Arab J Sci Eng (2016) 41:2863-2881
DOI 10.1007/513369-016-2040-7

@ CrossMark

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Managing the Impact of UML Design Changes on Their

Consistency and Quality

Dhikra Kchaou! - Nadia Bouassida! - Hanene Ben-Abdallah?

Received: 28 April 2015 / Accepted: 18 January 2016 / Published online: 4 February 2016

© King Fahd University of Petroleum & Minerals 2016

Abstract Depending on the phase in which they come up,
changes induce modifications on various software models
and may cause model quality deterioration—e.g., incoher-
ence among models, increased complexity. To handle effi-
ciently model changes, every software development project
must have a means to manage the impact of every change
in one model on the remaining models. Toward this end,
we herein present an automated approach that analyzes
the effects of changes on the different software models,
while considering their impact on the models’ quality. Our
approach adopts a graph-based traceability technique to iden-
tify change impact in terms of the necessary updates the
relevant models must undergo to remain coherent, and the
effects of the change/updates on the quality of the resulting
models. It uses intra and inter UML diagrams’ dependencies,
best-practice guidelines, and a set of quality metrics. Evalu-
ated quantitatively on three cases, our approach showed an
average precision of 0.88 and recall of 0.95 in identifying the
impacts of different types of changes.

Keywords UML diagrams - Change impact - Dependency
graph - Consistency rules - Quality rules - Object-oriented
metrics

B Dhikra Kchaou
Dhikra.Kchaou@fsegs.rnu.tn

Nadia Bouassida
Nadia.Bouassida@isimsf.rnu.tn

Hanene Ben-Abdallah

HBenAbdallah @kau.edu.sa

Mir@cl Laboratory Sfax University, Sfax, Tunisia
2 King Abdulaziz University, Jeddah, KSA

1 Introduction

Computerized systems are inevitably subject to continuous
evolution to account for the emergence of new requirements,
the improvement of existing features, the reparation of errors,
etc. Among the predicaments induced by the complexity of
today’s software are the difficulty and high expenses of their
adaptation to changes imposed by their evolution. To face
these predicaments, change impact analysis techniques are
necessary in order to identify the potential consequences of
a change in terms of efforts to accommodate it [1].

The software engineering literature offers two categories
of change impact analysis (CIA) approaches. The first cate-
gory of approaches, called horizontal or dependency-based
CIA, tackles the problem within a particular development
phase, often the design phase (e.g., [1-3]) or the code phase
(e.g., [4-6]). The second category of approaches, called verti-
cal or traceability-based CIA, focuses on changes at one level
of abstraction and their corresponding impacts on another
level, e.g., between the code and the design (e.g., [7]), or
between the requirements and the design (e.g., [8]).

Both categories of change impact analysis approaches are
necessary and complementary; obviously, it is important to
ensure that models at the same level of abstraction are consis-
tent before examining the change impact on models at other
levels of abstraction. In particular, in model-driven develop-
ment (MDD), both categories of CIA are imperative to the
success of the software development project. Indeed, MDD
relies on models as main artifacts in the software lifecycle
and model transformations as a means to derive various mod-
els at different levels of abstraction (e.g., to refine a design,
to produce the code). As such, any change in one model must
be propagated in a coherent way to all related models at the
same level of abstraction (i.e., horizontally) and at different
levels of abstraction (i.e., vertically). The coherent propaga-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-016-2040-7&domain=pdf

2864

Arab J Sci Eng (2016) 41:2863-2881

tion of changes can benefit from model transformation rules if
these latter provide for traceability among models’ elements
[9]; however, not all transformations satisfy the traceability
property, consequently any model change would require the
re-application of the transformations on the modified model
to derive the remaining models (design and/or code). Overall,
face to model changes, existing works in the MDD context
propose tools either to verify the consistency of evolved mod-
els (e.g., we refer to the survey in [10]), to trace meta-model
change impact [9], or to identify change impact on model
transformations [11]. In particular, none of the existing works
offers an automated approach: (i) to detect and resolve the
inconsistencies induced by the changes within the modified
model and all inter-related models across all levels of abstrac-
tion; and (ii) to assess the impact of a change on all models’
quality. These shortages are the main contribution of this
paper.

More specifically, we herein propose an automated
approach that analyzes the effects of changes on the design
models, while considering their impact on the models’ qual-
ity. Our approach deals with software designed with UML
which offers multiple views of a software system through
a set of diagrams. Because of the syntactic and seman-
tic dependencies among the UML diagrams, changes in
one diagram often lead to changes in other diagrams mod-
eling the same system. Our approach for change impact
analysis which is at the design level becomes of greater
interest when integrated into a development process such
as RUP [12] or UP [13] where changes occur from one
iteration to another. In fact, change propagation in a consis-
tent manner is vital to the success of such iterative software
development process. It requires a change impact analysis
method that accounts for the diagrams’ syntactic and seman-
tic dependencies. In this context, existing works rely on
transformations of UML diagrams into graphs [6], grammars
[14] or OCL constraints [2]. Our herein proposed method has
the merit of using a dependency graph to identify inter- and
intra-diagram inconsistencies between the different UML
diagrams.

Besides the consistency of the various UML diagrams
after a change occurs, the success of the software develop-
ment also depends on the quality of the produced models.
Often, changes in one UML diagram influence the quality
of both the changed diagram itself as well as the related
diagrams. For instance, the deletion of a class with a high
coupling degree may result in a duplicate distribution of
its attributes and methods, which degrades the quality of
the class diagram in terms of the metric Coupling Between
Objects [15]. This deletion may also affect the quality of
sequence diagrams using objects of the deleted class, which
may increase the software maintenance: the redistribution of
the methods of the deleted class will induce several changes
in all the sequence diagrams using it to distribute the meth-

Springer

ods’ calls possibly with redundancies that will complicate
the maintenance.

To identify change impacts on the quality of UML designs,
our change impact analysis method exploits the syntactic and
semantic dependencies among UML diagrams and exploits
two sources of model quality analysis: design metrics ([15,
16]), and “best practices” [17]. Besides accounting for both
inter-diagram consistencies and model quality, our method is
the first to adopt a metric-based approach to change impact
management.

Informally, the proposed change impact analysis method
operates in three main steps. First, itidentifies intra- and inter-
diagram inconsistencies based on a set of consistency rules
in order to assist the designer in correcting any inconsistency.
Secondly, it measures the effects of changes based on a set
of metrics in order to estimate the effort needed to accom-
modate each change. Finally, it produces recommendations
in order to preserve the initial consistency and quality of the
diagrams. To conduct these three steps, our method integrates
the different UML diagrams along with their dependencies
into a single graph, we call model dependency graph. By
explicitly encoding the intra- and inter-diagram dependen-
cies, this graph provides for the needed traceability to analyze
the impact of a change on both the consistency and quality
of the diagrams.

The remainder of this paper is organized as follows: Sect. 2
overviews existing approaches to change impact manage-
ment in UML diagrams. Section 3 defines a set of consistency
and metric-based quality rules used in our change impact
analysis approach. Section 4 presents our approach for the
class and sequence diagrams. Section 5 illustrates the method
through an example. Section 6 discusses the results of an
experimental investigation of the performance of the pro-
posed approach. Finally, Sect. 7 concludes with a summary
of the presented work and a highlight of its extensions.

2 Existing Approaches to Change Impact Analysis

Several methods were proposed to cope with change impact
analysis (CIA) in UML models. They can be classified into
two categories of approaches: horizontal/dependency-based
CIA, and vertical/traceability-based CIA.

2.1 Horizontal CIA Methods
Horizontal CIA methods examine the impact of changes in

software artefacts at the same level of abstraction, mainly at
the code or the design levels.

2.1.1 CIA at the Code Level

One essential motivation behind CIA methods operating at
the code level is that source code modifications during soft-

Arab J Sci Eng (2016) 41:2863-2881

2865

ware evolution cannot be avoided. The survey of code-level,
horizontal CIA methods presented by Li et al. [18] classifies
them into four categories:

1. Traditional static program analysis techniques using a
dependency graph [5,19,20]: The dependency graph is
used essentially in areachability analysis to determine the
change impacts. For instance, [5] presents a program as
a directed graph where the set of nodes represent compo-
nents of the program (classes, methods and fields) and the
edges represent references between these components.

2. Software repository mining techniques which apply data
mining techniques on software repositories in order to
identify co-change coupling information [3]. This infor-
mation is then used to determine those files (or program
entities) that are changed together in the software reposi-
tory. Thanks to this information, when a change occurs in
one file, both the list of all affected files is automatically
determined and suggestions to consider further changes
are inferred from the version history.

3. Coupling measurement which is based on calculat-
ing some coupling metrics such as structural coupling,
conceptual coupling, dynamic function coupling and
relational topical based coupling (e.g., [4,21]). The
coupling impact sets are predicted by analyzing the pro-
gram elements that are coupled with the changes. For
instance, [21] introduce the measure of Dynamic Func-
tion Coupling (DFC) between two functions or methods
to compute the impact set at the function level.

4. Execution information collection which analyses infor-
mation collected during the program execution like
execution traces information, coverage information and
execution relation information (e.g., [22]). The collected
runtime information is used to compute the impact set:
the set of program entities that may be affected by the
changes for a specific set of program executions.

2.1.2 CIA at the Design Level

Horizontal CIA methods in UML designs can be classified
into graph-based, rule-based or grammar-based techniques.
Among the works based on a graph technique, the method
in [6] uses a formal approach to treat consistency analysis
between the class and sequence diagrams. This method trans-
lates the class diagram into an attributed, typed graph and
the sequence diagrams are converted into graph grammars.
Its consistency analysis focuses only on existence, visibility
and multiplicity checking. Existence checking verifies if all
model elements used in the sequence diagram exist in the
class diagram and if, for each link between a sender and a
receiver object, there is a corresponding association in the
class diagram. Visibility checking requires that the classes,
attributes, operations and references are visible. Finally, mul-

tiplicity checking verifies that the multiplicities defined in the
class diagram are respected when the designer changes the
sequence diagram. However, this method did not check that
a message (in the sequence diagram) must be defined as an
operation in the receiver’s class. In addition, it did not exam-
ine the changed model quality.

The second category of horizontal methods adopts a
rule-based technique. Here, the dependencies among UML
diagrams are expressed as a set of rules. These latter can
be used both to verify the consistency of a modified dia-
gram, and to identify how a change in one diagram impacts
others. For example, the works in [2,23] propose 120 rules
identified from the UML meta-model in order to verify the
consistency of the changed model. In addition, they clas-
sify possible changes of the class, sequence and statechart
diagrams into 97 change categories. To determine model
elements that are directly or indirectly impacted by those
changes, they use OCL impact analysis rules that are defined
for each change category. Compared to the other techniques,
the rule-based technique has the advantage of measuring
the distance between impacted elements to indicate what
model elements should be checked first in order to prior-
itize the results of the impact analysis. However, like the
graph-based technique, this technique does not evaluate the
changed model quality.

Also adopting a rule-based technique, the authors in [1]
define four relationships among model elements from the
UML meta-model: association, two relationships for com-
position (part and composite) and the relationship between
an element and its attributes. In addition, they propose three
steps to analyze the impact of seven change types: (1) extract-
ing changes that present how to deal with composite changes;
(2) checking the meta-model relationships for each change
type and for each impact analysis rule; finally, (3) identify-
ing the impacted elements based on the UML meta-model.
This approach [1] has the advantage of reducing the number
of rules; however, similar to the others, it lacks the quality
analysis.

Among the grammar-based approaches, the authorsin [14]
propose a framework for automatic transformation of UML
diagrams into a string and then compilation of that string for
syntactic correctness and inter-diagram consistency verifica-
tion. The authors propose a formal context free grammar for
the class and sequence diagrams. Based on this grammar, they
formalized a set of intra-diagram rules and two inter-diagram
rules to identify the impact of a change.

The grammar-based work proposed in [24] is based on
the model profiling techniques to identify the scope of ele-
ments affected directly or indirectly by a change. It uses the
UML/Analyzer tool [25] to identify inconsistencies caused
by changes and let the designer decide whether the effects
of a change are desirable or not. The tool presents choices
to correct the detected inconsistencies and the designer must

Springer

2866

Arab J Sci Eng (2016) 41:2863-2881

validate one of the choices. The number of choices as well as
the choices themselves may be ambiguous for the designer
especially with large diagrams.

Also adopting the horizontal approach, the authors in [26]
propose a change propagation process through the class,
sequence and statechart diagrams. After editing one of these
diagrams, the change propagation process checks firstly
whether the UML consistency constraints are affected. Sec-
ondly, a library of repair plan types is used to generate plan
instances and their costs for the violated constraints. The
cheapest repair plan instances are presented to the designer
whose selected repair plan instance is executed, updating the
design model. This work is improved by Dam et al. [27]
who formulated the change propagation process as a classi-
cal state space search where each state represents a snapshot
of the model. A state in which all dependencies in the model
are consistent is a “consistent” state, or else it is called an
“inconsistent” state. The initial state represents the model
after being modified by primary changes. In the goal state,
all dependencies in the model are consistent. If the initial state
is a consistent state, then it is also the goal state, and thus no
further changes are needed to the model. However, if the ini-
tial state is inconsistent, the search continues to find a path
from the initial state to a goal state, i.e., a solution path. Since
there can be many solution paths, the authors try to find the
shortest paths where the distance between nodes (i.e., states)
represents how a version of the model (represented by a node)
deviates from another version (represented by another node).

2.2 Vertical CIA Methods

Vertical or traceability-based methods are interested in man-
aging the impact of changes between models at different
levels of abstraction, produced during the different devel-
opment phases. Dealing with CIA between requirements
and design artefacts, Knethen et al. [8] analyze relationships
based on a conceptual trace model for a specific product
model in the domain of embedded systems. To manage the
impact of a change, they derive analysis guidelines from the
conceptual trace model.

Hammad et al. [7] proposed an approach that supports
traceability from source code to the design. This work first
generates differences between two files. Secondly, changes
that impact the design are identified from the changed code.
(This work deals with ten code changes: added/removed
classes, added/removed methods, and changes in relation-
ships: added/removed generalizations, associations, and
dependencies, respectively.) Thirdly, the identified design
changes are reported to the designer so that he/she updates
the design to keep it consistent with the code.

Shiri et al. [28] proposed a method for CIA between
requirements and test cases. This approach supports the
modification analysis at the requirements level by identify-

S @ Springer

ing potential change impacts and retesting effort associated
with a modification. Their contribution consists in collect-
ing dynamic information from Use Case Maps in order to
apply formal concept analysis [29] on these collected traces
to identify the changed requirements and execution depen-
dencies.

Overall, existing works treat the problem of CIA based
on consistency rules and they propose a set of impact rules
for each type of change. However, the proposed rules do not
include the change impact on the quality of related diagrams.
In addition, they do not make use of by “best practices” and
design metrics in their change impact analysis and manage-
ment approaches. Furthermore, the change impact correction
and its visualization is not treated. The automatic correction
and visualization allows the minimization of the designer
effort. These shortages motivated our work on proposing a
new approach that analyzes and manages the change impact
through a hybrid technique combining graph-based, rule-
based and metric-based techniques (see Sect. 3).

While CIA can be used in various development phases, we
believe that an early CIA approach can provide for a means
to estimate both the effort required to handle a change and
its impacts on the quality of the various models; this estimate
can be used to decide whether to undertake the change or to
cancel it. In addition, assisted by a change impact analysis
at an early development phase, the designer would have an
important support in producing a good quality design which
is an essential determinant in the success of the software
project. Given these benefits of an early CIA, we focus in this
paper in proposing an approach for change impact analysis at
the design level and more specifically for software designed
with UML.

3 Our Change Impact Management Method

Our method provides for the identification and measurement
of potential side effects induced by changes between the dif-
ferent UML diagrams produced at the design level. It has two
main originalities. Its first originality is that it hybridizes sev-
eral techniques: graph-based, rule-based, and metric-based
techniques. The graph is used to identify impacted elements
by coding both syntactic and semantic dependencies among
UML diagrams’ elements; the rules are used to express the
consistency constraints among the intra and inter UML dia-
gram elements; and the metrics are used to estimate the
change impacts in terms of quality effects and effort needed
to carry out all changes necessary to preserve the consistency
of the design. These techniques allow our method to collect
information needed to assist the designer making a judicious
decision about accepting or refusing a change based on its
impact on the effort needed to accommodate it and the result-
ing model quality.

Arab J Sci Eng (2016) 41:2863-2881

2867

The second originality of our method is that, besides col-
lecting the essential consistency rules for the UML language,
it proposes a set of quality rules based on a set of metrics and
best practices with UML.

We next present a set of metrics useful in measuring the
impact of a change. Afterward, we present our consistency
and quality rules for CIA.

3.1 Measuring the Change Impact

We propose to calculate the number of required modi-
fications (NRM) to correct inconsistencies caused by an
intra/inter-diagram change. NRM calculates the number of
update/change operations needed to correct a violated con-
sistency rule.

To calculate NRM, we propose the new intra/inter-
diagram metrics shown in Table 1. For a given change, NRM
is the sum of the metrics of the intra-/inter-diagrams which
are concerned by the change. The proposed thresholds for
these metrics will be defined using an empirical study in a
future work.

3.2 Rules for Consistency-Based CIA

We distinguish between two kinds of model consistencies:
Intra and Inter-model. Intra-model consistency is the consis-
tency of amodel initself as defined by the modeling language.
Once a change is introduced in one diagram, the various ele-
ments of this latter must remain consistent; that is, they must
respect all syntactic and semantic consistency rules. Simi-
larly, once a diagram undergoes a change, it must remain
consistent with all other diagrams to which it is syntactically

Table 1 Metrics used to measure the intra/inter-diagram quality

Metrics Definitions

Intra-diagram metrics

NAt/Op Number of times an attribute (and
operation) of a class is used

(called) in an operation

NAtPr Number of times an attribute is
used as a parameter in an

operation

NM20b Number of messages between two
objects

Inter-diagram metrics

NCSD Number of times a class is used as
an object in SDs

NATSD Number of times an attribute is
used in SDs

NOpSD Number of times an operation is

used as a message in SDs

Table 2 Consistency rules between the class and sequence diagrams

Consistency rules CR

Intra-class diagram rules

Class and sequence
inter-diagram rules

CR1 The name of classes,
attributes and methods in the
same class diagram must be
different

CR2 The class operation may
use one or more class
attributes

CR3 The descendent classes
inherit all properties of the
parent class

CR4 The class operation may

CRS8 Each object in SD must
be an instantiation of a class
in CD

CR9 Each operation in SD
must be defined in the
receiver’s class in CD

CR10 For each message
between S and R objects,
there is a corresponding
association in the CD

CR11 Classes, attributes,

contain calls to one or more
class operations

operations and references
used in SD must have a
public visibility in a CD
CR12 The creation and the
deletion of objects in SD must
respect multiplicities in CD

CR13 A combined fragment in
SD may use an attribute

CRS The class operation may
use an attribute as a parameter

CR6 Inheritance cycles are not
allowed

CR7 The multiplicity at

composite association end is
only allowed to be 1

and semantically related. Inter-model consistency is the con-
sistency of several models with respect to one another [30].

A wide classification of consistency rules for the class and
sequence diagrams are presented in the literature (cf., [31—
33]), e.g., syntactic vs. semantic, static vs. dynamic, intra-
model vs. inter-model. Table 2 lists essential intra-diagram
consistency rules for the class diagram, and inter-diagram
rules between the class and sequence diagrams.

Intra-diagram consistency rules can be determined based
on the information contained in the class diagram, except for
the consistency rules CR2 and CR4. For these two rules, we
suppose that the designer adds notes to the class diagram to
indicate operation calls and to indicate also attributes used
as parameters in an operation. The semantics of these UML
notes obey to certain rules. As an example, they start with
the word “uses” or “calls” to indicate, respectively, that a
method may use one or more class attributes or to indicate
that a method may contain calls to one or more class methods
[34].

3.3 Rules for Quality-Based CIA

A change may affect not only the consistency of UML
diagrams, but also their quality. Thus, in addition to the
preservation of the consistency of UML diagrams, their
quality must be evaluated and preserved after a change is
introduced. For instance, the deletion of a class that has many

@ Springer

2868

Arab J Sci Eng (2016) 41:2863-2881

important relationships with other classes or that participates
in a design pattern [35] depreciates the quality of the class
diagram.

The quality of software can be evaluated using several
metrics (e.g., [15]). Choosing useful metrics is not sufficient
to ensure efficient quality evaluation after a change; it is
necessary to determine the threshold values, which highly
influence the efficiency of the quality verification process.
We should caution that, even in the software engineering
field, several works tried to fix thresholds for object-oriented
design metrics (e.g., [36-39]). For instance, [37] establishes
three threshold ranks: (i) good which refers to most common
values; (ii) regular which refers to values with low frequency,
but that are not irrelevant; and (iii) bad which refers to val-
ues with rare occurrences. Existing works agree on some
threshold values, for example they state that the lack of cohe-
sion in methods (LCOM) metric has to be inferior to 1 to
ensure a good quality. In our approach, we have adopted the
thresholds proposed by Tarcisio et al. [39] because they have
been adopted by many researchers. Determining appropriate
thresholds empirically is our ongoing work.

Table 3 CK Metrics [14] used to measure the intra-diagram quality

Metrics [14] Definition Thresholds [39]
Cohesion
LCOM “Lack The number of method T <0,725
Of cohesion in pairs without shared
methods” instance variables, minus
the number of method
pairs with shared instance
variables
Complexity
WMC A weighted sum of all the T <34
“Weighted methods defined in a class
methods per
class”
Inheritance
DIT “Depth of The length of the longest T <4
Inheritance” path from a given class to
the root class in the
inheritance hierarchy
NOC “Number The number of immediate T <28
Of Children” child classes that inherit
from a given class
Coupling
CBO The number of other classes T <16
“Coupling to which a given class is
Between coupled
Objects”
RFC The number of methods that T <35
“Response For can be potentially invoked
Call” in response to a message

received by an object of a
particular class

@ Springer

Table 4 Quality rules

Quality rules (QR)

Intra-class diagram rules

Class and sequence
Inter-diagram rules

QR1 the threshold of CK
metrics [15] presented in
Table 3 should be
respected

QR2 A class participating
in a design pattern should
not be deleted

QR3 An isolated class
should interact with
related classes

QR4 Each class should be
instantiated as an object in
at least one of SD

QRS5 Each association
should induce an
interaction in at least one
SD

QR6 Each operation should
be a message exchanged
at least once in SD

For the analysis of change impact on quality, we propose
the set of quality rules QR enumerated in Table 4. Our set
of quality rules include metric-based rules (QR1) and best
practices based rules (QR2, QR3, QR4, QRS and QR6). Our
metric-based QR use metrics from the CK metrics suite [15]
with their thresholds [39] as presented in Table 3. We calcu-
late these metrics before and after every change, and based
on the thresholds, we verify the quality rules listed in Table 4
and we inform the designer about any violation.

Our best practices QR use good modeling practices,
for instance, keeping elements of a design pattern after a
change; in these rules, we use our design pattern identifica-
tion approach [40] which indicates which classes participate
in the patterns.

It is worth noting that the violation of the quality rules
does not make a diagram erroneous; however, it does not
guarantee the proper functioning of a system either.

4 CIA Between the Class and Sequence Diagrams

Similar to any change impact analysis technique (e.g.,
[1,41]), our method proceeds in three steps (Fig. 1): (1)
identification of the change; (2) definition of the relation-
ships between artifacts or definition of traceability between
the elements of the different models; and (3) execution of the
impact consequences (corrections and/or recommendations).
We next detail these steps.

4.1 Change Identification

A change impact analysis technique needs to specify how
changes are defined. Thus, in a previous work [42], we
defined a MOF [43] based change meta-model that covers
all change types at a high level of abstraction. Being MOF-
based, our change meta-model defines all possible changes

Arab J Sci Eng (2016) 41:2863-2881

2869

@Track changes

Related UML diagrams \ 7S T e
@Construct L &

e dependency
graph CDG, SDG, MDG

[— @Verify the consistency of
the changed diagrams

Consistency rules

(— @ Verify the quality of the
changed diagrams

Metric based quality

rules @ Propose corrections to
affected diagrams

instance

» Modify
‘ [E—
e

Designer

Fig. 1 Steps to manage change impacts on UML diagrams

affecting the elements independently of a particular model-
ing language. In addition, it can be extended and adapted to
present changes that affect any MOF-based model and, in
particular, UML models.

4.2 Traceability Between the Class and Sequence
Diagrams: MDG Construction

Based on the fact that UML diagrams can be assimilated to
graphs, the dependencies between UML diagram elements
could therefore be determined using a graph reachabil-
ity analysis technique. Indeed, inspired from the work of
Lallchandani et al. [34] for static slicing of UML models, we
defined a method to construct the model dependency graph
(MDG) which we use in the third step of our CIA method
(Fig. 1).

More specifically, to model all dependencies, the UML
class diagram is transformed into a class dependency graph
(CDG) and every UML sequence diagram is transformed into
a Sequence Dependency Graph (SDG). Afterward, the CDG
and set of SDGs are merged in order to construct the Model
Dependency Graph (MDG).

Our CDG and SDG construction method adapts the trans-
formations initially proposed by Lallchandani and Mall [34].
Moreover, our adaptation accounts for the association rela-
tionships (not treated by Lallchandani and Mall [34]) because
they have an effect on method calls in the sequence diagram,
hence they should be represented in the CDG. In addition,
these relationships are represented in the CDG, in order to
check the consistency rules CR10, CR11 and CR12. Further-
more, multiplicities and visibilities are added to the CDG.

To transform a class diagram (CD) into a CDG, each class
in CD is transformed into a class (square) node. Each method,

attribute is transformed into a circle node. Each method para-
meter and return value in CD is transformed into a dotted
circle node. A class node representing a class ¢ is connected
to every method node representing the methods of ¢, and
to every attribute node representing the attributes of ¢ via
member dependence edges. In addition, each method node
is connected by method dependence edges to parameter and
return nodes representing the parameters and return values
of the method. Also, a method node may be connected to an
attribute node by an attribute dependence edge.

To transform a sequence diagram (SD) into a SDG, each
object in SD is transformed into a class (square) node. If
a combined fragment has a condition associated with it in
the lifeline of an object of a class, this class is transformed
into a (rounded square) predicate class node. Each reference
to another sequence diagram is transformed to an interac-
tion node. The kth message dependence edge between these
nodes are represented by 7 (k). A call dependence edge rep-
resents a transfer of a message from an object of one class
to an object of another class. A return dependence edge rep-
resents a message transfer representing a value return of a
method invocation by an object. Moreover, for each predicate
class node, all the messages in the combined fragment form
a message dependency, and they are represented as a control
dependence edges. However, to connect an interaction node
and other SDG nodes, inter-sequence call dependence edges
and inter-sequence return dependence edges are used.

To trace the change impact across a class and sequence
diagrams, the CDG and SDGs must be integrated into a sin-
gle graph. The combined graph (MDG) takes all the nodes
of the CDG and SDGs. In addition, the MDG includes all
the member, method and data dependencies from the CDG,
and the control and inter-sequence dependencies from the
SDG. However, each call dependence edge between two
class nodes (CNSource, CNTarget) in an SDG is altered
and represented between the class node “CNSource” and the
method node of the class “CNTarget” in the MDG. Further-
more, a return dependence edge between two class nodes
(CNSource, CNTarget) in an SDG is altered and represented
between “CNSource” and a return value node of the class
node “CNTarget” in the MDG. Finally, the graph integration
process modifies each relationship dependence edge between
two class nodes (CNSource, CNTarget) in a CDG into a call
dependence edge in the MDG.

4.3 Corrections and Recommendations

Our approach indicates, for every change type, the violated
rules as well as the changes needed to correct the correspond-
ing diagrams. In the following subsection, we show how the
MDG can be used to indicate for each change type applicable
to a class diagram CD, the potentially violated rules in the
class diagram itself (intra-diagram analysis) as well as the

Springer

2870

Arab J Sci Eng (2016) 41:2863-2881

impact of this change on the sequence diagrams SD (inter-
diagram analysis). In addition to rules identification, we show
how our method can assist the designer by presenting appro-
priate corrections and corresponding effort estimates.

4.3.1 Changes Applicable to Classes

Our change meta-model identifies ten types of change oper-
ations relevant to classes: addition, deletion, move and
update of a class, addition, deletion and update of an
attribute/operation.

Add a class:

Intra-diagram CIA:

The addition of a class may violate the rules QR3 and
CR1. For QR3, the CDG is examined to check the existence
of a relationship dependence edge from/to the added class:
if no such edge exists, then the added class is isolated. The
corrective recommendation for this inconsistency would ask
the designer to add relationships between the added class and
other classes in the class diagram.

The violation of the consistency rule CR1 is detected if
the name of the added class already exists in the CDG. Thus,
the corrective proposition for this inconsistency consists in
allowing the designer to decide between updating the new
name of the added class and undoing the new change.

Inter-diagram CIA:

The violation of QR4 is detected if the added class does not
exist in the MDG (i.e., the added class does not participate in
an SD) and association relationships exist in CDG between
the added class and other classes which participate in an SDG.
Thus, to improve the design, the designer is advised that the
added class should be used as an object in at least one SD.

Estimation of CIA Effort:

To estimate the effort needed for change impact manage-
ment when a class is added and CR1 is violated, the NRM is
calculated as follows:

NRM =1+ NCSD

That is, NRM equals one update operation for the added class
plus the number of updates for this class in all the SDs. Note
that, the corrections needed to respect CR1 consist in renam-
ing which can be done automatically. The NCSD metric gives
an idea about the impacts on SDs: The larger NCSD is, the
higher the number of impacts of the class addition on SDs s,
and therefore we indicate to the designer that maintenance
becomes more difficult and testing becomes more complex.
Delete a class:

Intra-diagram CIA:
The deletion of a class can cause the violation of the con-
sistency rules CR2, CR3 and the quality rules QR 1 and QR2.

Springer

The violation of CR2 is detected when MDG contains a
data dependence edge between an operation and an attribute
or a method of the deleted class. To correct the inconsistency
caused by the violation of CR2, we propose to the designer to
update the operation which uses/calls the attribute/operation
of the deleted class or to undo the change. The violation of
CR3 is detected if there exists a generalization dependence
edge between the deleted class and inheriting classes. Its
correction needs an update of the descendant classes.

The violation of QR1 is detected when the CBO (coupling
between objects) of the deleted class is high. In this case, we
indicate to the designer that the deletion of a class with a
large coupling increases the sensitivity to changes in other
parts of the design and therefore maintenance could become
more difficult and testing would need to be more rigorous
[15]. The designer has to decide to undo the change or to
ignore our recommendation.

Violation of the rule QR2 is detected when the deleted
class participates in a pattern, therefore, we indicate to the
designer that this class should not be deleted. For this pur-
pose, we use our design pattern identification approach [40],
which indicates which classes participate in the patterns.

Inter-diagram CIA:

The deletion of a class which is instantiated as an object
in SD presents a violation of the CRS. This inconsistency
is detected if the deleted class exists in the MDG. The cor-
rection of this inconsistency consists in deleting objects in
SDs corresponding to the deleted class as well as deleting all
messages from-to this object.

Estimation of CIA Effort:
When CR2 is violated, the estimation of correction efforts
(NRM) is calculated as follows:

NRM = NAt/ Op

That is, NRM equals to the number of updates needed for the
operations which use/call the attributes or operations of the
deleted class.

The correction of CR2 cannot be done at the design level
and needs the designer intervention. However, we can inform
the designer about the number of required updates.

When CR3 is violated, the NRM metric is equal to the
number of updates needed for the descendants of the deleted
class. That is,

NRM = NOC

When CRS is violated, NRM is equal to the number of times
the deleted class is used as an object in SDs:

NRM = NCSD

Arab J Sci Eng (2016) 41:2863-2881

2871

A big NCSD value implies difficulty of change impact iden-
tification and their corrections, and therefore we indicate to
the designer that maintenance could become more difficult
and testing would be more complex.

Move a class:

Intra-diagram CIA:
Moving a class must respect the consistency rule CR3.
A CR3 violation is detected if the moved class is a super
class and a generalization dependence edge exists from child
classes to the moved class in CDG. The corrections consist in
transferring the old/new descendants under the moved class.

Inter-diagram CIA:

Moving a class may cause the violation of CR10. In fact,
moving a class causes the loss of association relationships of
this class.

The CR10 violation is detected if a call dependence edge
exists from Class Node source to the method of the moved
class and an association dependence edge did not exist
between these classes. The proposed correction consists in
deleting messages from-to the object corresponding to the
moved class and unrelated object.

Estimation of CIA Effort:
When rule CR3 is violated, the NRM metric equals one
update for each old/new descendent class of the moved class:

NRM = NOC.

This modification can be done automatically.

When rule CR10 is violated, NRM equals the number of
deleted messages from-to the object corresponding to the
moved class. It equals the number of messages between
the objects corresponding to the moved class and unrelated
objects (corresponding to unrelated classes with the moved
class):

NRM = NM20b

This correction can be done automatically. However, the met-
ric NM20b gives an idea about the amount of information
that must be deleted in an SD.

Add attribute:

Intra-diagram CIA:

The addition of an attribute must respect the consistency
rule CR1. The analysis of this type of change is the same as
for the ““add class” change.

Estimation of CIA Effort:

To assist the designer in his choice, we use the NRM. In
this case, NRM is equal to one update operation for the added
attribute plus the number of updates needed for this attribute
in all the SDs:

NRM = 1 + NATSD

Note that the corrections needed to respect CR1 consists of
renaming which can be done automatically. However, a large
NATSD value increases the number of corrections needed.

Delete attribute:

Intra-diagram CIA:

An attribute deletion may violate the consistency rules
CR2 and CRS.

The violation of rule CR2 is analyzed in a similar way to
“delete class”. It is detected when a data dependence edge
exists from an operation to the deleted attribute. As for the
rule CRS, it can be detected if the deleted attribute is used as
a parameter node in CDG. To correct these inconsistencies,
the designer should choose to update the operation that uses
the deleted attribute or to undo the change.

Inter-diagram CIA:

An attribute deletion may affect a SD if the deleted
attribute is used in a combined fragment in MDG in which
case the rule CR13 is detected. The designer has to update or
delete the combined fragment that uses the deleted attribute
or undo the change.

Estimation of CIA Effort:

When rule CR2 is violated, the NRM is equal to the update
of the operations that use the deleted attribute.

NRM = NAt/Op

After the violation of rule CRS, NRM is equal to one update
of the operation that uses the deleted attribute as a parameter:

NRM = NAtPr

The correction of rules CR2 and CR5 cannot be done at the
design level and requires the designer’s intervention. How-
ever, the NRM gives an idea about the number of times the
designer must update.

To correct rule CR13, the NRM is calculated as follows:
an update or a deletion of the combined fragment that uses
the deleted attribute:

NRM = NATSD

The choice between the update and the deletion of the
combined fragment using the deleted attribute needs the
intervention of the designer. This choice can be guided by the
NATSD since the larger this number, the higher the impacts
on SDs and therefore a large number of update needs more
effort than a large number of delete.

Delete operation:

Intra-diagram CIA:

The deletion of an operation may violate CR4 if a data
dependence edge exists from an operation to the deleted oper-
ation. To correct this inconsistency, the designer must update

Springer

2872

Arab J Sci Eng (2016) 41:2863-2881

the operation that calls the deleted operation or to undo the
change.

Moreover, the deletion of an operation in a class may lead
to a lack of cohesion in methods (LCOM) of that class which
increases complexity (QR1).

Inter-diagram CIA:

The deletion of an operation may affect the SD and violate
the CRO if a call dependence edge exists from a class node
to the deleted operation. To correct this inconsistency, we
must delete the messages in SD corresponding to the deleted
operation in CD.

Estimation of CIA Effort:

The consistency rule CR4 cannot be corrected at the design
level and needs the designer intervention. The NRM metric
is equal to the number of updates of the operations that call
the deleted operation:

NRM = NAt/Op

The NRM gives an idea about the number of times the
designer has to update. However, the consistency rule CR9
can be determined and corrected automatically. The NRM
metric is equal to the number of deletion of the messages
corresponding to the deleted operation:

NRM = NOpSD

The NOpSD metric gives an idea about the number of
impacted elements after an operation is deleted from SDs:
the designer is advised that a high NOpSD, means a high
impact on SDs, which also increases the maintenance diffi-
culty and testing complexity.

4.3.2 Changes Applicable to Relations

Add a relation:

Intra-diagram CIA:

The addition of a relationship may violate the consistency
rule CR6 if the new relationship is a generalization that forms
a cycle in the MDG. In addition, adding a relationship may
violate the consistency rule CR7 if the new relationship is a
composition dependence edge and the multiplicity is differ-
ent from 1.

To correct the violation of rule CR6 or CR7, the added rela-
tionship must be either deleted or its type must be updated:
in the case of addition of a generalization that forms a cycle,
we recommend that the designer changes the type of the rela-
tionship or to delete another generalization to eliminate the
cycle.

Besides the consistency of the class diagram, the addi-
tion of a generalization relationship may affect its quality:
it may lead to deeper inheritance trees which increase the

Springer

design complexity. To detect this risk, our method mea-
sures the resulting DIT metric [15] and, depending on its
value, an appropriate recommendation (QR1) is given to the
designer: a high DIT resulting from the added generalization
increases the complexity of the design (in terms of compre-
hension, testing, and maintenance, etc.) because it increases
the interaction possibilities between the classes. Moreover,
the addition of an association may increase the coupling of
related classes. When the number of couplings is large, main-
tenance becomes more difficult.

Inter-diagram CIA:

An added association relationship should induce addi-
tional interactions in the SDs (QRS).

The correction for rules CR6 and CR7 requires the inter-
vention of the designer to choose between a deletion or an
update of the added relationship.

Delete a relationship:

Inter-diagram CIA:

The deletion of an association relationship may lead to
an inconsistency in the sequence diagram (violation of rule
CR10) if a call dependence edge exists from a class node
source, which represents the end 1 of the deleted associa-
tion, to the method of the target class Node which represents
the method of the deleted association (end 2). We inform
the designer about this violation and let him decide between
undoing of this change and deleting the corresponding mes-
sages in the SD.

In addition, the deletion of an association relationship may
lead to an isolated class, thus, a violation of the recommen-
dation rule QR3 can be detected.

Estimation of CIA Effort:

The detection and correction of CRIO violation can be
done automatically without the designer intervention. The
designer can be guided in his correction choice through the
NRM which gives an idea about the number of deletions:
NRM is equal to the number of deleted messages between
objects corresponding to classes related by the deleted asso-
ciation; in other words, it is equal to the number of messages
between the two objects corresponding to the classes related
by the deleted association. Hence,

NRM = NM20b

4.3.3 Changes Applicable to Objects

Add object (lifeline):

The addition of an object in a sequence diagram may vio-
late the rules CR8, CR11 and CR12. The violation of CR8
means that the designer added an object which is not an
instantiation of a class in the class diagram and is detected if
the added object does not exist as a class node in CDGs.

Arab J Sci Eng (2016) 41:2863-2881

2873

In addition, the violation of CR11 and CRI12 indi-
cates that the multiplicity and the visibility of the added
object prevent the addition of this object in the sequence
diagram.

The rule CR11 is detected if the visibility of the class (in
the CDGs) corresponding to the added object is not public.

The rule CR12 is detected if the multiplicity of the class
corresponding to the added object prevents its use in the
sequence diagram. In these cases, we inform the designer
about the violated consistency rules and we propose to delete
or to update the added object.

Estimation of CIA Effort:

The correction of inconsistencies caused by the violation
of CR8, CR11 and CR12 needs the designer decision to
choose between the deletion and update of the added object.

Delete object (lifeline):

The deletion of an object may violate the CR12 if the
multiplicity of the class corresponding to the deleted objectin
CDG:s is not respected. The designer must undo this change.

Estimation of CIA Effort:

NRM = undo the deletion of the object = 1.

This correction which is caused by the violation of CR12 is
automatic.

Fig. 2 CFG for our change
impact analysis approach
between class and sequence
diagrams

CR1

/-»-Attnbute change

CR2

Class change

CR3

Add message:

The addition of a message in a sequence diagram must
respect the rules CR9 and CR10.

The violation of CR9 means that the added message does
not have a corresponding operation in the class diagram and is
detected if the added message does not exist in the methods
of the target class node. This addition is not allowed and
the designer had to undo this change or to add an operation
corresponding to the added message in the CD.

Moreover, the addition of a message between two objects
which are not related by a corresponding association in
CD leads to an inconsistency if an association relation-
ship does not exist from the class node source of the
deleted message to the class node target of the deleted
message (rule CR10). So, the designer is advised to either
undo this change or add an association between these two
objects.

Estimation of CIA Effort:

The NRM after the violation of CR9 is equal to an addition
of an operation in CD corresponding to the added message.

After the violation of CR10, NRM is equal to an addition
of an association in CD. The addition of an operation in CD
corresponding to the added message can be done automati-
cally as well as the violation of rule CR10 can be corrected
automatically.

Combined
Fragment
change

—————pp» Method change

CR2, CRS

O~

CR9, @13‘,,/

essage ?/

CR10

CR12

:monshlp change

CR6, CR7 \\

@ Springer

2874

Arab J Sci Eng (2016) 41:2863-2881

Note that, the changes can be transitive (i.e., an element
change can lead to another element change after the violation
of a consistency rule). To summarize, we present the control
flow graph (CFG) as illustrated in Fig. 2. That is, the CFG is
used to detect inconsistencies that may occur after a change
correction.

S Example

In this section, we illustrate the use of our approach by show-
ing how to browse the MDG when applying our change
impact analysis rules. In addition, we illustrate the calcu-
lus of the NRM metric to help the designer in making
the appropriate decision about the change induced correc-
tions.

To illustrate how to construct the MDG, let us consider
the automatic teller machine (ATM) system example [44].
We work on the CD shown in Fig. 3. The CDG correspond-
ing to our class diagram example is presented in Fig. 4. It
shows that the classes (ATM, Networktobank, customercon-
sole, log, Transaction, session, etc.), attributes, methods and
parameters are transformed into nodes. Member dependence
edges connect a class with its attributes. Method dependence
edges connect a method with its parameters. Data depen-
dence edges are used to show that the “Performsession()”
method uses the “atm” attribute (this information is pre-
sented as a note in the CD). Association relationships are
also presented between class nodes. Finally, multiplicities
and visibilities are added to the CDG.

The SDGs corresponding to the sequence diagrams of
Fig. 5 (SD1) and (SD2) are presented in Fig. 6. The SDG1
shows that objects (ATM, Card reader, Customerconsole) are
transformed to square nodes. “Session” and “Transaction”
objects are transformed into rounded square predicate class
nodes since they participate to a combined fragment. Mes-
sages between these objects (I1(6), I1(7)) are transformed
into control dependence edges.

The MDG corresponding to the integration of the CDG
of Fig. 4 and the SDGs of Fig. 6 is presented in Fig. 7. The
class nodes in the CDG, the SDG 1 and the SDG 2 (ATM,
Session, Transaction, Cardreader, NetworktoBank, Receipt-
Printer and Customerconsole) are included in the MDG. The
dependence edges presented in the CDG between these class
nodes are also included in the MDG. The call dependence
edges between two class nodes (CNSource, CNTarget) in an
SDG are transferred between the class node “CNSource” and
the method node of the class “CNTarget”. For instance, the
message 11(1) between the “Cardreader” and “ATM” class
nodes is transformed in the MDG between the “Cardreader”
class node and the “cardinserted()” method node of the
“ATM?” class.

Springer

Let us suppose that the designer wants to make the fol-
lowing changes to the class diagram presented in Fig. 3: (1)
delete the attribute “atm” that belongs to the “Cardreader”
class, (2) delete the operation “ejectcard” belonging to the
class “Card reader”, (3) delete the association relationship
between the classes “ATM” and “Session” (4) add the oper-
ations “OpenConnection()” and “CloseConnection()” to the
“NetworkToBank™ class.

The deletion of the attribute “atm” makes the CD erro-
neous and triggers intra-diagram inconsistencies indicating
the non respect of the consistency rules CR2 and CRS. On the
one hand, the data dependence edge between the “Perform-
session()” method and the “atm” attribute shows that this
method uses the attribute “atm” and consequently the dele-
tion of this attribute affects the CD and violates the CR2. To
correct this inconsistency, the designer has to decide whether
to undo the change or to update the methods which use the
“atm” attribute. In our case, he has to update the “Perform-
session()” method which uses the deleted attribute.

NRM = NAt/Op

= number of data dependence edge related to the “atm”

attribute node = 1

On the other hand, we can see that the deleted attribute
“atm” is used as a parameter (PR node) in the “Cre-
ateTransaction()”, “PerformTransaction()” and “Complete-
Transaction()” methods of the ‘“Transaction” class. Thus,
the consistency rule CRS is not respected and must be ana-
lyzed and corrected. In this case, the designer also should
choose between undoing the change and updating the “Cre-
ateTransaction()”, “PerformTransaction()” and “Complete-
Transaction()” methods. As a consequence, he has to update
the methods which use the “atm” attribute as a parameter.
For this change, we have:

NRM = NAtPr = number of “atm” parameter node = 3

The “atm” attribute is not used in a combined fragment in
SDs; thus, this change does not trigger the CR13 and have
no inter-diagram impact. Finally, the total NRM needed to
correct the deletion of the “atm” is the sum of NRM after the
violation of CR2 and NRM after the violation of CRS, as a
result, NRM equals 4.

Concerning the second change, it consists in deleting the
“ejectcard” operation of the “Cardreader” class. This oper-
ation is called in the SDI since there exists in the MDG
a call dependence edge I1(8) from the “Session” class to
this deleted method. The deletion of the operation violates
CRY and the correction consists in deleting the messages
in SD1 corresponding to the deleted operation in CD. Note

Arab J Sci Eng (2016) 41:2863-2881 2875
Fig. 3 The ATM system class [
diagram (CD) [44] NetworktoBank Customerconsole
code : int name : String
adress : String getmenuchoice : void Log
verify(: void readpinQ : void
sendrr ye(1void |1 1 |readmenud : void
getmenuchoice 4 readamountd : void logsend(message)
display{message) logresponse(status)
1
Cardreader AT ReceiptPrinter
atm : AT location : String
readcard(: void 1 1 |carinserted(: void 1 printreceiptd : void
ejectcard : void GetCardreader(: void
retaincard{ : void readcard : void
getlogQ : void 1
1 o.*
0.*
Transaction
Session a-int
Date : Date
create(: void ey Type : String
. uses ‘ﬁ
performsession(: void - createtransaction(atm) : void
performtransaction(atm) : void
completetransaction{atm) : void
Fig. 4 The CDG corresponding / ’>/ =
to the ATM system CD .) :
+ N "“9y r NetworK
— .~ _| tobank
Customed] 1 __— 7N\ 1
console - \ Cd — ‘
Read —— /

(i::,';?\ul <r/eaa=§\”:‘j.
N,

/\‘\’ '

(reas)

’/ - A 4 Menu
g4 N ~ Gm\» mmj
ventty() s

oo

I

Recei:;?‘

Printer

D

E3
Card | '
.| reader ‘\ \\ 3 @ﬂ\ getdate()
/‘ ~ ATM eceaw __-
i = >
feaciwd(Qw;am;[reuﬂcayl\[/ \ o

Legend of nodes Legend of links
n Class node —® Member dependence edge
/A-T\ Attributenode || 7 » Data dependence edge
—> Method dependence edge
Qr Method node ——i> Generalization dependence edge
Retumn type node —=> Agregate dependence edge
. —— Composition dependence edge
R
7 Parameter node Association dependence edge

Springer

Arab J Sci Eng (2016) 41:2863-2881

2876
’ Cardreader | ATM ‘ | Session ‘ ‘ Customerconsole ‘ Transaction ‘

| 1: Cardinserted() I | I |
2:creste() | l I
| 3: Performsession() | |
I 4 Idcsrdo 1 I I
u 5:Icsrd U I I
| —I|- 8: readPINQ ! l
| | T:PIN I
| | b'[p fwhile customersv:ténréi:(|)>er€orm mansacﬁanf
I I I_I 9: FerionnTrIansecﬁonO H
I 10:ele:tcsrd0 I ILrI

II | I
I |
' ' '

! |

Transaction NetworktoBank CustomerCons

ole

|

RecsiptPrinter

1: GetSpecificsfromeustomer() u

2: send(message) |

H

rmTransaction() |

]

—— 33—

3P

4: Print:eceipl()

|
I
I
I
: Getmenuchoice() ﬂl
|

Fig. 5 Session and Transaction sequence diagrams of the ATM system [44]

Fig. 6 Sequence dependency
graphs for the SD1 and the SD2 ATM

(1)

11(4), 11(8
Cardreader |« — =

—

12)1(3)

Network -
tobank Receipt

printer
4
2) m

I
11(6).11(7)

Customer J

console

Lo

211 »| Customer

AN
" -sTransactio

SDG1

that the deletion of the “ejectcard” operation does not violate
the intra-diagram consistency rule CR4. For this change, we
have:

NRM = NOpSD
= number of call dependence edges

to the “ejectcard” method node = 1.

The third change, delete the association relation between the
“ATM” and “Session” classes, triggers the consistency rule
CR10. The call dependence edge from the “ATM” class to
the methods of the “Session” class require the existence of an
association relationship between these classes. To correct this
inconsistency, the designer should choose to undo the change
or to delete the corresponding messages in SD: the messages
between “ATM” and “Session” objects (11(2), I1(3)). For this
change, we have:

NRM = NM20b
= number of call and return dependence
edges between “ATM” and “Session”
classes (I1(2), I1(3)) = 2.

S @ Springer

» Transaction _f console
12(5)

SDG2

Finally, the fourth change consists in adding the “Opencon-
nection” and “Closeconnection” operations to the “Network-
ToBank™ class. After calculating the WMC metric, which
equals the number of methods in the “NetworkToBank™ class
and equals 5, we inform the designer that the addition of this
operation increases the WMC and consequently the time and
effort to develop and maintain the class as indicated by rule
QRI1.

The total number of NRM for the entire set of changes is
equal to 7. This number helps the designer to decide not only
about single changes, but also about the global change.

To support our change impact management approach, we
developed a tool named CQV-UML Tool: a Consistency and
Quality Verification tool for UML diagrams. This tool auto-
mates the change impact management on UML diagrams
while taking into account the quality of the UML models
and the effort needed to handle this change.

The principal activities performed by CQV-UML Tool
are: the change detection, the consistency verification and
quality verification. The tool takes as input a set of UML
models versions corresponding to the original and changed
diagrams in order to record and display the list of changes to
the designer. Afterward, our graph-based technique (MDG)

Arab J Sci Eng (2016) 41:2863-2881

2877

Fig. 7 MDG for the example
CDG and SDGs of Figs. 4 and 6

Netwo

/ Display |

‘ (message)

[+] / . — | tobank
[Customer] 1 I

console |e——-

Receix;rt

Printer

Fig. 8 The violated @ Consistency Verficaion - o
consistency rule and proposed

correction for the delete

ejectcard() operation change Changes detected : Vioksted Concistency Rules :

1-Delete affributes atm , in a class, Cardreader

NRM=1

2-Add operafions : openconnection closeconnedtion , in a class, NetworktoBank

13- Delete operations : ejecicard. in a class, Cardreader

(CRY violated : The operation ejectcard in SD untitledhodel must be defined in the receiver s dass, Cardi

you have 1 delete the messages in the SDs

Proposed Corrections :

-delete the messages i the SDs corresponding to the deleted operation n CD.

C QVTOOI

| Accept the change ’I Undoing the change I

is implemented in order to establish the traceability between
the interdependent diagrams. Based on the achieved trace-
ability, the set of violated consistency rules corresponding to
each change type is displayed to the designer. Figure 8 depicts
a screen snapshot of the consistency verification after the
deletion of the “ejectcard()” operation. The violated consis-
tency rule CR9 is detected and its corresponding corrections

are presented. Based on the NRM and on the proposed correc-
tions, the designer chooses between the undo of the change
and the acceptation.

When the designer accepts the proposed corrections,
CQV-UML Tool parses the CFG to detect if these proposed
corrections lead to inconsistencies. Otherwise, the affected
diagrams are modified in order to cope with the changes and

2878

Arab J Sci Eng (2016) 41:2863-2881

Fig. 9 Generation of the = Consistency Verification =
corrected sequence diagram
! g - deséquence-ArgoUML - O EM|
Detect the Changes Class . . —
Fichier Edition Voir Créer Diagramme Organiser Génération Critique Outils Aide
Changes detected : — Tl = 5
- Delte atoues 3 @ 8| a/a-] BBBEBBR’ &lesops
2-A perations : opel »
ions ‘k1 |y efeeldn B [o-
iCardreader IATM i8ession 14|
n E
>

NRM=1

you have 1 delete the messages in the SDs.

o the deleted operation in CD.
create(

performsession(

readcard()

feadpng

Acceptthe change || Undoing the change

Generate Diagram

they are displayed to the designer. Figure 9 shows the gener-
ation of the corrected sequence diagram.

6 Empirical Investigation

The overall objective of this section is to show the abil-
ity of our CIA approach in preserving the consistency and
the quality of the UML class and sequence diagrams after
a change. For this purpose, we evaluated our method based
on a comparison between results (impacted elements) built
by applying our method and results constructed by experts.
Experts are specialists in UML modeling and they have sev-
eral years of experience studying and developing projects
designed with UML. In addition, they are project managers
who have dealt with change management in their projects.
The experts were recruited through a convenience sampling,
we already knew them before and we had their contact
details. Note that they participated in the experiment for
free.

Following the Wohlin et al. [45] empirical investigation
guidelines, we next present the planning, operation (data
collection) and finally the analysis and interpretation of the
results.

6.1 Planning and Data Collection

For evaluation purposes, we presented three cases to three
UML experts: the Automatic Teller Machine (ATM) and
EU-Rent system adapted from [1], and the Cruise control sys-
tem adapted from [2]. The ATM model consists of one class
diagram containing 18 classes and 15 sequence diagrams.
The EU-Rent system consists of 4 class diagrams containing
about 75 classes and 52 sequence diagrams containing around
164 lifelines. The Cruise Control System consists of one class
diagram containing 37 classes, and 8 sequence diagrams.

@ Springer

Note that, we proposed four change types per case, mean-
ing 12 changes in total. In each case, we applied different
change operations: an addition, a modification and two dele-
tions. Each expert made an independent solution in a first
step, and then a consensus discussion was launched among
all experts to obtain one consensual solution; this latter is
compared with our solution (constructed by our tool).

6.2 Evaluation Results and Interpretation

For evaluation purposes, we adapt the measures of precision
and recall introduced in the domain of information retrieval
[46]. In our experiment, precision represents the number of
correct impacted elements detected by our tool among the
found impacted elements; recall represents the number of
correct impacted elements detected by our tool among all the
existing real impacted elements (detected by the experts).

When calculating the above measures, we interpret the
results by counting the number of true positives (TP), false
positives (FP), and false negatives (FN). False positives are
impacted elements wrongly identified. False negatives are
actual impacted elements that have not been detected by our
approach. The sum of true positives and false negatives is
equal to the total number of actual impacted elements in
the analyzed UML class and sequence diagrams. Moreover,
precision is TP/(TP+FP) and Recall is TP/(TP+FN).

In the ATM system evaluation (illustrated in Table 5),
the precision is 0.82 which is explained by the fact that we
found some false positive impacted elements (i.e., incorrect
detected impacted elements). These false positives are due
to some incoherencies between the terms used in the class
and sequence diagrams. For instance, the name of a method
in the class diagram is very different from the messages in
the sequence diagrams, consequently no traceability is estab-
lished between them and the deletion of the class does not
lead to the deletion of the corresponding erroneous objects.

Arab J Sci Eng (2016) 41:2863-2881

2879

Table 5 A comparative study by measurement

Cases TP FP FN Precision Recall
ATM

Cl 18 5 2 0.82 0.94
c2 12 3 1

C3 15 2 1

C4 5 1 0

Cruise control

Cl 19 2 2 0.95 0.97
c2 18 0 0

C3 2 0 0

C4 10 1 0

EU-Rent

Cl1 8 0 1 0.88 0.94
c2 10 2 0

C3 25 3 2

C4 18 4 1

Average 0.883 0.95

The average recall for the ATM system is 0.94 indicat-
ing that we have also some false negative impacted elements
(i.e., true impacted elements that are not detected). These
false negatives can be explained by the fact that our MDG
represents every class using a unique class node. This is irre-
spective with the number of objects of a class existing across
various sequence diagrams. For example, in our case, the
“Transaction” class is instantiated more than once in the ATM
sequence diagrams. However, the deletion of this class does
not lead to the deletion of all object instances. This increases
the necessity to create additional nodes in case of repeated
instantiation of any classes, and their objects. Moreover, the
concept of abstract classes and interfaces are not yet included
in the MDG.

To position our work with existing works, we compare
our results to the evaluation results of Keller et al. [1] for the
ATM system (precision = 0.97, recall =0.93) and the EU-
Rent system (precision = 0.77, recall = 0.95). Kelleretal. [1]
have slightly better precision than our method in the ATM
system; however, it has a lower recall. In our context, we
consider that a higher recall is better since it implies that
we found more correct impacted elements. In the EU-Rent
system, our precision and recall values are better than those
of Keller et al. The results of this comparison should however
be taken with caution. Indeed, even though similar to Keller
et al. we worked on the ATM system, we do not have the
same changes. In fact, to have a fair comparison with existing
works and to be able to evaluate thoroughly the efficiency of
the different existing approaches, we must evaluate all the
approaches on the same corpus. Unfortunately, there is no
standard or historical datasets that could be used. We believe

that it is necessary to have a benchmark for change impact
analysis and this would be an interesting research axis.

6.3 Threats to Validity

Considering the validity of the results of an experiment is a
fundamental point in each research. The results are said to
have adequate validity if they are valid for the population
to which we would like to generalize [45]. Different types
of validity can be categorized depending on the goal of the
experiment. In our case, the analyzed threats to validity are:
external validity and internal validity.

Threats to external validity are conditions that limit our
ability to generalize the results of our experiment to industrial
practice [45]. This threat concerns the selection of people
who participate in the experiment. On the one hand, when
evaluating our approach, the experts had to be chosen care-
fully since if they are inexperienced, this produces wrong
evaluations. We tried to reduce this threat to external validity
by making the experimental environment as realistic as pos-
sible through the selection of experienced experts who have
really made and managed changes. On the other hand, if the
UML designers produce models that are not coherent and the
terminology used in the different diagrams differs from one
diagram to another, this makes the traceability very difficult
and consequently the change impact cannot be determined
correctly. (This was highlighted in the ATM case.)

Besides the above external threat, we identify two internal
threats. The first internal threat concerns the construction of
the model dependency graph “MDG” used as a traceability
model. More specifically, if the MDG lacks some relations
between model elements due to the fact that we do not treat
interfaces or abstract classes, then our approach would fail in
detecting all impacted elements. Consequently, if the MDG
is not well constructed and misses information, then the con-
sistency and the quality of the derived corrected models is
not guaranteed in terms of consistency rules, quality rules
and metrics. Moreover, the second internal threat concerns
the correctness of the implementation [45]. A major concern
is the difficulty in manipulating the data structure of a large
MDG; indeed, it is hard to combine all the UML diagrams in
one file when we have overloaded diagrams because of the
huge number of relations (dependence edges).

7 Conclusion

This paper proposed an approach for the management of
change impact on UML class and sequence diagrams based
on three techniques: graph-based, rule-based, and metric-
based techniques. The main originality of our approach is
its capacity to analyze the change impact on both the consis-
tency within each diagram and among the related diagrams,

@ Springer

2880

Arab J Sci Eng (2016) 41:2863-2881

as well as the quality of the changed diagrams. To do so, our
method uses: a dependency graph to identify impacted ele-
ments by coding both syntactic and semantic dependencies
among the elements of the class and sequence elements; a
set of rules to express the consistency constraints among the
intra and inter UML diagram elements; and a set of metrics
and quality rules (derived from best practices) to estimate the
change impacts in terms of quality effects and effort needed
to carry out all changes necessary to preserve the consistency
of the design. Combined, these techniques allow our method
to collect information needed to assist the designer making
a judicious decision about accepting or refusing a change
based on its impact on the effort needed to accommodate it
and the resulting model quality.

To assess the efficiency of our approach, we implemented
a tool support (CQV-UML Tool) that we used to conduct
a quantitative experimental evaluation. Evaluated on three
cases with the help of three UML experts, our method has on
average a precision of 88.33% and recall of 95%. These
rates are encouraging, nonetheless should be generalized
with caution due to two essential threats to the validity of
our experiment: an external threat pertinent to the choice of
the participating experts, and an internal threat pertinent to
the correctness of the implementation. As such, a wider eval-
uation should be undertaken in real software development
settings where the expertise of the designers would validate
both the performance of the method and the correctness of
its tool support.

Furthermore, as noted in our comparative evaluation
attempt, it is necessary to establish a benchmark of designs
that can be used to compare the various change impact analy-
sis approaches.

Besides elaborating the benchmark and extending our
approach to the remaining development phases and activities
(e.g., testing), another research axis we are currently pursuing
is how to integrate our method within a project management
approach for a better accounting of change impacts.

References

1. Keller, A.; Demeyer, S.: Change impact analysis for UML model
maintenance. Book chapter: Emerging Technologies for the Evo-
lution and Maintenance of Software Models, pp. 32-56 (2012)

2. Briand, L.C.; Labiche Y.; O’Sullivan, L.: Impact Analysis and
Change Management of UML Models. In: Proceedings of the Inter-
national Conference on Software Maintenance, pp. 276-280 (2003)

3. Zimmermann, T.; Weigerber, P.; Diehl, S.; Zeller, A.: Mining ver-
sion histories to guide software changes. In: Proceedings of the
26th International Conference on Software Engineering, Edin-
burgh, Scotland, UK, pp. 563-572 (2004)

4. Kagdi, H.; Gethers, M.; Poshyvanyk, D.; Collard, M.L.: Blending
conceptual and evolutionary couplings to support change impact
analysis in source code. In: Proceedings of the IEEE Working Con-
ference on Reverse Engineering, Beverly, MA, USA, pp. 119-128
(2010)

@ Springer

10.

11.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

. Petrenko, M.; Rajlich, V.: Variable granularity for improving pre-

cision of impact analysis. In: Proceedings of the International
Conference on Program Comprehension, Vancouver, BC, Canada,
pp. 10-19 (2009)

. Tsiolakis, A.: Consistency analysis of UML class and sequence dia-

grams based on attributed typed graphs and their transformations.
ETAPS Workshop on Graph Transformation Systems (2000)

. Hammad, M.; Collard, M.L.; Maletic, J.: Automatically identifying

changes that impact code-to-design traceability during evolution. J.
Softw. Qual. 19(1), 35-64 (2011)

. Knethen, A.; Grund, M.: QuaTrace: a tool environment for (semi-)

automatic impact analysis based on traces. In: Proceedings of the
International Conference on Software Maintenance, Amsterdam,
Netherlands, pp. 246-255 (2003)

. Rocco, J.D.; Ruscio, D.D.; Iovino, L.; Pierantonio, A.: Traceability

visualization in metamodel change impact detection. In: 2nd Work-
shop on Graphical Modeling Language Development, pp. 51-62
(2013)

Khalil, A.; Dingel, J.: Supporting the Evolution of UML Models in
Model Driven Software Development: A Survey, Technical Report
2013-602, School of Computing, Queen’s University Kingston,
Canada (2013)

Kchaou, D.; Ben-Abdallah, H.; Bouassida, N.: Change impact
management on model transformations. In: Proceedings of the
International Conference on Computational Intelligence and Soft-
ware Engineering (CiSE2012), Wuhan, China, December (2012)

. Rational Software White Paper, Rational Unified Process Best

Practices for Software Development Teams, TP026B (2001)
Jacobson, I.; Booch, G.; Rumbaugh, J.: The Unified Soft-
ware Development Process. Addison-Wesley Longman, Read-
ing (1999)

Chanda, J.; Kanjilal, A.; Sengupta S.: UML-Compiler: a frame-
work for syntactic and semantic verification of UML diagrams.
In: International Conference Distributed Computing and Internet
Technology, LNCS, vol. 5966, pp. 194-205 (2010)

Chidamber, S.R.; Kemerer, C.F.: Towards a metrics suite for object
oriented design. In: Conference proceedings of Object-oriented
programming systems, languages, and applications, pp. 197-211
(1991)

Mohagheghi, P.; Dehlen, V.: Existing model metrics and relations
to model quality Software Quality. In: ICSE Workshop, pp. 39-45
(2009)

OMG Unified Modeling Language TM OMG UML, Version 2.4.1.
http://www.omg.org/spec/UML/2.4.1 (2011)

Li, B.; Sun, X.; Leung, H.; Zhang, S.: A survey of code-
based change impact analysis techniques. J. Softw. Test. Verif.
Reliab. 23, 613-646 (2012)

Badri, L.; Badri, M.; St-Yves, D.: Supporting predictive change
impact analysis: a control call graph based technique. In: Proceed-
ings of the Asia-Pacific Software Engineering Conference, Taipei,
Taiwan, China, pp. 167-175 (2005)

Sun, X.; Li, B.; Tao, C.; Wen, W.; Zhang, S.: Change impact
analysis based on a taxonomy of change types. In: International
Conference on Computer Software and Applications, Seoul, Korea,
pp- 373-382 (2010)

Beszedes, A.; Gergely, T.; Farao, S.; Gyimothy, T.; Fischer, F.:
The dynamic function coupling metric and its use in software
evolution. In: Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, Amsterdam, Nether-
lands, pp. 103-112 (2007)

Apiwattanapong, T.; Orso, A.; Harrold, J.M.: Efficient and precise
dynamic impact analysis using execute-after sequences. In: Pro-
ceedings of the International Conference on Software Engineering,
St. Louis, MO, USA, pp. 432441 (2005)

Briand, L.C.; Labiche, Y.; O’Sullivan, L.; Séwka, M.: Automated
impact analysis of UML models. J. Syst. Softw. 79, 339-352 (2006)

http://www.omg.org/spec/UML/2.4.1

Arab J Sci Eng (2016) 41:2863-2881

2881

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Egyed, A.: Fixing Inconsistencies in UML Design Models. In:
Proceedings of the 29th International Conference on Software
Engineering, pp. 292-301 (2007)

Egyed, A.: UML/Analyzer: a tool for the instant consistency check-
ing of UML models. In: Proceedings of the 29th International
Conference on Software Engineering, pp. 793-796 (2007)

Dam, H.K.; Winiko, M.: Supporting change propagation in UML
models. In: Proceedings of the 26th IEEE International Conference
on Software Maintenance, IEEE Computer Society, Washington
(2010)

Dam, H.K.; Ghose, A.: Towards rational and minimal change prop-
agation in model evolution. CoRR. abs/1402.6046 (2014)

Shiri, M.; Hassine, J.; Rilling, J.: A requirement level modification
analysis support framework. In; Proceedings of the International
Workshop on Software Evolvability, Maison Internationale, Paris,
France, pp. 67-74 (2007)

Ganter, B.; Wille, R.: Formal Concept Analysis: Mathematical
Foundations. Springer, New York (1997)

Trollmann, F.; Blumendorf, M.; Schwartze, V.; Albayrak, S.: For-
malizing model consistency based on the abstract syntax. In:
Proceedings of the 3rd ACM SIGCHI symposium on Engineer-
ing interactive computing systems, pp. 79-84 (2011)

Elaasar, M.; Briand, L.: An Overview of UML Consistency Man-
agement, Technical Report SCE-04-18, 1125 Colonel-By Drive,
Ottawa, ON, August 24 (2004)

Liu W.; Easterbrook, S.; Mylopoulos, J.: Rule-based detection of
inconsistency in UML models. In: Proceedings of UML Workshop
on Consistency Problems in UML-based Software Development,
Blekinge Institute of Technology, pp. 106-123 (2002)
Spanoudakis, G.; Zisman, A.: Inconsistency management in soft-
ware engineering: survey and open research issues. Handb. Softw.
Eng. Knowl. Eng. 1, 329-380 (2001)

Lallchandani, J.T.; Mall, R.: Static slicing of UML architectural
models. J. Object Technol. 8(1), 159-188 (2009)

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: Design Pat-
terns: Elements of Reusable Object Oriented Software. Addisson-
Wesley, Reading (1995)

Chandra, E.; Linda, P.: Class break point determination using CK
metrics thresholds. Glob. J. Comput. Sci. Technol. 10, 73-77 (2010)
Ferreira, K.A.M.; Bigonha, M.A.S.; Bigonha, R.S.; Mendes,
L.F.O.; Almeida, H.C.: Identifying thresholds for object-oriented
software metrics. J. Syst. Softw. 85, 244-257 (2012)

Bakar, A.D.; Sultan, A.B.M.; Zulzalil, H.; Din, J.: Review on
software metrics thresholds for object-oriented software. Int. Rev.
Comput. Softw. 8(11), 2593-2600 (2013)

Tarcisio, G.S.F.; Bigonha, M.A.S: A catalogue of thresholds for
object-oriented software metrics. In: SOFTENG 2015: The First
International Conference on Advances and Trends in Software
Engineering (2015)

Bouassida, N.; Ben-Abdallah, H.; Issaoui, I.: Evaluation of an auto-
mated multi-phase approach for pattern discovery. Int. J. Softw.
Eng. Knowl. Eng. 23(10), 1367-1398 (2013)

Arnold, R.; Bohner, S.: Change Impact Analysis, 1st edn. Wiley-
IEEE Computer Society Press, New York (1996)

Kchaou, D.; Bouassida, N.; Ben-Abdallah, H.: A MOF-based
change meta-model. Proceedings of the International Arab Con-
ference on Information Technology, CCIS, Zarqa, Jordon (2012)
OMG Meta Object Facility (MOF) Core Specification, Version
2.4.1, OMG Document Number: formal/2011-08-07. http://www.
omg.org/spec/MOF/2.4.1/PDF (2011)

Russell, C.B.: An Example of Object-Oriented Design: An ATM
Simulation, Gordon College, Copyright2004. http://www.math-cs.
gordon.edu/courses/cs211/ATMExample/

Wohlin, C.; Runeson, P; Host, M.; Ohlsson, M.C.; Reg-
nell, B.; Wesslén, A.: Experimentation in Software Engineer-
ing. Kluwer, Norwell (2000)

Frakes, W.B.; Baeza-Yates, R.: Information Retrieval: Data Struc-
tures and Algorithms. Prentice Hall, Englewood Cliffs (1992)

@ Springer

http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.omg.org/spec/MOF/2.4.1/PDF
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
http://www.math-cs.gordon.edu/courses/cs211/ATMExample/

	Managing the Impact of UML Design Changes on Their Consistency and Quality
	Abstract
	1 Introduction
	2 Existing Approaches to Change Impact Analysis
	2.1 Horizontal CIA Methods
	2.1.1 CIA at the Code Level
	2.1.2 CIA at the Design Level

	2.2 Vertical CIA Methods

	3 Our Change Impact Management Method
	3.1 Measuring the Change Impact
	3.2 Rules for Consistency-Based CIA
	3.3 Rules for Quality-Based CIA

	4 CIA Between the Class and Sequence Diagrams
	4.1 Change Identification
	4.2 Traceability Between the Class and Sequence Diagrams: MDG Construction
	4.3 Corrections and Recommendations
	4.3.1 Changes Applicable to Classes
	4.3.2 Changes Applicable to Relations
	4.3.3 Changes Applicable to Objects

	5 Example
	6 Empirical Investigation
	6.1 Planning and Data Collection
	6.2 Evaluation Results and Interpretation
	6.3 Threats to Validity

	7 Conclusion
	References

