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Abstract Flood is one of the devastating natural disasters
prediction of which is significantly important. Rainfall–
runoff process and flooding are physical phenomena that their
investigation is very difficult due to effectiveness of differ-
ent parameters. Various methods have been implemented to
analyze these phenomena. The aim of current study is to
investigate the performance of the artificial neural network
(ANN) (hyperbolic tangent and sigmoid) and support vector
machine (SVM) (regression type-1 and regression type-2)
models to simulate the rainfall–runoff process influenced
by snow water equivalent (SWE) height in Roodak water-
shed, Tehran province, Iran. So, 92 MODIS images were
gained from NASA website for three water years of 2003–
2005. Then, snow cover areas in all images were extracted
and finally SWE values were calculated. Also, the data of
precipitation, temperature and discharge for the mentioned
years were used for modeling. According to the results, ANN
with the hyperbolic tangent function, rainfall-temperature-
SWE inputs, 1-day delay and RMSE and R2 of 0.024 and
0.77, and the model with the sigmoid transfer function, rain-
temperature-SWE inputs and RMSE and R2 of 0.026 and
0.75 had better prediction capability than the other models.
This indicates that the SWE has improved the accuracy of
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the models. The results of the SVM model indicate that the
model with the rainfall-temperature-SWE, 1-delay, type-1
regression, RBF function and RMSE and R2 of 0.054 and
0.030 had better prediction capability than other models.
This also shows that consideration of the SWE enhances
the performance and accuracy of the SVM models. More-
over, comparing the results of ANN and SVM models, it can
be concluded that ANN model with the rainfall-temperature-
SWE inputs, 1-day delay, and the hyperbolic tangent function
had better predictions.

Keywords Rainfall–runoff modeling · SVM · SWE ·
MODIS satellite · Snow cover area

1 Introduction

In the most of semiarid and arid regions of the world includ-
ing Iran, the snow stored in snow pits during cold season
provides a significant water resource, called snow water
equivalent (SWE) in mountainous parts of the catchment
[1]. This water resource plays an important role in providing
basic discharge of permanent rivers and sometimes in con-
trolling upstream flood regime of the rivers. According to the
past researches, about 60 % of superficial waters and 57 % of
groundwater in Iran are fed by melting snow [2]. Roodak
watershed is one of the most important watersheds in the
Tehran, and a considerable portion of the water requirements
of its inhabitants is relied upon this watershed [3].

Snow is one of most important precipitation forms in the
Latian Dam’s watershed and the runoff resulted from melting
snow is the main resource to feed groundwater tables because
of its dilatory role and in some cases, leads to devastat-
ing floods with currents more than river capacity. Therefore,
runoff estimation in a watershed is one of the basic and initial
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needs in the water resource management and planning in any
area.

Many models with different levels of complexity have
been innovated and developed in order to estimate runoff
from climatic and physical parameters of watersheds. Gen-
erally, these models can be divided into three categories
including (1) black-box or empirical models, (2) conceptual
models, and (3) the models based on physical relationships
[4]. Black-box models usually have a physical input and
output, and therefore, are completely empirical. Conceptual
models of rainfall–runoff process are based on simplifying
physical relations and parameters required for rainfall–runoff
modeling [5]. These models are suitable for predicting
coordinates of hydrographs and making them capable of effi-
ciently creating rainfall–runoff relationships [6]. However,
such geographically different relations with diverse elements
in regional and areal scales are hard to be understood, and
hydrologists have tried to present developed models to over-
come these problems. At present, many methods are used to
model hydrologic processes and runoff, of which are physi-
cal methods specifically used to simulate and calibrate these
models with different complexities [7]. These methods need
complicated mathematical tools [8], a big deal of calibra-
tion data, special experience and expertise [9]. When there
is no or insufficient measured data for watershed properties,
a database (nonphysical) model is used in order to simulate
the runoff [10]. These models can be used without any math-
ematical complications. Artificial neural network (ANN) is
a database model which has been used for hydrology in the
last decade [11–27].

Farahmand [28] and Zare Abyaneh [29] compared a tem-
porary method using the periodic neural network (PNN)
with time delay and the general periodic neural network
(GRNN) in modeling rainfall–runoff process in the upper
part of Wordha River, India. They found that PNN model had
satisfying predications 3 h earlier. Their results also showed
that PNN model with time delay is more diverse than the
GRNN and can be used as a secondary practical tool to pre-
dict short-term floods. Kurtulus [30] used ANN and ANFIS
to predict daily discharge of Lime watersheds and compared
their abilities with each other. They included the daily data
of watershed for seven years in a MATLAB code and imple-
mented an automatic instruction to select the best calibrated
models. According to the results, they concluded that both
models (ANN and ANFIS) accurately predicted the daily dis-
charge of the Lime watersheds. Moreover, they improved the
performance of both models through increasing inputs from
one to two and reduced the root-mean-square error (RMSE).
Their results also showed that ANFIS model predicts the
peak flow better than ANN model. ANFIS method had better
generalization capability and to some extent, better perfor-
mance than ANN model, particularly for peak discharge
prediction. Vafakhah [31] simulated rainfall- runoff resulted

from the melted snow by ANN and neural-fuzzy methods in
the Taleghan watershed, Albroz Province, Iran. The results
showed that the ANN model had better capability in predict-
ing the flow discharge than the neural-fuzzy. They also found
that involving SWE height in two stations increased the per-
formance of the network structure and increase of the number
of inputs from one to three return periods in two stations,
decreased the performance of the models. Pustizadeh [32]
also used the same models to predict Zaiandeh-rood River
flow and found that the ANFIS model gives better results
than the ANN model. The above-mentioned studies reflect
the high applicability of ANN method to simulate different
hydrological phenomena, while ANN method has not been
fully developed to model the rainfall–runoff process, nowa-
days is an important study topic for water researchers.

Moreover, the support vector machine (SVM) has also
gained considerable successes as a new database model. The
structure of SVM model was proposed by Vapnik in the
1960s. The SVM models which are based on probability the-
ory are a type of new class of models which have been used
to classify and predict in different fields. It has also been
so far proved to be capable of modeling runoff and mak-
ing hydrological predictions [33–36]. Wang et al. [37] used
ARMA, ANN, ANFIS, SVM and genetic programming (GP)
to simulate the monthly discharge for two rivers (Lankang
and Woojiang) in China. The results showed that ANFIS, GP
and SVM methods had the best capabilities. Wu et al. [38]
also used ARMA, ANN and SVM to predict the monthly
runoff of Zhiangjiabi watershed at 1, 3, 6 and 12 months
later. Their results indicated that the SVM works better than
other models. Moharrampoor et al. [39] predicted the daily
discharge of Ghare-soo River using the SVM model. They
used discharge time series of 1989–2007 period information
for the river to successfully generate an artificial flow. Fur-
thermore, Noori et al. [40] predicted the monthly flow using
the SVM based on principal components analysis (PCA).
Their results showed that preprocessing the input variables
of the SVM model using PCA improved the performance
of the SVM model. Okkan and Serbes [41] investigated the
capability of the LS-SVM model to predict the runoff dis-
charge of Tahtaali and Goros watersheds as the main water
resources in Izmir city of Turkey and compared it with ANN
and other common techniques including automatic average
retrograde motion and multi-linear regression models. They
found that LS-SVM and ANN models successfully predicted
the monthly runoff discharge series with better performance
in the two studied watersheds as compared to the common
statistic models. Because of using different types of nor-
malization in the process, the LS-SVM was also found to
have higher accuracy than the ANN model. Shahraiyni et al.
[42] used the active learning method (ALM) as a new fuzzy
modeling approach to simulate long-term daily discharge
of Karoon River in Iran and compared it with optimized
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Fig. 1 Location of Roodak
watershed in Iran

SVM using simple Genetic Algorithm (GA), as a well-known
data-driven model. They found that the simulations could be
satisfactorily applied by both ALM and optimized SVM, but
working with ALM was easier than optimized SVM.

In this paper, snow-influenced Latian watershed has been
studied using ANN and SVM. SWE which has not been used
in researches done so far is taken into account for the first time
in this paper. This consideration has led to a more accurate
prediction of exiting runoff in the studied watershed.

2 Methodology

2.1 Study Area

Roodak watershed is located between longitudes (25′–51′′ to
46′–51′′) and latitudes (50′–35′′ to 36′′), with area of 436 km2

including Garmabdar, Meigoon, Ahar, Amame, Roodak sub-
watersheds in Tehran. This watershed is mountainous with
elevation range of 1700–4212 m above the sea level and aver-
age elevation of 2830 m. The average slope of the study area
is 45.6 %, and its general slope is southward (Fig. 1).

2.2 Extracting Snow Cover Area from MODIS Images

Initially, MODIS images of the study area were downloaded
from NASA website (http://ladsweb.nascom.nasa.gov) in
HDF format and were imported in ENVI processor envi-
ronment. Then, the satellite digital images including data
preprocessing, preparation, categorization, extraction and
final process were applied. Geo-referencing of the images
was done automatically using the ENVI software toolbox.
Atmospheric modifications were applied to the images con-
sidering the amount of wave reflexed from the Latian dam
lake. It has been tried to use the images without cloud cover-
age on the study site. In order to provide the snow cover map,
an algorithm was presented by Hall et al. [43] using bands
with ground resolution of 500 m to differentiate snow from
cloud. The algorithm employed to prepare the snow cover

map is based on the fact that snow has high reflection in the
visible wavelengths (05–0.7µm) and has low reflection in
short infrared wavelengths (1–4µm) [43]. The bands 4 and 6
were used to automatically extract and calculate normalized
difference snow index (NDSI) based on Eq. (1) as follows:

NDSI = MODISband 4 − MODISBand 6

MODISBand 4 + MODISBand 6
(1)

where NDSI is the normalized difference snow index,
MODISBand4 is MODIS 4-band image after radiometric
modifications and MODISBand6 is MODIS 6-band image
after radiometric modifications. This index could be used to
differentiate snow from ice, also snow from clouds of above
atmosphere such as cumulonimbus clouds. In fact, this index
is a criterion to calculate the relative amount of differen-
tial properties which are achieved from the snow reflections
between visible and infrared bands with short wavelength.
The mentioned index is insensitive to exposure conditions
and could be adjustable relative to the atmospheric effects.
In other words, this index is dependent on not only the reflec-
tion amounts in a specific band only, but also on the digital
value of reflections from the pixels. Hall et al. [43] proved
that the algorithm acts the best to prepare the snow map
of places with sparse vegetation such as meadows, farms
and tundra. In these cases, band-2 of the MODIS would be
basically processed to differentiate the snow and NDSI com-
ponents of the snow map in the algorithm will effectively
filter the clouds (except the high-elevation clouds). These
clouds contain ice pieces and may cause to incorrect cat-
egorization of snow cover. According to this criterion, the
results of NDSI index could be accepted only if the amount
of reflection from band-2 would be more than 11 %. The sec-
ond criterion called dark targets has been discussed by Hall
et al. [44]. In this case, a 10 % reflection in band-4 is known
as the lower bound for differentiation of the vegetation cover
from snow. For the pixels categorized as snow, the reflection
in band-4 should be more than or equal to 10 %. Despite the
high value of the NDSI index, in some cases, the dark tar-
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gets impede a correct categorization. Therefore, according to
the two above-mentioned criteria, the snow cover algorithm
would be considered a pixel as snow only if the following
conditions would be satisfied:

1) Band-2 has a reflection of more than 11 %.
2) Band-4 has a reflection of more than or equal to 10 %.
3) NDSI amount should be totally estimated more than 0.4.

It should be noted that final snow map is in binary format
and follows Boolean logic and in this model, the image as a
whole is divided into two areas (snow and no snow).

2.3 Estimating Snow Cover Area in the Days with No
Satellite Images

Having extracted the snow coverage area in different times
by means of MODIS images, snow cover area in days with-
out any images was obtained using the cumulative snowmelt
depth (�M). �M is a function of degree-day factor (α) and
number of the degree-days over the critical degree-day (T+)
and is obtained between t1 and t2 from Eq. (2):

�M (t1, t2) =
t2∑

t1

(
aT 4

)
t1 < tx (2)

α = 1.1
ρs

ρw
(3)

where ρs is the snow density, ρw is the water density and if
new snowfall occurs, the degree-day factor would be modi-
fied and introduced to the model. Assume that there are two
satellite images in t1 and t2 and snow-covered areas extracted
from these two images are SCA(t1) and SCA(t2), respec-
tively. When the temperature values drop below the threshold
value for melt (between tA and tE), snowmelt stops and the
snow-covered area in tx will be obtained from Eq. (4):

SCA(tx ) = SCA(tx−1)

− SCA(t1) − SCA(t2)

�M(t1, tA) + �M(tE, t2)
�M(tx−1, tx ) (4)

where SCA(tx ) indicates snow cover area in time tx ;
SCA(tx−1) is snow cover area in time tx−1; SCA(t1) is snow
cover area in time t1; SCA(t2) represents snow cover area in
time t2; �M(t1, tA) is cumulative snowmelt depth between
t1 and tA; �M(tg, t2) represents cumulative snowmelt depth
between tg and t2; and �M(tx−1, tx ) is cumulative snowmelt
depth between tx−1 and tx .

2.4 Snow Water Equivalent (SWE)

SWE data for the Amameh snow survey station (station
no: 41-007, 51 ◦36′E, 35 ◦54′N, elevation: 2350 m a.sl.) were

Table 1 The partial auto-correlation functions of the daily rainfall,
temperature and SWE time series of from lag-1(r1) to lag-5(r5)

Lag r1 r2 r3 r4 r5

Rainfall (mm) 0.41 −0.04 0.08 0.014 0.011

Temperature (◦C) 0.98 0.12 0.07 0.025 0.028

SWE (mm) 0.98 −0.05 −0.02 −0.02 −0.01

obtained from Iranian Water Research Institute (WRI) for
years of 2003–2005. In order to determine the SWE height
in the days without snow survey, a linear regression relation-
ship between the SWE and the snow cover area was used.

2.5 Meteorological and Streamflow Data

Precipitation data of weather stations [Roodak, Amameh,
Galookan (Kamarkhani), Rahat Abad, Ahar, Garmabdar,
Shemshak, Roodbar Ghasran], the daily temperature of sta-
tions (Amame, Rahat Abad, Galookan) and the daily flow in
Roodak hydrometry station were obtained from Iran Water
Resources Management Company (IWRM) for the years of
2003–2005. In order to determine the average daily precipita-
tion and the watershed temperature, Thiessen polygon used.

2.6 Data Classification

In this study, the data of average daily precipitation (P/mm),
average daily temperature (t/◦C), the daily SWE height
(SWE/mm) and average daily discharge (Q/ m3/s) all gath-
ered over three water years of 2003–2005 in Roodak hydrom-
etry station. Totally 1096 data points were used from this
station. 70 % (768) of data points were used as the training
set and the remaining (30 %, 330) as the test points. This was
also the same for the SVM model. The daily rainfall, tem-
perature and SWE and streamflow data statistics of training,
test, validation and entire data set are presented in Table 1.

2.7 Determination of Input Parameters

Data selection is the first step in creating the neural network
appropriate to estimate the rainfall–runoff equations. Gener-
ally, two types of data could be used as the input data for the
neural network, which includes statistics just related to the
daily precipitation, daily temperature and SWE height. To
select the input values to the network, an appropriate solu-
tion could be hydrological observations in different delay
times. For this purpose, the number of delays required for
modeling the input variables to the network was obtained by
plotting the partial autocorrelation functions in STATISTICA
software (Table 2).

As can be seen from Table 2, the partial auto-correlation
functions (PACF) indicated significant correlation at lag-1 for
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Table 2 The statistical characteristics of the daily rainfall, temperature and SWE and streamflow data

Variable Data set Number of data Average Standard deviation Maximum Minimum

Rainfall (mm) Training 768 2.08 5.47 68.90 0

Test 328 2.01 5.21 31.67 0

Entire 1096 2.06 5.39 68.90 0

Temperature (◦C) Training 768 10.94 8.46 29.26 −5.45

Test 328 11.32 9.88 26.92 −9.32

Entire 1096 11.06 9.03 29.26 −9.32

SWE (mm) Training 768 80.87 113 292.68 0

Test 328 79.42 112.01 292.23 0

Entire 1096 80.43 112.66 292.68 0

Stream flow (m3 s−1) Training 768 8.99 10.21 119 2.32

Test 328 9.98 9.36 38.7 2.17

Entire 1096 9.28 9.97 119 2.17

rainfall and SWE after lag-2, fell within the confidence limits.
and lag-1 and lag-2 for temperature after lag-3, fell within the
confidence limits. The PACF suggested incorporating daily
rainfall and SWE values up to 1 day-lag and daily temperature
value up to 2 day-lag in input vector to the ANN and SVM
models.

2.8 Data Normalization

In order to prevent underestimation of ANN weights, its
inputs need to be normalized. In this study, following equa-
tion was used:

Ni = 0.8 ×
(

xi − xmin

xmax − xmin

)
+ 0.1 (5)

where Ni represents the normalized value; xi is the real
value; xmin and xmax are the minimum and maximum val-
ues, respectively. The above equation normalizes the ANN
inputs between 0.1 and 0.9.

2.9 Artificial Neural Network (ANN)

The ANN is a computational mechanism which is capable
to give new information on the basis of some input informa-
tion and calculations [45]. One of the common ANNs used
in hydrology is the multi-layer perceptron (MLP) consisted
of one input layer, one output layer, and one or more hidden
layers that are not directly connected to the input data and
output results. The input layer units have the task of distrib-
uting input data and output layer provides replies for output
signals. The number of neurons in both layers is equal to the
number of the inputs and outputs. The hidden layer (s) serves
as the connection between the input and output layers. There
is no specific algorithm in MLP to determine the numbers of

the neurons and hidden layers. The mentioned numbers are
determined by trial and error.

2.9.1 Activation Functions

As common in ANN, sigmoid function consists of logistic
and tangential activation functions were used in the hidden
layer and linear activation function in the output layer.

2.9.2 Training Algorithm of ANN

According to Coulibaly et al. [46] here feed-forward back
propagation and early stopped training algorithms were used
in current study.

2.9.3 Support Vector Machine

Recently, new tools regarding artificial intelligent (AI) called
a SVM has had many applications in learning method
machines [47]. An explanation of this model can be found in
Kecman [48] and Kakaei Lafdani [49]. The linear regression
relationship is as follows:

y = f (X) = 〈w.x〉 + b (6)

where y is a dependent, x is an independent vector and
w and b are parameters of the model. The method of
least squares applies to determine the parameters 〈w.x〉
by minimizing the sum of squared deviations of the data,∑l

i= f 1 (yi 〈w.x〉 + b)2. Depending on the definition of this
error function, two types of SVM models can be recognized.
It can be assumed that a band is placed around the function
f (x) which causes training error for a point out of this band
and unless the covariate variable is called ξi . This covariate
variable is for a point in zero band and increases exponen-
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Fig. 2 MLP-ANN structure

tially for outside points. This regression method is called
ε − SVM (regression SVM type 1) which is the most com-
mon modeling method. The cost function with ε-insensitive
zones described as the following:

|ξ |ε = |y − f (x)|ε =
{

ε if |y − f (x)| ≤ ε

|y − f (x)| − ε otherwise

(7)

The aim is to determine a function f (x) in a way to maximize
ε-derivation. This is equivalent to minimizing the functional,

Min
1

2
||w||2 + C

(
l∑

i

ξ∗
i +

l∑

i

ξi

)
(8)

Subject to:

yi − 〈w.x〉 − b ≤ ε + ξi (9)

〈w.x〉 + b − yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0 (10)

where C is the cost factor and ξi and ξ∗
i are slack variables.

An alternative form of SVM is called ν − SVM regression
(regression SVM type 2). For this SVM, the error function is
given by:

Min
1

2
wTw + C

(
νε + 1

l

l∑

i=1

(
ξi +

l∑

i

ξ∗
i

)
(11)

Subject to:

wTφ(xi ) + b − zi ≤ ε + ξi (12)

zi − wTφ(xi ) − b ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0, ε ≥ 0 (13)

In the case of nonlinear systems, the kernel function can be
used to map the data in to a higher dimensional space. Four
kernel functions commonly used in regression SVM are given
in Table 3.

Table 3 The different kernel functions equations

Kernel function Formula

Linear kernel k(x, y) = x .y

Polynomial kernel k(x, y) = [(x, y) + c]d

Radial basis function kernel k(x, y) = exp

(
−

∥∥∥ x−y
2σ 2

∥∥∥
2
)

Sigmoid kernel k(x, y) = tanh(x .y + c)

2.9.4 Network Performance Evaluation Criteria

In order to compare the results of each ANN and SVM mod-
els with observed data in the test step, to compare different
networks and choose the best model, threshold values were
used. The coefficient of determination (R2) for the observed
and estimated values is the most common comparison index.
However, this coefficient is a general index and could not be
an appropriate index [20]. Therefore, here, two more indices
beside R2 were used:

Coefficient of determination: R2

=
∑N

i=1

(
Qci − Q̄oi

)2

∑N
i=1

(
Qoi − Qoi

)2 (14)

Root-mean-square error : RMSE

=
√∑n

i=1 (Qci − Qoi )
2

n
(15)

Coefficient of efficiency: CE

= 1 −
∑N

i=1 (Qci − Qoi )
2

∑N
i=1

(
Qoi − Q̄2

oi

) (16)

3 Results and Discussion

Prediction models were obtained based on the methodology
(Table 4).

As can be seen in Table 4, the SVM model with input
data of the rainfall with 3-day delay, regression type-1
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Table 4 Results for SVM
model for both regressions (type
1 and 2) with different inputs

Model inputs SVM type Kernel type RMSE R2

Train Test Train Test

Rt Tt SWEt Regression type 1 RBF 0.054 0.054 0.34 0.29

Regression type 2 RBF 0.054 0.054 0.44 0.29

Rt SWEt Regression type 1 RBF 0.054 0.054 0. 38 0.19

Regression type 2 RBF 0.063 0.063 0.29 0.16

Rt Tt Regression type 1 RBF 0.054 0.054 0.34 0.23

Regression type 2 Polynomial 0.063 0.063 0.20 0.073

Rt Regression type 1 Linear 0.063 0.063 0.16 0.016

Regression type 2 Linear 0.077 0.070 0.16 0.016

Rt Rt-1Tt Tt-1 SWEt SWEt-1 Regression type 1 RBF 0.054 0.054 0.50 0.40

Regression type 2 Polynomial 0.054 0.054 0.39 0.27

Rt Rt-1 SWEt SWEt-1 Regression type 1 RBF 0.054 0.054 0.37 0.20

Regression type 2 RBF 0.054 0.054 0.40 0.21

Rt Rt-1Tt Tt-1 Regression type 1 RBF 0.054 0.054 0.41 0.26

Regression type 2 RBF 0.054 0.054 0.41 0.25

Rt Rt-1 Regression type 1 Linear 0.063 0.063 0.20 0.025

Regression type 2 Linear 0.063 0.054 0.19 0.025

Rt Rt-1Rt-2 Tt Tt-1Tt-2 Regression type 1 RBF 0.054 0.054 0.42 0.27

Regression type 2 RBF 0.054 0.054 0.41 0.27

Rt Rt-1Rt-2 Regression type 1 Linear 0.063 0.063 0.22 0.027

Regression type 2 Linear 0.063 0.063 0.22 0.028

Rt Rt-1 Rt-2 Rt-3 Tt Tt-1 Tt-2 Tt-3 Regression type 1 RBF 0.054 0.054 0.46 0.34

Regression type 2 RBF 0.054 0.054 0.43 0.29

Rt Rt-1 Rt-2 Rt-3 Regression type 1 Sigmoid 0.063 0.063 0.21 0.028

Regression type 2 Sigmoid 0.063 0.063 0.21 0.028

and sigmoid function with RMSE and R2 of 0.063 and
0.028, respectively, and regression type-2 with sigmoid func-
tion and RMSE of 0.063 and R2 0.028, respectively, had
better performance than the model with the input rainfall
with without delay and 2-day delay. Moreover, the rainfall-
temperature model with 3-day delay, regression type-1,
the RBF function with RMSE and R2 of 0.054 and 0.34,
respectively, and regression type-2 with the RBF function,
RMSE and R2 of 0.054 and 0.29 had better predictions
compared to the rainfall-temperature models with without
delay to 2-day delay. The rainfall-temperature-SWE model
with 1-day delay and regression type-1 with the RBF func-
tion with RMSE and R2 of 0.054 and 0.40 and regression
type-2 with polynomial function with the RMSE and R2

of 0.054 and 0.27, respectively, had better performance
in comparison with the rainfall-temperature-SWE with no
delay.

Table 5 indicates that ANN with the rainfall input with
3-day delay, hyperbolic tangent function with the 4-8-1 struc-
ture and the RMSE and R2 of 0.054 and 0.04 had better
performance than the other model with the input precipita-
tion without and with 2-day delay. Moreover, ANN with the
rainfall-temperature input and 3-day delay with the RMSE
and R2 of 0.044 and 0.32 had better performance. The model

with the rainfall-temperature-SEW input, 1-day delay with
the hyperbolic tangent by the 6-11-1 structure with the RMSE
and R2 of 0.024 and 0.77 had better performance than the
same model with no delay; also, the ANN network with
rainfall input, three days delay, sigmoid transfer function,
the 4-3-1 structure and the RMSE and R2 of 0.054 and
0.030 had better performance than the model with the rain-
fall input, without or with up to 2-day delay. Moreover, ANN
model with the rainfall-temperature input, 3-day delay, the
sigmoid transfer function of the 8-14-1 structure and with
the RMSE and R2 of 0.045 and 0.34 had better perfor-
mance than the model with the rainfall-temperature input,
without or with up to 2-day delay. In the model with the
rainfall-temperature-SWE, 1-day delay, 6-9-1 structure, and
the RMSE and R2 of 0.026 and 0.75 showed better perfor-
mance than the same model without delay. Table 6 shows
the best ANN models with the hyperbolic tangent and sig-
moid functions and the SVM with the regressions type-1 and
-2.

It can be seen from the Figs. 3, 4, 5, 6, 7, 8 and -9 that the
best tangent hyperbolic model, the best ANN model with the
sigmoid function, and the SVM with the regressions type-1
and type-2 estimated the maximum observed discharge in the
test stage (38.7 m3/s) 32.90, 36.87, 15.08, and 11.26, respec-
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Table 5 ANN results with hyperbolic tangent (tan) and sigmoid algorithm functions with different inputs

Model inputs Activation function ANN structure Training Test

R2 RMSE R2 RMSE

Rt Tt SWEt tan 3-3-1 0.56 0.04 0.70 0.094

log 3-7-1 0.59 0.038 0.60 0.034

Rt SWEt tan 2-4-1 0.42 0.044 0.22 0.044

log 2-5-1 0.42 0.044 0.22 0.044

Rt Tt tan 2-3-1 0.34 0.044 0.28 0.044

log 2-3-1 0.31 0.044 0.29 0.044

Rt tan 1-2-1 0.17 0.054 0.016 0.054

log 1-3-1 0.16 0.054 0.016 0.054

Rt Rt-1 Tt Tt-1 SWEt SWEt-1 tan 6-11-1 0.67 0.031 0.77 0.024

log 6-9-1 0.68 0.031 0.75 0.026

Rt Rt-1 SWEt SWEt-1 tan 4-7-1 0.57 0.031 0.31 0.044

log 4-3-1 0.51 0.031 0.25 0.048

Rt Rt-1 T,T-1 tan 4-9-1 0.42 0.044 0.26 0.044

log 4-5-1 0.39 0.044 0.28 0.044

Rt Rt-1 tan 2-5-1 0.19 0.054 0.025 0.054

log 2-4-1 0.19 0.054 0.025 0.054

Rt Rt-1Rt-2 Tt Tt-1Tt-2 tan 6-9-1 0.53 0.031 0.31 0.044

log 6-3-1 0.49 0.031 0.32 0.044

Rt Rt-1Rt-2 tan 3-5-1 0.36 0.044 0.028 0.054

log 3-3-1 0.22 0.054 0.025 0.054

Rt Rt-1 Rt-2 Rt-3 Tt Tt-1 Tt-2 Tt-3 tan 8-4-1 0.59 0.031 0.32 0.044

log 8-14-1 0.47 0.043 0.34 0.045

Rt Rt-1 Rt-2 Rt-3 tan 4-8-1 0.37 0.044 0.04 0.054

log 4-3-1 0.17 0.054 0.030 0.054

Table 6 The best ANN model
structure with hyperbolic
tangent and sigmoid functions
and SVM model with both
regressions

Model type Model inputs Structure Training Test

R2 RMSE R2 RMSE CE

ANN tan Rt Rt-1 Tt Tt-1 SWEt SWEt-1 6-11-1 0.68 0.031 0.77 0.024 0.78

ANN log Rt Rt-1 Tt Tt-1 SWEt SWEt-1 6-9-1 0.69 0.031 0.75 0.026 0.77

SVM type1 Rt Rt-1 Tt Tt-1 SWEt SWEt-1 RBF 0.71 0.054 0.40 0.054 0.377

SVM type2 Rt Tt SWEt RBF 0.67 0.054 0.30 0.054 0.29

tively. Therefore, ANN model with the sigmoid function had
the most accurate predictions. The corresponding estimations
of the second maximum observed discharge (38.1 m3/s) were
24.57, 26.65, 17.32, and 19.17 m3/s, respectively. These
results indicated that ANN model with the sigmoid function
had the most accurate prediction.

4 Conclusions

The rainfall–runoff relationship depends on climatic and
physical parameters including temporal variations in precipi-
tation, slope, height, plant cover, soil humidity, underground

water and etc. This dependency on many variables makes
the rainfall–runoff relationship deviate from linear form
and convert it to nonlinear complicate relationship. Many
physical models have so far been proposed for this rela-
tionship, but they had not high applicability due to lack of
some required parameters and some simplifications. Owing
to the capability of modeling complicate nonlinear rela-
tions ‘without any need for a high number of parameters,
ANNs and SVM have recently attracted a lot of attentions to
investigate rainfall–runoff relationship. In this study, ANN,
feed-forward back propagation (FFBF), ε − SVM (regres-
sion type-1) and ν − SVM (regression type-2) were applied
for rainfall–runoff modeling in snow-affected watershed.
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Fig. 3 Observed versus estimated discharge diagram related to type-1
SVM model with rainfall-temperature-SWE inputs, 1-day delay in test
stage
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Fig. 4 Observed versus estimated discharge diagram related to type-2
SVM model with rainfall-temperature-SWE inputs, 1-day delay in test
stage
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Fig. 5 Observed versus estimated discharge diagram related to ANN
model with sigmoid algorithm with rainfall-temperature-SWE inputs,
1-day delay in test stage
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Fig. 6 Observed versus estimated discharge diagram related to ANN
model with hyperbolic tangent algorithm with rainfall-temperature-
SWE inputs, 1-day delay in test stage

Accordingly, SCA were obtained from 92 MODIS images for
three water years of 2003–2005. Then, SWE were computed
according to SCA and SWE measurements in the Amameh
snow survey station. Also, the data of daily rainfall, daily
temperature and daily discharge for the mentioned years were
used for modeling. The results showed that the partial auto-
correlation functions (PACF) values provide quite valuable
information about the structure of the FFBF and SVM input
layer. The examination of PACF table enables the ANN and
SVM user to select the most appropriate number of input
nodes preventing time losses due to the testing of several
input layer alternatives. According to the results can be con-
cluded that ANN with the rainfall-temperature input with
3-day delay, the hyperbolic tangent function and the RMSE
and R2 of 0.044 and 0.32 and ANN model with the rainfall-
temperature input, 3-day delay, the sigmoid function and the
RMSE of 0.045 and R2 of 0.34 had better performance in
the test step as compared with the model with the rainfall
input and 3-day delay. Therefore, taking the temperature into
account improved the performance of ANN and this is con-
sistent with the findings of Lorrai [50] and Raghuwanshi et
al. [51]. Moreover, ANN with the hyperbolic tangent func-
tion, the rainfall-temperature-SEW input, 1-day delay and
RMSE and R2 of 0.024 and 0.77, and the model with the sig-
moid transfer function, the rainfall-temperature-SWE input
and RMSE and R2 of 0.026 and 0.75 had better prediction
than other models. This indicates that consideration of the
SWE improved the accuracy of the models, and this is consis-
tent with previous results [1,13,31]. The results of the SVM
model indicated that the model with the rainfall-temperature-
SWE, 1-delay, regression type-1, RBF function and RMSE
and R2 of 0.054 and 0.0300, respectively showed more accu-
rate prediction than other models implemented. This also
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Fig. 7 Comparison of observed
with estimated discharges for
type-1 SVM model with
rainfall-temperature-SWE
inputs, 1-day delay in test stage
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Fig. 8 Comparison of observed
with estimated discharges for
type-2 SVM model with
rainfall-temperature-SWE
inputs, 1-day delay in test stage
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Fig. 9 Comparison of observed
with estimated discharges for
ANN model with
rainfall-temperature-SWE
inputs, 1-day delay in test stage
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demonstrates that consideration of the SWE enhances the
performance and accuracy of the SVM models. Moreover,
comparing the results of ANN and SVM models, it can be
concluded that ANN model with the rainfall-temperature-
SWE input, 1-day delay, and the hyperbolic tangent function
had better predictions. This result is consistent with the find-
ings of Das et al. [52] and Muduli et al. [53]. Four parameters
influence on results of the SVM models included γ , C , ε− p
and ε−e. However, determining the best value of the training
parameters is essential. In this study, v-fold cross-validation
was applied. Three years of observation data is a quite short
time period for modeling. It should be noted that the results
of this study are time-specific since calibration of ANN and
SVM models is constrained to a specified limited length
of recorded data. The models presented in this paper only
applied on data from one station. Further studies using more
sample data from various areas are required to strengthen
these conclusions.
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