_TL M Noodle

4
35
i
12 2-4 4-8 8-12

Degree of parallelism

Average SLR

Fig. 16 Results for the given parallelism intervals

1

250-500 >500

i

BBL OCP_BL TL BCP_TL MNoodle

0
9
8
7
6
5
4
3
AN |
1

<100 100-250

Number of edges

Average SLR

Fig. 17 Results for the given number of edges

dle performs better (i.e. has smaller average SLR values) for
all the cases.

Figure 14 presents results for different number of cores
and demonstrates that scheduling results improve by increas-
ing number of cores. Since the largest degree of parallelism
is less than 12 for this set of task graphs, 8-core and 16-core
results do not differ significantly. Moreover, the difference
between Noodle and the other heuristics increases by in-
creasing number of cores, i.e. Noodle takes more advantage
of larger number of cores than other heuristics. For instance,
the difference between average SL values of BL and Noodle
equals 0.02 for 2-core case, the same value for 16-core case
equals 0.11.

Figure 15 demonstrates the effect of CCR, the degree of
communication, on scheduling performance. Noodle perfor-

@ Springer

mance becomes a little better for higher CCR values due to
its communication-aware resource allocation strategy (ex-
plained in Sect. 4.3). While small communication cost does
not lengthen the schedule, the effect becomes clearer for
larger communication costs. However, it does not help much
since priority attribution mechanism does not apply
communication-centric rules.

Figures 16 and 17 present the average SLR values for
different intervals of parallelism and number of edges para-
meters, respectively. When the parallelism is less than 4, all
heuristics perform better due to availability of resources. On
the other hand, their performance decreases when parallelism
becomes larger, since they have to deal with the shortage of
processors for most of the cases. Moreover, the performance
of scheduling heuristics decreases as the number of edges
increases in the task graph similar to CCR value. Noodle
performance again becomes a little better for larger number
of edges, but not very significantly. Among four comparison
cases, we see the largest average SLR values for the task
graphs with the largest number of edges (around 9 for the
last column (>500) in Fig. 17).

5.3.2 Task Graphs with 100 Tasks

Table 7 presents configuration parameters and values for task
graphs with 100 tasks. We divide the results into ranges for
different parallelism and number of edges parameters. We
include 2-4, 4-8, 8—16, and 16-20 intervals (among the par-
allelism values between 2.85 and 19.55 given in Table 5).
Similarly, we report average SLR values in the range of dif-
ferent number of edges.

Figures 18, 19, 20, and 21 present the average SLR values
for different parameter values for graphs with 100 tasks. As
shown in the figures, the results are similar to the cases given
for graphs with 50 tasks. Noodle performs better for all the
cases. The number of cores, CCR, and the number of edges
parameters affect the scheduling performance in a similar
manner. While the performance worsens for larger degree
of parallelism until it gets 16, there is an improvement for
the cases where parallelism is between 16 and 20 (Fig. 20).
When we look at these task graphs, we see that the number of
edges for this set of graphs is very low (the maximum is 107,
the average is 101.25 while the overall maximum is 1677 and

Table 7 Configuration parameters for task graphs with 100 tasks

Parameter Values

Number of cores
CCR

Parallelism

2,4,8,16
0.1,0.5,1,2,5,10
2-4,4-8, 8-16, 16-20

Number of edges <100, 100-500, 500-1000, > 1000

Arab J Sci Eng (2016) 41:3279-3295

3291

EBL OCP_BL_TL BCP_TL HNoodle

IMTinn

Number of cores

Average SLR

Fig. 18 Results for the given number of cores

EBL OCP_BLTL BCP_TL MNoodle

immmﬂmm

Fig. 19 Results for the given CCR values

o

Average SLR
w s

N

EBL OCP_BL_TL BCP_TL MNoodle
55

5

45

4

3
2-4 4-8 8-16

Degree of parallelism

Average SLR

in

16-20

Fig. 20 Results for the given parallelism intervals

10
EBL OCP_BL TL OCP_TL MENoodle

<100 100-500 500-1000 >1000

Number of edges

Average SLR

Fig. 21 Results for the given number of edges

the overall average is 629.81), which explains the unexpected
behaviour. When task graphs have smaller number of edges
(less communication overhead), larger amount of parallelism

does not hurt performance very much in case of resource
shortage.

5.3.3 Task Graphs with 300 Tasks

Table 8 presents configuration parameters and values for task
graphs with 300 tasks. We again define intervals for paral-
lelism and number of edges for our analysis. Since the range
of possible values is larger for this set of task graphs (par-
allelism between 7.16 and 27.27, number of edges between
309 and 2958 as given in Table 5), we have coarser-grained
intervals for this part of our study.

Table 8 Configuration parameters for task graphs with 300 tasks

Parameter Values

Number of cores
CCR

Parallelism

2,4,8,16
0.1,0.5,1,2,5,10
<8, 8-12, 12-20, >20

Number of edges <500, 500-1000, 1000-2000, >2000

EBL OCP_BL_TL BCP_TL MNoodle
8

CCR

Average SLR

Fig. 22 Results for the given number of cores

Number of cores

EBL OCP_BL TL BCP_TL MENoodle

Average SLR

Fig. 23 Results for the given CCR values

EBL OCP_BLTL BECP_TL MNoodle
7
6
55
5
<8 812 1220 >20

Degree of parallelism

Average SLR
o
o

Fig. 24 Results for the given parallelism intervals

Figures 22, 23, 24, and 25 present the average SLR val-
ues for different set of configuration parameters. Among all
results, we get the largest values for the cases with 2-core
execution (average SLR = 11). Since the number of tasks
and degree of parallelism is much larger for this set of task
graphs, 2-core system does not struggle with this amount
of work. As shown in Fig. 22, we do not reach the maxi-
mum benefit of number of cores in the system. Moreover,
Fig. 24 demonstrates that Noodle performs much better than
other heuristics for larger degree of parallelism, where there

is more work needed using proportionate fairness in the task
graph.

@ Springer

3292

Arab J Sci Eng (2016) 41:3279-3295

BBL OCP_BL TL BCP_TL HENoodle

8

7

‘mm 10 n

<500 500-1000 1000-2000 >2000

Average SLR

Number of edges

Fig. 25 Results for the given number of edges

EBL OCP_BL_TL BCP_TL ENoodle
3.9

3.8
3.7
35

50 tasks

Average SLR

Fig. 26 Results for graphs with 50 tasks

5.3.4 Performance Analysis

To summarise our comparison study with other scheduling
techniques, we present overall average SLR values for each
set of task graphs. Figures 26,27, and 28 present average SLR
values for all task graphs in our experimental study. Noodle
has 2-3 % better results compared to the best performing
heuristic.

Moreover, we calculate the number of cases that Noo-
dle performs better, worse, and equal in comparison with
other heuristics. Figures 29, 30, and 31 present these results
for task graphs 50 tasks, 100 tasks, and 300 tasks. For task
graphs with 50 tasks, Noodle performs better than BL for
2124 cases, better than CP_BL_T L for 2002 cases, and
better than C P_T L for 2769 cases, among 3696 cases. The
percentages of the schedules, where Noodle performs better
or equal are 69, 65, 78 %, respectively.

For task graphs with 100 tasks, the number of cases that
Noodle performs better are 2063, 1941, and 2653 among
3312 cases. The percentages of the schedules where Noodle
performs better or equal are 64, 60, 81 %, respectively.

The proportion of the cases that Noodle performs better
is larger for task graphs with 300 tasks, better than BL for
284 cases, better than CP_BL_T L for 255 cases, better than
CP_TL for 298 cases, among 384 cases. The percentages
of the schedules where Noodle performs better or equal are
74, 67, 78 %, respectively.

5.3.5 Sensitivity Analysis
We conduct a sensitivity analysis to better understand the re-

lationship between different configuration parameters. Since
the degree of parallelism represents a major characteristic

S @ Springer

EBL OCP_BL_TL OCP_TL ENoodle
4.9

4.8
4.7
4.5

100 tasks

Average SLR

Fig. 27 Results for graphs with 100 tasks

7.3
EBL OCP_BL_TL ECP_TL MNoodle
7.2
ot
7 71
[}
[=2)
s 7
[}
E
6.8

300 tasks

Fig. 28 Results for graphs with 300 tasks

5000
W Better OWorse @ Equal

4000

3000

2000

Number of cases

1000

0

BL CP_BL_TL CP_TL

Fig. 29 Number of cases Noodle performed better, worse, and equal
in comparison with other heuristics (for graphs with 50 tasks)

5000
M Better 0 Worse OEqual

m B

CP BL TL CP_TL

4000

3000
2000
1000
0

BL

Fig. 30 Number of cases Noodle performed better, worse, and equal
in comparison with other heuristics (for graphs with 100 tasks)

Number of cases

of task graphs (and parallel applications represented by task
graphs), we include a set of analysis based on parallelism val-
ues. Since we have larger amount of cases, we conduct our
analysis for task graphs with 50 tasks. Figures 32, 33, 34, 35,
36, 37, 38 and 39, and Figures 40, 41, 42, and 43 present the
average SLR values with pair-wise comparisons, number of
cores, CCR values, and number of edges, respectively.
Figures 32, 33, 34, and 35 present the results for different
number of cores with the given parallelism. When task graphs

Arab J Sci Eng (2016) 41:3279-3295

3293
500 5
EBetter OWorse BEqual .5 EBL OCP_BL_TL BCP_TL B Noodle
4
, 400 o
% ? 35
S 300 & 3
g g 25
S 200 2
£ 15
3 .
100 , I T
0.1 05 1 2 5 10
CCR
0

CP_BL_TL CP_TL

Fig. 31 Number of cases Noodle performed better, worse, and equal
in comparison with other heuristics (for graphs with 300 tasks)

6

55 EBL OCP_BL TL @CP_TL MNoodle
x 5
» 45
[}
? 4
3 35
< 3

2

2 4 8 16

Number of cores

Fig. 32 Results for the given number of cores with parallelism 1-2

55 WBL OCP_BL_TL BCP_TL MNoodle
5
&
@ 45
(]
4
g
¢ 35
>
< 3
2
2 4 8 16

Number of cores
Fig. 33 Results for the given number of cores with parallelism 2—4
6
55 WBL OCP_BL_TL ECP_TL MNoodle

5
45

4
35
3
25
2

2 4 8 16

Number of cores

Average SLR

Fig. 34 Results for the given number of cores with parallelism 4-8

55 EBL OCP_BL_TL OCP_TL ENoodle

Number of cores

Average SLR
S~

Fig. 35 Results for the given number of cores with parallelism 8—12

have lower degree of parallelism, the number of cores does
not affect the scheduling performance as shown in Figure
32 and Figure 33. Since large amount of parallel work does

Fig. 36 Results for the given CCR values with parallelism 1-2

s EBL OCP_BL_TL ICP_TL MNoodle

35

fmmmmmm

Fig. 37 Results for the given CCR values with parallelism 2—4

Average SLR
w

5

45 ®BLOCP_BL TL BCP_TL MNoodle
o« 4
» 35
5 3
g 25
2
15

2 5 10

CCR

Fig. 38 Results for the given CCR values with parallelism 4-8

5
45 EBL OCP_BL_TL BCP_TL ENoodle
x 4
@ 35
(]
? 3
o 25
< 2
15
1
0.1 0.5 1 2 5 10

CCR

Fig. 39 Results for the given CCR values with parallelism 8—12

not exist in the workload, the system cannot take advantage
of Noodle performance improvement. On the other hand,
the performance of Noodle becomes significant for the cases
where the degree of parallelism is larger and the system has
larger amount of cores to execute parallel tasks (Fig. 35).
Asshownin Figs. 36,37, 38, and 39, the pair-wise compar-
ison with CCR values does not yield significantly different
results. Noodle performance becomes better for higher CCR
values regardless of degree of parallelism in the task graphs.
The similar observation is possible for the comparison be-
tween number of edges and parallelism. Noodle performance
again becomes a little better for higher number of edges
regardless of degree of parallelism in the task graphs as pre-

@ Springer

3294

Arab J Sci Eng (2016) 41:3279-3295

-
3

EBL OCP_BL_TL @CP_TL ENoodle

P
)

Average SLR

P w0 N o

.

<100 100-250 250-500 500>

Number of edges

Fig. 40 Results for the given number of edges with parallelism 1-2

15

s EBL OCP_BL_TL ECP_TL MNoodle

e |

<100 100-250 250-500 500>
Number of edges

Average SLR

P oW o N ©

Fig. 41 Results for the given number of edges with parallelism 2—4

15
13
11

1

<100 100-250 250-500 500>

Number of edges

EBL OCP_BL_TL @CP_TL ENoodle

Average SLR

Fig. 42 Results for the given number of edges with parallelism 4-8

15
15 ®BLOCP_BLTL BCP_TL MNoodie

9

7

5 1]
‘mem HTH

<100 100-250 250-500 500>

-
[

Average SLR

Number of edges

Fig. 43 Results for the given number of edges with parallelism 8§—12

sented in Figures 40, 41, 42, and 43. While some ranges for
number of edges are not available for some cases, e.g. there
is no task graph instance that has number of edges less than
100 with degree of parallelism below 4 (Figs. 40, 41), trend
does not differ for available data.

6 Conclusions and Future Work

This paper proposes a novel list scheduling heuristic, called
the Noodle heuristic, for static task scheduling on parallel

@ Springer

computing systems. The proposed heuristic combines the
benefits of both depth-first and breadth-first approaches while
assigning priorities to ready tasks. Noodle heuristic is based
on the concept of maintaining proportionately fair attribution
of priorities to ready tasks that results in improved resource
utilisation and reduced schedule length. We conduct experi-
mental evaluation of Noodle heuristic with task graphs with
50, 100, and 300 tasks per graph taken from Standard Task
Graph (STG). We analyse results for execution scenarios
with 2-, 4-, 8-, and 16-core systems and different degree of
parallelism and number of edges in the task graphs. We re-
port results demonstrating that Noodle produces schedules
that are within a maximum of 12 % (in worst-case) of the
optimal schedule for 2-, 4-, and 8-core systems. We also com-
pare Noodle with existing scheduling heuristics and perform
comparative analysis of its performance. Noodle outperforms
existing heuristics for average value of Schedule Length Ra-
tios (SLRs). As a future work, we intend to extend Noodle
heuristic as an online scheduling algorithm.

References

1. Wolf, W.; Jerraya, A.A.; Martin, G.: Multiprocessor
system-on-chip (mpsoc) technology. IEEE Trans. CAD ICs
Syst. 27(10), 1701-1713 (2008)

2. Grama, A.; Gupta, A.; Karypis, G.; Kumar, V.: Introduction to Par-
allel Computing, vol. 2nd edn. Pearson, A. Wesley, Boston (2003)

3. Sinnen, O.: Task scheduling for parallel systems. Wiley, New York.
ISBN: 978-0-471-73576-2, p. 296, May (2007)

4. Semar Shahul, A.; Sinnen, O.: Scheduling task graphs optimally
with a*. J. Supercomput. 51(3), 310-332 (2010)

5. Sinnen, O.; Sousa, L.: List scheduling: extension for contention
awareness and evaluation of node priorities for heterogeneous clus-
ter architectures. Parallel Comput. 30(1), 81-101 (2004)

6. Sinnen, O.: Reducing the solution space of optimal task schedul-
ing. Comput. OR. 43, 201-214 (2014)

7. Sinnen, O.; Sousa, L.A.: Communication contention in task
scheduling. IEEE Trans. Parallel Distrib. Syst. 16(6), 503—
515 (2005)

8. Darte, A.; Robert, Y. and Vivien, F.: Scheduling and automatic par-
allelization. BirkhSuser, New York. ISBN 0-8176-4149-1, (2002)

9. Topcuouglu, H.; Hariri, S.; you Wu, M.: Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260-274 (2002)

10. Suter, E.; Desprez, F. and Casanova, H.: From heterogeneous task
scheduling to heterogeneous mixed parallel scheduling. In: Euro-
Par 2004 Parallel Processing. pp. 230-237, (2004)

11. Kwok, Y.-K.; Ahmad, I.: Link contention-constrained scheduling
and mapping of tasks and messages to a network of heterogeneous
processors. Cluster Comput. 3(2), 113-124 (2000)

12. Kasahara, H.; Narita, S.: Practical multiprocessor scheduling al-
gorithms for efficient parallel processing. IEEE Trans. Comput.
C33(11), 1023-1029 (1984)

13. Khan, M.A.: Scheduling for heterogeneous systems using con-
strained critical paths. Parallel Comput. 38, 175-193 (2012)

14. Ahmad, I.; Kwok, Y.-K.: On exploiting task duplication in parallel
program scheduling. IEEE Trans. Parallel Distrib. Syst. 9(9), 872—
892 (1998)

Arab J Sci Eng (2016) 41:3279-3295

3295

15.

16.

18.

20.

Kwok, Y.-K.; Ahmad, I.: Dynamic critical-path scheduling: an
effective technique for allocating task graphs to multiproces-
sors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506-521 (1996)
Wu, M.-Y.; Gajski, D.: Hypertool: a programming aid for message-
passing systems. IEEE Trans. Parallel Distrib. Syst. 1(3), 330-
343 (1990)

Yang, T.; Gerasoulis, A.: Dsc: scheduling parallel tasks on an
unbounded number of processors. IEEE Trans. Parallel Distrib.
Syst 5(9), 951-967 (1994)

Iverson, M.A.; Ozguner, F. and Follen, G.J.: Parallelizing existing
applications in a distributed heterogeneous environment. In: HCW
’95, pp- 93-100 (1995)

Shahul, A.Z.; Sinnen, O.: Scheduling task graphs optimally with
a*. J. Supercomput. 51(3), 310-332 (2010)

Arabnejad, H.; Barbosa, J.: List scheduling algorithm for hetero-
geneous systems by an optimistic cost table. IEEE Trans. Parallel
Distrib. Syst. 25(3), 682-694 (2014)

21.

22.
23.
24.

25.

Deelman, E.; Singh, G.; Su, M.-H.; Blythe, J.; Gil, Y.; Kessel-
man, C.; Mehta, G.; Vahi, K.; Berriman, G.B.; Good, J.; Laity,
A.; Jacob, J.C.; Katz, D.S.: Pegasus: A framework for map-
ping complex scientific workflows onto distributed systems. Sci.
Prog. 13(3), 219-237 (2005)
http://en.wikipedia.org/wiki/exponential_decay.

Set, S.T.G.: http://www.kasahara.elec.waseda.ac.jp/schedule.
Orsila, H.; Kangas, T.; Salminen, E.; Hamalainen, T.D.; Han-
nikainen, M.: Automated memory-aware application distribution
for multi-processor system-on-chips. JSA 53(11), 795-815 (2007)
de Langen, P.; Juurlink, B.: Leakage-aware multiprocessor schedul-
ing. J. Signal Process. Syst. 57(1), 73-88 (2009)

@ Springer

http://en.wikipedia.org/wiki/exponential_decay
http://www.kasahara.elec.waseda.ac.jp/schedule

	Scheduling of Parallel Tasks with Proportionate Priorities
	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Model and Definitions
	3.1 Application Model
	3.2 Architecture Model
	3.3 Definitions

	4 The Noodle Heuristic
	4.1 Example Task Graph
	4.2 Priority Attribution Mechanism of the Noodle Heuristic
	4.3 Resource Allocation Under The Noodle Heuristic
	4.4 DAG Scheduling Under Noodle Heuristic: A Complete Example

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Part-I: Evaluation of Noodle Compared to Optimal Schedule Lengths (without communication cost)
	5.3 Part-II: Evaluation of Noodle Compared to Other Heuristics (with communication cost)
	5.3.1 Task Graphs with 50 Tasks
	5.3.2 Task Graphs with 100 Tasks
	5.3.3 Task Graphs with 300 Tasks
	5.3.4 Performance Analysis
	5.3.5 Sensitivity Analysis

	6 Conclusions and Future Work
	References

