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Abstract The aim of this paper was to investigate the wave
propagation of nanotubes conveying fluid by considering the
surface stress effect. To this end, the nanotube is modeled as
a Timoshenko nanobeam. According to the Gurtin–Murdoch
continuum elasticity, the surface stress effect is incorporated
into the governing equations of motion obtained from the
Hamilton principle. The governing differential equations are
solved by generalized differential quadrature method. Then,
the effects of the thickness, material and surface stressmodu-
lus, residual surface stress, surface density and flow velocity
on spectrum curves of nanotubes predicted by both classical
and non-classical theories are studied. The first three funda-
mental modes including flexural, axial, and shear waves of
nanotubes are considered.
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List of symbols

Nanotube

L Length (m)

h Thickness (m)

di Inner diameter (m)

do Outer diameter (m)

E Young’s modulus (Pa)
ν Poisson’s ratio
λ,μ Lame’s constants (Pa)
ρ Mass density (kg/m3)

A Cross-sectional area (m2)

I Second moment of inertia (m4)

Fluid flow

ρf Mass density (kg/m3)

V Velocity (m/s)
Af Cross-sectional area (m2)

If Second moment of inertia (m4)

Solution

(U,W, Ψ ) Amplitude of displacement field
k Wave number
ω Frequency
M Inertia matrix
C Damping matrix
K Stiffness matrix
I Identity matrix
S State-space matrix
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Surface layers

Es Elasticity modulus (Pa)
νs Poisson’s ratio
ρs Mass density (kg/m2)

τs Residual tension (N/m)

λs, μs Lame’s constants (N/m)

Formulation

(x, y, z) Cartesian coordinate system
(u, w,ψ) Displacement field (m,m,−)

εxx Strain
σi j , σ

s
i j Stresses (Pa,N/m)

Nxx , N̄xx Resultant normal forces (N)

Mxx , M̄xx Resultant bending moments
(Nm)

Qx , Q̄x Resultant shear forces (N)

�s Strain energy (J)
�T Kinetic energy (J)
�T f Fluid kinetic energy (J)
A11, A33, A55; D11, E11 Stiffness components

(in Eq. 15) (N; Nm2)

I0; I2,G Inertia components (in Eq. 15)
(kg/m; kg m)

u, w, x, η, τ, I ∗
0 , I ∗

2 , g, a11 Non-dimensional parameters
a13, a33, d11, e11, Kb, v (in Eq. 17)

1 Introduction

Tubular nanomaterials have aroused intense attention since
carbon nanotubes were discovered by Iijima in 1991 [1]. The
stupendous and elevated mechanical, electronic and optical
properties of these structures provide a wide spectrum of
prospective applications in nanomechanics, catalysts, phar-
maceuticals, and nanoelectronics [2–6].

Applications of tubular nanomaterials in nanofluidic sys-
tems like the fluid storage, fluid transport, and drug delivery
are other fulfilling features of these nanostructures [7–11].
In order to use all potential applications of fluid-conveying
hollow cylinders and achieve maximum efficiency, it is of
high importance to investigate concerning mechanical phe-
nomena in terms of static and dynamic behavior. From the-
oretical point of view, generally studies can be performed
in two categories, namely classical and non-classical con-
tinuum theories. Small-scale effect, an inherent nature of
nano- and microstructures, has been demonstrably approved
to have significant effect on the mechanical response [12–
18]. Several non-classical continuum-based theories capable
of capturing scale dependency have been represented such as
the strain gradient elasticity, couple stress elasticity, nonlo-
cal elasticity and the surface elasticity theories [19–22,25]. In

this regard, it can be pointed to thework ofGhayesh [26]who
studied the nonlinear forced oscillations of single-walled car-
bon nanotubes with the help of nonlocal elasticity theory for
the primary and superharmonic excitations.

One of the most successful models to consider the sur-
face stress effect was the one proposed by the Gurtin and
Murdoch [27,28] which the accuracy of their results are
comparable to those of atomistic models. According to their
proposition, the surface layer of a solid can be treated as a
mathematical layerwith zero thickness and differentmaterial
characteristics from the underlying bulk which is completely
surrounded by the membrane. The surface properties of a
solid are anisotropic and reliant on crystallographic direc-
tion of the surface, so surfaces are due to anisotropic stresses
[29,30]. However, suitable averages of surface stress can be
used to estimate isotropic stresses for the surface [31,32].
Only a few studies have been accomplished to consider sur-
face stress effect on the vibration and wave characteristics of
fluid-conveying nanotubes. In this respect, Wang [33] stud-
ied the vibration behavior of nanotubes conveying fluids with
consideration of the surface effect. He reported that small
tubes with large aspect ratios have significant effect on the
stability of the nanotubes.

In current paper, the effect of the surface stress on thewave
characteristics of fluid-conveying nanotubes is investigated.
The nanotube is considered to be modeled based on the Tim-
oshenko beam theory. The governing equations of motion
incorporating the surface stress effect are achieved based on
theHamilton principle andGurtin–Murdoch continuumelas-
ticity. Effects of the thickness, material, and surface stress
modulus, residual surface stress, surface density and flow
velocity on the first three fundamental modes including flex-
ural, axial and shear waves of nanotubes predicted by both
classical and non-classical theories are investigated.

2 Formulation of Motion

Shown in Fig. 1 is a schematic of a nanotube with length L
and thickness h, conveying incompressible fluid of the mass
densityρf , flowingwith constant velocityV . So as to simulate
the internal flow a continuum-based plug-like flow is used. It
is considered that the outside of the nanotube contains a bulk
part and two additional thin surface layers (inner and outer
layers). The properties of the bulk part are Young’s modulus
E , Poisson’s ratio ν, and mass density ρ. di and do are the
symbols to denote the inner and outer diameters, respectively.
The two surface layers have following properties: surface
elasticity modulus of Es, Poisson’s ratio νs, mass density ρs,
and the surface residual tension τs.

The Cartesian coordinate system (x, y, z) with the x-axis
along the length of the deflected nanotube, the y-axis along
the neutral axis and the z-axis along the transverse direc-
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Fig. 1 Geometry of
fluid-conveying nanotube with
two surface layers

, ,

tion is considered in one end of the nanotube. Based on the
first-order shear deformation Timoshenko beam theory, the
displacements of an arbitrary point in the nanobeam along
the x-, y-, and z-axes can be written in a general form as

ux = u (x, t) + zψ (x, t) , uy = 0, uz = w (x, t)

(1)

whereu (x, t),w (x, t) andψ (x, t)denote the axial displace-
ment of the center of sections, the lateral deflection of the
nanotube, and the rotation angle of the cross section with
respect to the vertical direction, respectively.

The strain–displacement relations can be written as

εxx = ∂u

∂x
+ z

∂ψ

∂x
, εxz = 1

2

(
∂w

∂x
+ ψ

)
(2)

Also, the stress components can be expressed according to
the linear elasticity as follows

σxx = (λ + 2μ)

(
∂u

∂x
+ z

∂ψ

∂x

)
, σxz = μ

(
∂w

∂x
+ ψ

)

(3)

in which λ = Eν/
(
1 − ν2

)
and μ = E/ (2 (1 + ν)) are

Lame’s constants. The classical continuum mechanics is in-
capable of capturing the atomic features of the nanostruc-
tures. The Gurtin–Murdoch theory is a modified continuum
elasticity to consider the scale dependency. On account of the
interaction between the elastic surface and the bulk mater-
ial, nanostructures is undergoing in-plane loads in different
directions, causing surface stresses. According to theGurtin–
Murdoch theory, these surface stresses can be computed by
employing following surface constitutive equations

σ s
αβ = τsδαβ + (τs + λs)εγ γ δαβ + 2(μs − τs)εαβ + τsusα,β

σ s
αz = τsusz,α

;
(α, β = x, y) (4)

here λs and μs are Lame’s surface constants. The surface
stress components can be written with respect to the dis-
placement components as

σ s
xx = (λs + 2μs)

(
∂u

∂x
+ z

∂ψ

∂x

)
+ τs, σ s

xz = τs
∂w

∂x
(5)

In the classical theory, the stress component σzz is considered
to be zero, since it is negligible compared to the σxx and σxz .
This assumption does not fulfill surface conditions of the
Gurtin–Murdoch model. To satisfy the balance conditions
on the surfaces, the stress component σzz is assumed to be
linearly variable through the beam thickness, i.e., [34]

σzz =
(

∂σ s+
xz

∂x − ρs+ ∂2w
∂t2

)
−

(
∂σ s−

xz
∂x − ρs− ∂2w

∂t2

)
2

+
(

∂σ s+
xz

∂x − ρs+ ∂2w
∂t2

)
+

(
∂σ s−

xz
∂x − ρs− ∂2w

∂t2

)
h

z (6)

Referring to Eq. (5), σzz can be obtained as

σzz = 2z

h

(
τs

∂2w

∂x2
− ρs

∂2w

∂t2

)
(7)

Inserting σzz achieved from Eq. (7) in the components of
stress for the bulk of the nanotube leads to following relations

σxx = (λ + 2μ)

(
∂u

∂x
+ z

∂ψ

∂x

)

+ 2νz

(1 − ν) h

(
τs

∂2w

∂x2
− ρs

∂2w

∂t2

)
,

σxz = μ

(
∂w

∂x
+ ψ

)
. (8)

According to the continuum surface elasticity theory, the
strain energy of the nanotube incorporating the surface stress
effect can be written as

�s = 1

2

∫
x

∫
A

σi jεi jdAdx

+ 1

2

⎛
⎝∫
S+

σ s
i jεi jdS

+ +
∫
S−

σ s
i jεi jdS

−
⎞
⎠
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Fig. 2 Dispersion curves for different values of thicknesses corresponding to flexural, axial, and shear waves

= 1

2

∫
x

{(
Nxx + N̄xx

) ∂u

∂x
+ (

Mxx + M̄xx
) ∂ψ

∂x

+ Qx

(
∂w

∂x
+ ψ

)
+ Q̄x

∂w

∂x

}
dx (9)

in which

Nxx = (λ + 2μ) A
∂u

∂x
, Qx = μksA

(
∂w

∂x
+ ψ

)
,

Mxx = (λ + 2μ) I
∂ψ

∂x
+ 2ν I

(1 − ν) h

(
τs

∂2w

∂x2
− ρs

∂2w

∂t2

)
.

(10a)

N̄xx =
∫
S

σ s
xxds

= π (di + do) (λs + 2μs)
∂u

∂x
+ τsπ (di + do) .

M̄xx =
∫
s

σ s
xx zds = (λs + 2μs) π

(
d3i + d3o

)
8

∂ψ

∂x
,

Q̄x =
∫
s

σ s
xzds = τsπ (di + do)

∂w

∂x
. (10b)

where ks denotes shear correction factor. Additionally, for the
kinetic energy of nanotube �T and the fluid kinetic energy
�Tf , one can write

�T = 1

2

∫
x

{[
ρA + π (di + do) ρs]

[(
∂u

∂t

)2

+
(

∂w

∂t

)2
]

+
[
ρ I + πρs

(
d3i + d3o

)
8

] (
∂ψ

∂t

)2
}
dx (11a)

�Tf = 1

2

L∫
0

∫
Af

ρf

{(
∂w

∂t
+ V

∂w

∂x

)2
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Fig. 3 Shear cutoff frequency
variation with thickness
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+
(

∂u

∂t
− z

∂ψ

∂t
+ V

)2
}
dAfdx

= 1

2

L∫
0

{
ρf Af

(
∂w

∂t
+ V

∂w

∂x

)2

+ρf Af

(
∂u

∂t

)2

+ ρf AfV
2

+2ρf Af
∂u

∂t
+ ρf If

(
∂ψ

∂t

)2
}
dx (11b)

According to the Hamilton principle, one can write

δ

t2∫
t1

(�T + �Tf − �s)dt = 0 (12)

By taking the variation ofu, w andψ , integrating by parts and
setting the coefficients of δu, δw and δψ equal to zero, the
governing equations of motion (13a–13c) will be achieved
as

∂
(
Nxx + N̄xx

)
∂x

= (
ρA + ρf Af + π (di + do) ρs) ∂2u

∂t2
(13a)

∂
(
Qx + Q̄x

)
∂x

− ρf Af

(
2V

∂2w

∂t∂x
+ V 2 ∂2w

∂x2

)

= (
ρA + ρf Af + π (di + do) ρs) ∂2w

∂t2
(13b)

∂
(
Mxx + M̄xx

)
∂x

− Qx

=
{

ρ I + ρf If + πρs
(
d3i + d3o

)
8

}
∂2ψ

∂t2
(13c)

also the boundary conditions are as follows

δu = 0 or δ
(
Nxx + N̄xx

) = 0 (14a)

δw = 0 or δ
(
Qx + Q̄x

) = 0 (14b)

δψ = 0 or δ
(
Mxx + M̄xx

) = 0 (14c)

As for the stiffness components and inertia related terms, one
can define

A11 = (λ + 2μ) A + π (di + do) (λs + 2μs) ,

A33 = π (di + do) τs, A55 = μksA,

D11 = (λ + 2μ) I + (λs + 2μs) π
(
d3i + d3o

)
8

,

E11 = 2ν I τs
(1 − ν) h

I0 = ρA + ρf Af + πρs (di + do) ,

I2 = ρ I + πρs
(
d3i + d3o

)
8

,G = 2ν Iρs

(1 − ν) h
(15)
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Fig. 4 Dispersion curves for different velocities corresponding to flexural, axial and shear waves

Considering above parameters and substituting Eq. (10) into
(13) leads to the governing differential equations of motion
as follows

A11
∂2u

∂x2
= I0

∂2u

∂t2
, A55

(
∂2w

∂x2
+ ∂ψ

∂x

)
(16a)

+ A33
∂2w

∂x2
− ρf Af

(
2V

∂2w

∂x∂t
+ V 2 ∂2w

∂x2

)

= I0
∂2w

∂t2
, (16b)

D11
∂2ψ

∂x2
+ E11

∂3w

∂x3
− A55

(
∂w

∂x
+ ψ

)

= I2
∂2ψ

∂t2
+ G

∂3w

∂x∂t2
. (16c)

One can introduce the following dimensionless quantities

u → u

h
, w → w

h
, x → x

L
, η = L

h
, τ = t

L

√
A110

I00
,

I ∗
0 = I0

I00
, I ∗

2 = I2
I00h2

, g = G

I00h2
,

{a11, a13, a33} =
{

A11

A110
,
A13

A110
,
A33

A110

}
,

d11 = D11

A110h2
, e11 = E11

A110h2
,

Kb = 2ρf AfV√
A110 I00

, v =
√

ρf Af

A110
V (17)

where A110 = (λ + 2μ) A, and I00 = ρA. Following are the
normalized governing equations of motion of the nanotube

a11
∂2u

∂x2
= I ∗

0
∂2u

∂τ 2
, (18a)

a55

(
∂2w

∂x2
+ η

∂ψ

∂x

)
+ a33

∂2w

∂x2

−Kb
∂2w

∂x∂τ
− v2

∂2w

∂x2
= I ∗

0
∂2w

∂τ 2
, (18b)
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Fig. 5 Effect of the surface elastic constants on the spectrum curve for flexural, axial, and shear waves

d11
∂2ψ

∂x2
+ e11

η

∂3w

∂x3
− a55η

(
∂w

∂x
+ ηψ

)

= I ∗
2

∂2ψ

∂τ 2
+ g

η

∂3w

∂x∂τ 2
. (18c)

The simply supported (SS) and clamped (C) boundary con-
ditions can be written respectively as

u = w = e11
η

∂2w

∂x2
+ d11

∂ψ

∂x
= 0 (19a)

u = w = ψ = 0 (19b)

3 Numerical Solution

To analyze the surface stress effect on the wave characteris-
tics of nanotubes conveying fluid, the harmonic waves can
be expressed as [35]:

u (x, t) = Uei(kx−ωt), w (x, t) = Wei(kx−ωt), ψ (x, t)

= Ψ ei(kx−ωt) (20)

where k denotes the dimensionless wave number andω is the
dimensionless frequency andU , W and Ψ are the frequency
amplitude of axial and lateral deflection and rotational wave,
respectively.

By substituting Eq. (20) into (18), one can obtain the fol-
lowing three equations of motion

− a11k
2U + I ∗

0 ω2U = 0, (21a)

a55
(
− k2W + iηkΨ

)
− a33k

2W

−KbkωW + v2k2W + I ∗
0 ω2W = 0, (21b)

− d11k
2Ψ − i

e11
η

k3W − a55η (ikW + ηΨ )

+ I ∗
2 ω2Ψ + i

g

η
kω2W = 0 (21c)

These equations can be expressed in the following form:

(
Mω2 + Cω +K

) ⎡
⎣U
W
Ψ

⎤
⎦ = 0 (22)
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Fig. 6 Effect of the surface density on the spectrum curve for flexural, axial and shear waves

where

M =
⎡
⎣ I ∗

0 0 0
0 I ∗

0 0
0 i g

η
k I ∗

2

⎤
⎦ ,C =

⎡
⎣0 0 0
0 −Kbk 0
0 0 0

⎤
⎦ ,

K =
⎡
⎣−a11k2 0 0

0 −a55k2 − a33k2 + v2k2 a55i ηk
0 −i e11

η
k3 − a55ηi k −d11k2 − a55η2

⎤
⎦

(23)

For non-trivial solution, the determinant of the coefficient
matrix in Eq. (22) must be zero which can be written in this
form:

det (S − ωI) = 0 (24)

in which

S =
[

0 I
−M−1K −M−1C

]
(25)

4 Results and Discussion

In this part, the numerical analysis is performed and results
predicted by both classical and non-classical theories are il-
lustrated in frequency versus wavenumber plots. The effects
of the surface stress on the first three fundamental modes
including flexural, axial, and shear waves of nanotubes are
investigated. The results are presented for nanotubes made
of silicon material with the following material properties
[36,37]:

E = 210GPa, ρ = 2331 kg/m3, ν = 0.24,

λs = −4.488 N/m, μs = −2.774 N/m, τs = 0.605N/m,

ρs = 3.17e − 7 kg/m2.

Figure 2 shows the variation of the wavenumber with the
wave frequency of nanotubes for different thicknesses based
on the present and classical beam theories. It is assumed
that di/do = 0.8, L/do = 20, V = 500 m/s. It can be
seen that the wave frequency gently increases with increas-
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Fig. 7 Effect of the surface residual stress on the spectrum curve for flexural, axial and shear waves

ing the wavenumber. Considering the surface effects, it is
observed that with the growing of the wavenumber, the dis-
tance between graphs increases. The frequencies obtained
by the present model for different thicknesses are lower than
those from the classical model, especially for nanotubes with
smaller thicknesses. So, the small-scale effect is more pro-
nounced for nanotubes with lower thicknesses and in higher
wavenumbers. Also, it is seen that flexural and axial wave
modes start from zero wave frequency, while the shear wave
mode does not. The frequency at where the imaginary part
of wavenumber becomes real is called as shear cutoff fre-
quency. The cutoff frequencies can be obtained by setting
k = 0 [38].

The dimensionless shear cutoff frequencies obtained from
the present and classic models as function of thicknesses are
illustrated in Fig. 3. It is observed that shear cutoff frequen-
cies in lower thicknesses predicted by the present model are
significantly smaller than those predicted by the classical the-
ory, indicating profound effect of surface stress on the shear
cutoff frequency. As it is expected, with increasing the nan-
otube thickness, shear cutoff frequencies of present theory
get closer to those of the classical model. So, it is concluded
that the classical theory can be appropriately used for nan-

otubes with large scales, while using this theory may lead
to enormous errors in predicting the behavior of nanotubes
with small scales.

Figure 4 displays the effects of surface stress and velocity
on the spectrum curves with various wavemodes. In all kinds
ofwavemodes, it can be seen a significant difference between
the curves with surface stress and the classical ones. At a spe-
cific velocity, the wave frequencies obtained by the present
theory are lower than those predicted by the classical theory,
i.e., the classical theory overestimates the wave frequency,
especially at higher wavenumbers. Comparing the results of
different wave modes reveals that in the flexural mode, there
is most difference between curves with different velocities,
while in the axial wave mode, the velocity change has almost
no effect on the spectrum curve of the nanotube. It is worth-
while mentioning that in flexural and shear wave curves, the
wave frequency of classical-based theory increases with in-
creasing the flow velocity, but completely reversed behavior
is observed for results predicted by present model at shear
mode. Moreover, the flexural wave frequencies tend to de-
crease as an increase in the fluid velocity occurs. This means
that increasing the fluid velocity makes the nanotubes more
flexible.
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Represented in Fig. 5 is the influence of the material and
surface stress modulus on the spectrum curves of nanotubes
with the assumption of ρs = τs = 0, h = 1 nm and V =
500m/s.As thewavenumber grows, the effect of thematerial
and surface stress modulus get more pronounced, especially
in axial and shear wave modes. In all three types of wave
modes, the positive value of λs + 2μs increases the stiffness
and wave frequency of the nanotube [39], while the nega-
tive one makes the structure softer and decreases the natural
frequency.

The effect of the surface density on spectrum curves with
the assumption of λs = μs = τs = 0, h = 1 nm and
V = 500 m/s is depicted in Fig. 6. The frequency of the
presentmodel is smaller than that obtained by classicalmodel
andwith increasing the density, this difference is growing up.
For example, in flexural wave spectrum, the frequency pre-
dicted by the classical model in k = 400 is 2.4282 times than
predicted by present theory at ρs = 10−5 kg/m2. Also it is
observed that there is a significant reduction in shear cutoff
frequency with increasing the surface density.

Figure 7 represents the effect of the surface residual stress
on the spectrum curves with the assumption of λs = μs =
ρs = 0, h = 1 nm and V = 500 m/s. It can be seen that
the influence of the surface residual stress on the spectrum
curves in axial wave mode is negligible. A more difference
can be observed between curves in other two wave modes in
a way that with the positive value of surface residual stress,
the frequency is increased while the negative one decreases
the frequency.

5 Conclusion

Represented in this study was an investigation on explor-
ing the surface stress effect on wave properties of a nanotube
conveying fluids. Based on the Timoshenko beam theory and
Gurtin–Murdoch continuum elasticity, a continuum model
capable of capturing surface stress effect was developed.
Based on the Hamilton principle, the governing equations of
motion were derived, before solving numerically. Afterward,
effects of the thickness, material and surface stress modulus,
residual surface stress, surface density and flow velocity on
wave characteristics of nanotubes predicted by both classical
and non-classical theories were studied. The first three fun-
damental modes including flexural, axial and shear waves of
nanotubes are considered.

Given the effect of the thickness, it was seen that the
surface have pronounced effect on the spectrum curve of nan-
otubes, especially those with lower thicknesses and at higher
wavenumbers. The surface stress was seen to have consider-
able effect on the shear cutoff frequency, especially in lower
thicknesses.
Regarding the effect of the flow velocity, it was observed

that depending on the type of the wave mode, the response
of the spectrum curve of the nanotube can be different. For
the case of the flexural mode, the variation of the velocity
does not affect the spectrum curve of the nanotube. The clas-
sical theory overestimates the wave frequency, especially at
higher wavenumbers. In flexural and shear wave curves, as
the flow velocity rises, the wave frequency predicted by the
classical theory increases, but that predicted by the present
model reduces. With the increase in the wavenumber, the ef-
fect of the material and surface stress modulus was seen to
be more profound, especially in axial and shear wave modes.
Unlike the negative value of λs + 2μs, the positive value of
λs + 2μs increases the stiffness and wave frequency of the
nanotube. The shear cutoff frequency was seen to be signifi-
cantly decreased with increasing the surface density. As for
the effect of the surface residual stress, the spectrum curve
in axial wave mode was indifferent to the variation of this
parameter, while in axial and flexural wave modes, the posi-
tive value of the surface residual stress slightly increases the
frequency.
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