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Abstract The internalmodel control (IMC)-based PID con-
troller is widely used in industrial control problems. This
scheme provides a good compromise among set-point track-
ing, disturbance attenuation, and robustness. Therefore, in
this paper, we propose a simple technique to design IMC-PID
controller. To illustrate the utility of the proposed technique,
different types of linear and nonlinear second-order systems
and approximated second-order models of higher-order sys-
tems are simulated. The proposed approach depicts quick
response to set-point change, good disturbance attenuation,
and optimal performances in most of the class of problems
when compared to the conventional IMC-PIDandother exist-
ing popular techniques. The beauty of this paper is that there
is no need of highly complex mathematical approaches, and
using only simple conventional IMC approach, the improved
servo and regulatory results can be achieved.

Keywords Disturbance rejection · Filter · Internal model
control · PID tuning · Second-order system

1 Introduction

For the past few decades, proportional integral derivative
(PID) controller has a strong hold in the field of control
engineering for wide area applications (such as machinery,
chemical and food, mining, automobile, electrical power and
apparatus, and aerospace industries) and still it is an area of
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intensive research [1]. PID controller designing is interesting
due to simple PID structure that generally leads to numer-
ous tuning techniques and several ways to implement it.
These tuning techniques are based on either smooth and fast
set-point tracking, closed-loop system stability, minimiza-
tion of disturbance effect, prevention of excessive control
action, actuator saturation and integrator windup, robustness
to system parameters andmodeling errors, or optimization of
performance indices [2–9]. In closed-loop system,PIDcanbe
arranged as feed-forward or feedback control, cascade con-
trol, selectors, limiters, ratio control, etc, andmaybeobtained
in the form of parallel or series single-loop controller, multi-
loop controllers, programmable logic controllers, distributed
control systems, etc [10]. The different structures of PID con-
troller are

• Ideal structure: K1(s) = Kc

(
1 + 1

τI s
+ τDs

)

• Series structure: K2(s) = Kc

(
1 + 1

τI s

) (
τDs+1
ατDs+1

)

• Parallel structure: K3(s) = Kc

(
1 + 1

τI s
+ τDs

ατDs+1

)

• Series filter: K4(s) = Kc

(
1 + 1

τI s
+ τDs

) (
1

τ f s+1

)

Over the past one and a half decade, internal model con-
trol (IMC) has revolutionized the control system field. This
control technique has brought a great impact on control
practices in terms of performance issues like intuitive and
simple control algorithm; optimal and robust design; and
servo and regulatory performance [11]. Particularly, due to
single user-defined tuning parameter λ, IMC-based PID con-
trol has gained widespread acceptance among all existing
tuning techniques based on specifications of design, process
knowledge, and computational aspects. In the literature,
there exists numerous IMC-based PID tuning algorithms for
delayed, oscillatory, unstable, higher-order systems, andnon-
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linear systems. The main role of IMC-PID is to eliminate
the problem of anti-reset windup, dead-time compensators,
decouplers which are generally less associated with other
PID controllers [12].

IMC-PID control scheme was first presented by Rivera et
al. [13]. In this paper, it was shown that converting the IMC-
based control structure into conventional feedback PID con-
trol might bring addition lag term of the form 1/(1 + ϕs),
ϕ > 0 for some processes of the first- and second-order, and
integrating type. Later on, Hang et al. [14] showed that IMC-
PID fails for lag dominant processes with relative small dead
time. Then,Horn and co-workers framed IMC-PIDcontroller
in series with a filter of second or higher order. This for-
mulation leads to complex structure and heavy computation
burden [15]. The aforementioned works drew the attention
of researchers to investigate the optimum PID tuning rules
based on IMC technique. As a result, Lee et al. [16] showed
that PID controller tuning based on Maclaurin series brings
improved dynamic performance.

Another aspect in IMC-PID design is that approximat-
ing a process to its lower-order model plays an important
role in efficient design of control system. Therefore, based
on model order reduction, some heuristic methods have also
been explored to evaluate PID parameters [17–19]. How-
ever, Shamsuzzoha and Lee demonstrated the superiority of
using higher-order IMC filter for better disturbance rejection
performance [20]. Furthermore, some recent techniques of
PI/PID tuning are also evaluated on the basis of user- defined
percentage overshoot specification, maximum complemen-
tary sensitivity function, two-degree-of-freedom (2DOF)
IMC structure, H∞ design, and frequency-dependent uncer-
tainty constraints [21–26]. A slight modification of robust
PI/PID based on IMC has been conducted in [27], which
reports the utility of mid- and high-frequency robustness
for tuning parameters. Recently, 2DOF-based IMC tuning
involving gain margin and maximum peak criterion is also
proposed for processes having uncertain models [28]. These
methods also received much attention due to optimal per-
formance and robust tuning method. However, after going
through these schemes, we realized that PID can be evolved
in another fashion through basic or traditional IMC concept.
The concept is based on neglecting the lag term obtained
after converting IMC controller to conventional feedback
controller form.

The whole paper is framed in following sections. Sec-
tion 2 reviews the principle of IMC scheme. Section 3
illustrates how to evaluate PID parameters from IMC design
scheme and its optimum tuning. Performance evaluation
criterions are explained in Sect. 4. Simulations and effi-
ciency of the control law are carried out for some class of
second-order process and models in Sect. 5. In Sect. 6, the
proposed technique is further extended to nonlinear second-
order processes. Some remarks about the proposed scheme

(a)

(b)

Fig. 1 a Internal model control and b conventional feedback control
structures

and their future prospects are given in Sect. 7. Finally, con-
clusions are drawn in Sect. 8.

2 Fundamentals of IMC

IMC design scheme is a type of model predictive-based con-
trol technique conceptualizing the pole–zero cancelation in
which a controller constitutes plant model as an important
tool to design and implement controller. The structures of
IMC and conventional feedback control loop are shown in
Fig. 1a, b. IMC contains the process model PM in parallel
to P . The difference between the process and its model is
fed back to the controller Q. The design procedure requires
two tasks: (1) determination of the inverse of the process
and (2) adjustment of the IMC filter’s parameter to give an
optimal system performance [11]. The controller comprises
of inverse of the process model augmented with a low-pass
filter F . This filter F is generally of the form

F(s) = 1

(1 + λs)n
, n ∈ I, λ > 0 (1)

wheren is sufficiently large tomake the controller proper;λ is
a tuning parameter responsible for robustness, process/model
mismatch, and closed-loop performance of the control sys-
tem. ‘s’ is a Laplace operator and s = jω ∀ω ∈ R. Thus,
the IMC-based controller may be defined as

Q(s) = P−1
M (s)F(s) (2)

One should note that the inverse of the plant model used
in (2) should be free from the predictor factor (eτ s) and RHP
system. If themodel contains delay andRHP poles and zeros,
then factorize the process model into minimum phase (MP)
and non-minimum phase (NMP) elements. See [11] for more
details.

For a linear time invariant system, the IMC framework
can be easily converted into conventional feedback controller
C(s) using the following conversion formula
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C(s) = Q(s)

1 − PM (s)Q(s)
(3)

On substituting (2) in (3), we get

C(s) = F(s)

1 − F(s)
P−1
M (s) (4)

For a perfect model, P−1
M (s) can be replaced by P−1(s).

Note that,C(s) inherently provides integral action asC(s) =
1
s
N (s)
D(s) where N (s) and D(s) are polynomial functions.

3 Proposed Control Law

In practice, the higher-order process control plant is approx-
imated to either first- or second-order plant with time delay.
Therefore, in this proposed approach, we stick our discus-
sion to the design of IMC-PID controller by approximating
higher-order model to second-order systems. Our proposed
control strategy proceeds in the following manner.

Suppose the higher-order system is represented by

P(s) = a0 + a1s + a2s + · · · + amsm

b0 + b1s + b2s2 + · · · + bnsn
,

m < n, ai , b j ∈ R, i = 1, . . . ,m, j = 1, 2, . . . , n

(5)

Now, we approximate the above system (5) in the gener-
alized second-order system of the form

P(s) = K

s2 + 2ςωs + ω2 (−s + z)e−θs (6)

In order to design IMC-based PID controller, we first sep-
arate out NMP part, i.e., PNM (s) and MP part, i.e., PM (s)
from (6) as

PNM (s) = (−s + z)e−θs (7)

PM (s) = K

s2 + 2ςωs + ω2 (8)

The order of the plant as shown in (8) is two; therefore in
order to realize IMC controller, we select the filter as

F(s) = (1 + λs)−2 (9)

Substituting (8) and (9) in (4), we get the controller:

C(s) =
(

(1 + λs)−2

1 − (1 + λs)−2

) (
s2 + 2ςωs + ω2

K

)
(10)

After some algebraic manipulations, (10) becomes

C(s) = 2ςω

Kλ2

(
1 + 1

(2ς/ω)s
+ 1

2ςω
s

) (
1

s + 2/λ

)
(11)

The above equation clearly represents the PID form fol-
lowed by another filter function which we termed as “lag
term”. So, (11) can also be written as

C(s) = CPID(s) · CLag(s) (12)

where

CPID(s) = KP

(
1 + 1

TI s
+ TDs

)
(13)

CLag(s) =
(

1

s + 2/λ

)
(14)

and

KP = 2ςω

Kλ2
; TI = 2ς

ω
; TD = 1

2ςω
(15)

In (15), KP is the PID gain and the integral and derivative
time constants are TI and TD , respectively. In the proposed
approach, we are neglecting CLag(s), and thus, the new con-
troller obtained will contain only PID term given by (13),
i.e., C̃(s) = CPID(s).

Remark 1 It should be noted that the order of the controller
is reduced on separating the lag term. Thus, one can state
that the proposed scheme follows model order reduction in
controller instead of plant-model order reduction. However,
there is a difference in controller reduction and plant reduc-
tion. The controller reduction sustains closed-loop stability,
closed-loop performance, and closed-loop transfer function,
whereas plant reduction constitutes only open-loop consid-
eration [29].

Remark 2 In the presented IMC design scheme, we approxi-
mate the original systems and the controller includes only the
minimum phase part of the plant. Such model approximation
has generally an impact in high- frequency region and F(s)
is a low-pass filter which governs the closed-loop bandwidth
of the control system. Therefore, the controller prevents the
modeling effect and brings improved results.

Now, we will discuss the effect of modeling error when
the lag term in the controller is omitted. The modeling
error between the PID controller with and without lag term
(denoted by C(s) and C̃(s), respectively) can be written as

E(s)
	=

∣∣∣C(s) − C̃(s)
∣∣∣

= KP

(
1 + 1

TI s
+ TDs

) (
s + (2/λ − 1)

s + 2/λ

)
(16)
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Fig. 2 Bode plot of normalized
error term

Fig. 3 a Magnitude and b
phase plot of lag term for
different values of λ and ω

(a)

(b)

Next, the normalized error is given as

Ẽ(s) =
∣∣∣∣∣
C(s) − C̃(s)

C̃(s)

∣∣∣∣∣ =
(
s + (2/λ − 1)

s + 2/λ

)
(17)

which clearly reveals that Ẽ(s) is a function of tuning para-
meter λ. So, our objective is now to optimize the value of λ to
nullify the normalized error. Furthermore, a rough idea about
the effect of λ on the frequency response of the normalized
error term can be examined using Bode plot. Figure 2 shows
the variation of Ẽ in terms of magnitude and phase plots for
different values of λ, which states that the magnitude of Ẽ(s)
become unity at high frequency for different values of λ.

Now, we discuss the effect of neglecting lag term. From
(14), the lag term can be expressed in the magnitude-phase
form, i.e., 1/(s + (2/λ)) = A � θ where magnitude A and
phase angle θ are, respectively,

|A| = 1√
ω2 + 4

λ2

> 0 ∀ all λ, ω (18)

� θ = tan−1
(

−ωλ

2

)
< 0 ∀ all λ, ω (19)

Figure 3 also states that the magnitude is always positive,
while the phase angle is always negative. Now, it is clear
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Fig. 4 Bode plot of lag term

that adding the lag term increases the gain by a small factor
but phase lag significantly. Therefore, the phase margin is
reduced and the closed-loop systemmay become oscillatory.
Thus if the lag term is removed, the stability of the system
improves.

Moreover, the frequency response of lag term is plotted
in Fig. 4. This figure depicts the effect of magnitude and
phase plot for different values of λwhich shows that both the
magnitude and phase vary as the λ varies. It is also observed
that higher the λ, higherwill be themagnitude of lag term and
roll-off in phase response. Therefore, λ should be selected as
small as possible.

4 Performance Assessment

In this paper, the performance assessment of the proposed
controller is evaluated by the following indices.

4.1 Integral Error Criterion

Minimizing the loss or cost function proves the optimality
of the controller. Normally, the typical criterion to minimize
the error function of the form

I =
∞∫

0

tn |e(t)|mdt (20)

is utilized to evaluate the performance indices such as inte-
grated error (IE), integral of the squared error (ISE), integral
of the absolute error (IAE), and integral of the time weighted
absolute error (ITAE). These performance indices can be
defined as

IE=
∞∫

0

e(t)dt; ISE=
∞∫

0

e(t)2dt; IAE=
∞∫

0

|e(t)| dt; ITAE=
∞∫

0

t |e(t)| dt;

(21)

where e(t) = r(t) − y(t) is an error signal. IE sim-
ply accumulates the net error and describes the perfor-
mance of monotonic response. ISE denotes indirectly sev-
eral characteristics like settling time, overshoot, speed of
response, and all other important features of the transient
response [30]. IAE is a measure of disturbance rejection
for integral controller [31]. ITAE accounts for long duration
error.

4.2 Maximum Sensitivity to Modeling Error

The sensitivity and complementary sensitivity functions
denoted by Ms and Mt , respectively, form the basis of
robustness to process variations and stability of a control
system. These specifications are based on Nyquist stabil-
ity criterion of a loop transfer function and are defined
by

Ms = max
ω

∣∣∣∣
1

1 + P(iω)C(iω)

∣∣∣∣ , Mt = max
ω

∣∣∣∣
P(iω)C(iω)

1 + P(iω)C(iω)

∣∣∣∣
(22)

It is suggested that the maximum sensitivities should be in
range of 1 to 2 for suitable control. Moreover, the small value
of peak of sensitivity denotes large distance of Nyquist plot
from critical point [1].

5 Numerical Studies

In this section, we consider seven different classes of sys-
tems. For each class of system, controller has been designed
using the existing methods and the proposed method. All the
computation and simulations have been carried out in MAT-
LAB and SIMULINK environment.
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Table 1 PID parameters by the
existing methods

Methods KP TI TD Augmented filter

Proposed 0.0734 0.01178 1 × 10−3 –

Rivera et al. 7.34210 × 10−4 0.01181 1 × 10−3 –

Lee et al. 2.11500 × 10−4 0.00680 0.0067 –

SIMC 7.00105 × 10−4 0.01125 – –

Honeywell 18.66949 × 10−4 0.0118 9.9746 × 10−4 9.9746×10−4s+1
9.9746×10−5s+1

Fig. 5 Simulation results of
closed-loop system with PID
controllers for unit step input

5.1 Second-Order Over Damped System

To illustrate the procedure of the proposed PID design, con-
sider an example of DC motor speed control in which plant
P(s) is a second-order given by [32] as

P(s) = 1.362 × 108

s2 + 1000s + 8.476 × 104
(23)

For IMC-based design, treat the model of plant PM same
as P . Now, applying the technique mentioned in Sect. 3
(using (8) and (9)), the conventional feedback controller can
be evaluated as

C(s) =
(
0.0734 + 6.233

s
+ 7.34 × 10−5s

) (
1

s + 200

)

(24)

In (24), λ = 0.01 is taken as a suitable value and the lag term
to be neglected is CLag(s) = 1/(s + 200).

To justify the efficacy and efficiency of the proposed tech-
nique, PID parameters are evaluated using some existing
methods described by researchers [13,16,19,33]. The PID
tuning formulas of these methods are presented in Appendix,
and their calculated values are given in Table 1. The reasons
behind selecting these particular methods for comparison are
as follows:

• IMC-PID developed by Rivera and co-workers [13] is the
first and foremost scheme,

Table 2 Performance comparison for set-point change

Method IE ISE IAE ITAE MS Mt

Proposed 0.0001 0.0018 0.0006 0.0019 1.005 1.001

Rivera et al. 0.01 0.01 0.0053 0.0101 1.001 1.001

Lee et al. 0.02 0.061 0.0285 0.0660 1.001 1.001

SIMC 0.01 0.01 0.0054 0.0101 1.08 1.001

Honeywell 0.00393 0.0039 0.0019 0.0040 1.00 1.001

• the second [16] and the third tuning [19] techniques have
been selected because they are the state-of-the art and pop-
ular schemes, respectively, in the area of IMC-PID,

• the last technique (Honeywell tuning rule) developed by
Aström et al. [33] is employed in industries.

A closed-loop response of the process with PID controller
for unit step input is shown in Fig. 5. The comparison of
responses of the proposed method and other methods clearly
states that the speed of response using the proposed PID
controller is faster than that of other methods with a very
low overshoot. The performance indices of the proposed
method and other methods described are listed in the first
four columns of the Table 2. The proposed technique has
least value for various integral error indices and hence shows
optimal and better performance in comparison with all other
mentioned techniques.Moreover, the proposed technique has
same level of robustness (Ms = 1.005) except for SIMC
method [19] as mentioned in the second last column of the
Table 2.
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Fig. 6 Control system with input and output disturbances

To measure the disturbance rejection performance, the
step input of magnitude 0.5 is applied at the input and
output (See D1 and D2 signal in Fig. 6). The disturbance
response of the proposed method is very sharp, and its
magnitude is very low when the disturbance acts at input
of the plant as shown in Fig. 7a. In this figure, the peak
magnitude of the disturbance response is 0.3, whereas for
other methods it is quite large. Likewise, when the distur-
bance acts at output of the plant, the speed of disturbance
rejection is very fast as compared to other methods; see
Fig. 7b. However, the magnitudes of the responses are almost
same for all other methods. Thus, it can be said that the
proposed technique speeds up the response of the control

system for both set-point change and disturbance rejection
attributes. Also, it minimizes the effect (overshoot) of the
disturbance.

The optimality of the proposed controller for disturbance
rejection is evaluated which is shown in Table 3. Since all
the indices are minimum for the proposed method for both
input and output disturbances, therefore, it can be concluded
that the proposed controller shows the optimal performance.

5.2 Second-Order Under Damped System

To incorporate other type of commonly used second-order
processes, we consider an under damped system described
by

P(s) = 1

s2 + 8s + 25
(25)

where ς = 0.8. Using the perfect model and the proposed
method, the PID controller obtained after neglecting the lag
term is

Fig. 7 a Input and b output
disturbance responses of
second-order overdamped
system

(a)

(b)

Table 3 Performance comparison for disturbance

Method Input disturbance Output disturbance

IE ISE IAE ITAE IE ISE IAE ITAE

Proposed 0.00837 0.008444 0.002956 0.0847 0.00005 0.0009051 0.000143 0.004553

Rivera et al. 0.8369 0.8369 16.84 8.387 0.005 0.005 0.001322 0.02505

Lee et al. 1.674 2.909 52.52 29.36 0.01 0.0308 0.007268 0.1565

SIMC 0.8369 0.8369 17.3 8.387 0.005 0.005 0.001353 0.02505

Honeywell 0.3287 0.3287 3.412 3.292 0.00196 0.001963 0.000479 0.009827
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Fig. 8 Responses of
second-order underdamped
system for a unit step input and
b disturbance

(a)

(b)

C(s) = 1

λ2

(
8 + 25

s
+ s

)
(26)

Taking λ = 0.3162, we obtain the output of the system
for step-type input as shown in Fig. 8. Further, a step-type
disturbance of magnitude of 0.5 is applied at the output. It
is observed that set-point tracking and disturbance rejection
are faster than that of PID having lag term.

5.3 Second-Order Under Damped System Having Delay
and RHP Zero

We consider plant having delay term as well as RHP zeros
from [18] as:

P(s) = −0.5s + 1

(s + 1)(2s + 1)
e−s (27)

where the MP part is

PM (s) = 1

(s + 1)(2s + 1)
(28)

The frequency responses of (27) and (28) are shown in
Fig. 9a. The response depicts that there is uncertainty due to
ignorance of RHP zeros and delay term. As shown in Fig. 9a,
modeling errors are visualized after 5 rad/s approximately.
Nowwe design controller using proposed approach. The pro-

posed method utilizes only MP part to design PID controller
which yields

C(s) = 1

2λ2

(
1.5 + 0.5

s
+ s

)
(29)

where λ is set to 0.3162. From Fig. 9b, c, it is seen that
an improved performance is achieved with respect to unit
step input and disturbance rejection. However, the PID tun-
ing parameters for (27) evaluated by Wang et al. [18] are
KP = 1.1194, KI = 0.3569, KD = 0.9765, which gives a
little bit faster response but significant overshoot and almost
same setting time in comparison with that of proposed one.
And, the response of the PID with lag term is poor among
all.

5.4 Second-Order System Depicting Pole–Zero
cancelation

Apeculiar type of systemhaving pole–zero cancelation prop-
erty is described by the transfer function as:

P(s) = 2s + 4

s2 + 4s + 4
(30)

where the pole–zero cancelation occurs at s = −2. Nor-
mally, the pole–zero cancelation is not frequent in real-time
conditions since real-time environment produce uncertain-
ties and the poles and zeros do not overlap each other
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Fig. 9 a Frequency, b output
for unit step input and c
disturbance responses of
second-order having time delay
and RHP zero

(a)

(b)

(c)

at same location. However, we include precise overlap-
ping of pole–zero and the obtained model after cancelation
is

PM (s) = 2

s + 2
(31)

The proposed IMC-PID controller for this plant-model
mismatched case is

C(s) = 1

4λ2

(
1 + 2

s

)
(32)

where we select λ = 0.1. Here, as usual for a first-order
plant model, PI form is obtained. Figure 10 demonstrates
the closed-loop response of the proposed method and the
conventional PID with lag term. The result shows that in
comparison with PID with lag term, the proposed method
depicts the faster response for unit step input (Fig. 10a) and
faster disturbance attenuation (Fig. 10b).

5.5 Fourth-Order Over Damped System

Consider a higher-order system from [19]

P(s) = 1

(s + 1)(0.2s + 1)(0.04s + 1)(0.0008s + 1)
(33)

for which Skogestad’s procedure produces the approximated
second-order plus dead-time (SOPDT) model as

PM (s) = 1

(s + 1)(0.22s + 1)
e−0.028s (34)

Here, the fourth-order process is reduced to SOPDT
model, thereby creating the plant-model mismatching. The
modeling inaccuracies can be easily depicted in Fig. 11a
where the magnitude and phase responses vary drastically
after 1000 rad/s. Using (34), the proposed IMC-PID method
yields
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Fig. 10 a Output for unit step
input and b disturbance
responses of second-order
system having pole–zero
cancelation

(a)

(b)

C(s) = 1

4.5455λ2

(
5.5455 + 4.5455

s
+ s

)
(35)

where we set λ = 1. The PID settings for (33) using Skoges-
tad’s method of SIMC are KP = 17.9, TI = 0.224, TD =
0.22 [19]. The comparison of proposed method, SIMC
method, and PID with lag term is carried out for unit step
input and output load disturbance, as shown in Fig. 11b,
c, respectively. Although the setting time is almost same
for all responses, the proposed method produces nice and
smooth behavior, whereas SIMC gives significant overshoot
and oscillations of approximately 40% and PIDwith lag term
gives sluggish response.

5.6 Fourth-Order System Having Zero on LHP

To account for the unstructured modeling, we take another
process of [19] as:

P(s) = 2(15s + 1)

(20s + 1)(s + 1)(0.1s + 1)2
(36)

The approximated model for this fourth-order model sug-
gested by Skogestad is

PM (s) = 1.5

(s + 1)(0.15s + 1)
e−0.05s (37)

The uncertainty of the original system and its reduced
model can be observed easily in frequency response plot as
shown in Fig. 12a, where the behavior matching exists for
original system and its reduced model up to 50 rad/s only
and vary rapidly afterward. The controller design for this
approximated model using proposed scheme gives

C(s) = 1

10λ2

(
7.6667 + 6.6667

s
+ s

)
(38)

where λ = 0.3162. The SIMC settings for the same model
are KP = 6.67, TI = 0.4, TD = 0.15 [19]. The comparisons
of the responses for unit step input and output disturbance
rejection are shown in Fig 12b, c. The proposed controller
provides superior response in comparisonwithSIMCmethod
with reference to overshoot. As usual due to the presence of
lag term, the response of PID with lag term is poor among
all.

5.7 Second-Order Undamped System

Consider a second-order oscillatory system

P(s) = PM (s) = 1

s2 + 10
(39)
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Fig. 11 a Frequency, b output
for unit step input and c
disturbance responses of
fourth-order overdamped system

(a)

(b)

(c)

having zero damping factor. The PID controller using pro-
posed scheme gives

C(s) = 1

λ2

(
10

s
+ s

)
(40)

We set λ = 1 and the response for unit step input and dis-
turbance are shown in Fig. (13). Since the nature of system
is oscillatory, still the proposed controller is able to atten-
uate oscillations and disturbance, whereas the conventional
controller with lag term gives unstable response.

To illustrate the optimality of the proposed technique, the
performance indices in terms of integral error are also evalu-
ated in Table 4 for processes described in Sect. 5.2 to 5.7. The
proposed technique givesminimumvalue of integral errors in
comparison with conventional PID with lag term. However,
for the case described in Sect. 5.3, tuning done by Wang et
al. method shows least value due to faster speed of response,
but it introduces overshoot also. Likewise, for the processes

described in Sects. 5.5 and 5.6, SIMC depicts least error per-
formance due to oscillatory behavior around set point. Lastly,
for plant of Sect. 5.7, the response is optimal for the proposed
method, but the controller with lag term produces unstable
output.

6 Application to Nonlinear Systems

Nonlinear systems have much richer and complex behavior
than linear systems [34–36].We extended our proposedwork
to the class of nonlinear systems so-called separable systems,
which comprise a linear part defined by its transfer function,
and a nonlinear part defined by a time-independent relation-
ship
 between its input u and output u
 (see Fig. 14). In this
paper, we assume that the nonlinear part consists of discon-
tinuous nonlinearity, commonly known as hard nonlinearity
(such as saturation, backlash, and coulomb friction). For such
systems, the proposed scheme involves only the linear part
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Fig. 12 a Frequency, b output
for unit step input and c
disturbance responses of
fourth-order having zero on LHP

(a)

(b)

(c)

Fig. 13 a Output for unit step
input and b disturbance
responses of second-order
oscillatory system

(a)

(b)
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Table 4 Performance comparison for different processes

Process Method Set-point change Output disturbance

IE ISE IAE ITAE IE ISE IAE ITAE

Second-order over damped system Proposed 0.01 0.0638 0.172 0.07121 0.005 0.01595 0.0858 0.03561

PID with lag 1.986 1.019 1.986 3.987 0.9931 0.2547 0.9931 1.993

Second-order under damped system
having delay and RHP zero

Proposed 4 3.311 4.195 11.02 2 0.828 2.096 5.497

PID with lag 7.959 7.999 5.361 46.86 4 1.34 4 23.42

Wang et al. 2.802 2.883 3.752 10.17 1.401 0.7211 1.875 5.064

Second-order system depicting
pole–zero cancelation

Proposed 0.02 0.01 0.02 0.0024 1.972 0.505 1.972 9.366

PID with lag 3.942 2.002 3.942 15.16 0.01 0.0025 0.01 0.0102

Fourth-order over damped system Proposed 1 0.6033 1.004 0.9032 0.5 0.1508 0.502 0.4516

PID with lag 2 1.337 2 2.956 1 0.3343 1 1.478

SIMC 0.01251 0.1855 0.421 0.2928 0.006257 0.04637 0.2105 0.1464

Fourth-order system having zero on
LHP

Proposed 4 3.311 4.195 11.02 2 0.828 2.096 5.497

PID with lag 7.99 5.361 7.999 46.86 4 1.34 4 23.42

SIMC 2.802 2.883 3.752 10.17 1.404 0.7211 1.875 5.064

Second-order undamped system Proposed 1.013 2.933 17.19 1087 0.5067 0.734 8.607 545.2

PID with lag 3.956 809 211.1 26730 1.974 202.5 105.6 13370

Fig. 14 Block diagram of a nonlinear system with separable nonlin-
earity

to obtain PID controller. To demonstrate the effectiveness of
the proposed method, we present the following examples.

6.1 Second-Order Integrating Type System Having
Saturation Nonlinearity

Consider a second-order integrating type system

P(s) = 4

s(0.5s + 1)
(41)

having input saturation nonlinearities defined as


 :
{
u
 = u, |u| ≤ δ

u
 = δsgn(u), |u| > δ

where δ = 0.05. To design PID controller, only the linear part
is selected and using the proposed scheme, we get controller
as

C(s) = 1

λ2

(
1

4
+ 0.125s

)
(42)

where λ = 0.4. The responses of system with proposed
controller and PID with lag term with reference to a unit
step input and disturbance are shown in Fig. 15. The results
show the sluggishness in performance of the conventional
approach of PID with lag term in comparison with the pro-
posed one.

6.2 Second-Order System Having Backlash
Nonlinearity

We simulate the forced-actuatedmass-damper-spring system
given by

P(s) = 1

ms2 + bs + k
(43)

Here, we set m = 1, k = 1 and b = 2 in (43) which makes
the plant model to have double pole at−1. The friction force
is modeled by the backlash model as shown in Fig. 16, where
dead zone is δ = 1.5. As suggested, the proposed IMC-PID
method utilizes only the linear part to design PID controller
which yields

C(s) = 1

λ2

(
2 + 1

s
+ s

)
(44)

where λ = 0.58. Figure 17a shows the response for a unit
step input which depicts that the proposed scheme produces
quick response with lesser overshoot than that of PID with

123



3486 Arab J Sci Eng (2016) 41:3473–3489

Fig. 15 a Output for unit step
input and b disturbance
responses of second-order
system having saturation-type
nonlinearity

(a)

(b)

Fig. 16 Input–output plot for backlash nonlinearity

lag term. Similarly, for step input disturbance of magnitude
0.5, the disturbance rejection response is sluggish for system
having PID with lag term (See Fig. 17b).

The optimality of the proposed scheme for aforemen-
tioned second-order systems with nonlinear actuators is also
illustrated in Table 5. The performance is minimum for all
error indices when compared to that of the system having
PID with lag term.

7 Discussions

Here, we make few observations regarding the numerical
studies conducted in the earlier section. In IMC design
scheme, the only tuning parameter in the controller is the

filter parameter λ. A larger λ provides a slower response
and is less sensitive to model mismatches, while smaller λ

provides the faster closed-loop response, but the controller
actionmay be aggressive and produce tighter response. Thus,
a trade-off is required for handling robustness/performance
and servo/regulator. Morari and co-workers showed that the
closed-loop transfer function T (s) from r to y in Fig. 1a is
given by T (s) = P+

M (s)F(s) where NMP part P+
M (s) con-

tains all time delays and RHP zeros of PM (s). Therefore, we
can say that the closed-loop response is directly affected by
F(s), i.e., for faster response, λ should be small. Researchers
present different argument regarding selection criterion for
λ, but there is no unique justification for evaluation of λ.
For example, Wang et al. [18] illustrated the dependency of
λ on the open-loop process bandwidth. Isaksson and Grabe
[17] and Shamsuzzoha [37] formulated tuning rule on the
basis of maximum sensitivity function. Vilanova [26] pro-
poses the limiting value of λ based on frequency-dependent
weight that defines the modeling error. Liu and Gao [25]
explored the admissible tuning range based on upper bound
of multiplicative uncertainty, and likewise. Basically, tuning
of λ actually depends on how a PID form is evolved from the
IMC design.

Moreover, we have already discussed in Sect. 3 that λ

should be as small as possible for the proposed scheme.How-
ever, it is, in fact, very easy to observe the influence of λ on
stability and performance as we set λ equal to maximum
time constant and then gradually reduce its value. Therefore,
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Fig. 17 a Output for unit step
input and b disturbance
responses of second-order
system having backlash-type
nonlinearity

(a)

(b)

Table 5 Performance comparison for processes having nonlinearity

Second-order Process Method Set-point change Output disturbance

IE ISE IAE ITAE IE ISE IAE ITAE

With saturation-type nonlinearity Proposed 3.007 2.122 3.007 6.009 0.8829 0.3137 0.8829 1.074

PID with lag 3.003 2.124 3.003 6.165 0.9123 0.3179 0.9123 1.172

With backlash-type nonlinearity Proposed 0.1018 0.4459 1.091 2.623 0.1261 0.9976 9.103 0.4166

PID with lag 0.2952 1.666 3.5 17.28 0.5208 1.47 3.464 1.416

after extensive simulation studies, we found that λ should
be less than the maximum time constant of the plant. This
gives a reasonably fast response with moderate input usage
and good robustness margins. Hence, manual tuning is a
viable option, and in many cases it is the preferred choice
[38–41].

There are some other research gaps and issues which may
create interest among control researchers in days to come.
The observations which we marked out for future work in
this area are mentioned below.

Remark 3 We observed that when the proposed scheme is
applied to the processes like, (1) second-order system having
delay and RHP zeros, (2) reduced second-order models of
fourth-order systems as illustrated in Sects. 5.3, 5.5 and 5.6,
respectively, then the proposed approach provides smooth
response for set-point tracking and disturbance rejection, but
the speed of response is slower than that obtained fromWang
et al. and SIMC design.

Remark 4 The proposed IMC-based PID deals with some
interesting examples like systems having attributes of pole–
zero cancelation, oscillatory nature and discontinuous-type
nonlinearities. To solve such examples, complex algorithms
are required andprobably simple IMC-based schemes are not
yet explored. However, the examples considered in this paper
are not covering all aspects of different dynamics of second-
order processes like unstable systems, double integrators
systems, and systems having highly nonlinear dynamics.
Also, the concrete formulation of λ tuning law is yet to
explore.

8 Conclusion

This paper establishes a simple analytical technique to derive
the tuning parameters of PID controller based on IMC
scheme. The proposed approach is verified for different
types of second-order system and approximated second-
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order models of higher-order systems. The results are ver-
ified through simulations which demonstrate the superiority
of the proposed method for set-point change, disturbance
rejection attributes, and robustness due to modeling inac-
curacies as compared to other existing popular methods.
The results show that for all types of system, response is
smooth with minimum overshoot in comparison with other
methods; and also in most of the examples, the perfor-
mance indices are better except in few cases, where existing
methodology is better. Here, it is not claimed that the pro-
posed method is the best among the other existing methods
for all class of problems, but it is observed that for the
most of the class of systems, the proposed approach pro-
duces improved performance, and more interestingly, this
approach is based on conventional concept of internal model
control.

9 Appendix

PID tuning using Rivera et al. [13]
To obtain PID parameters, we first convert (23) in the

form

P(s) = k

(τ1s + 1)(τ2s + 1)
, τ1 > τ2 (A1)

And then using formula given in Table I (B) in [13], we get

KP = τ1 + τ2

kλ
, TI = τ1 + τ2, TD = τ1τ2

τ1 + τ2
(A2)

PID tuning using Lee [16]
In this design scheme, we rearrange the plant format

described by (23) into

P(s) = k

(τ 2s2 + 2ετ s + 1)
(A3)

To obtain the PID settings, we substitute the plant parameters
of (A3) in (24) of [16] which give

KP = T

2kλ
, TI = 2ετ − λ

2
, TD = TI − 2ετ + τ 2

λTI
(A4)

PID tuning using Skogestad [19]
In this method, we first convert the plant expressed in (23)

in to the form as mentioned in (A1). Next, approximate it
into first-order time delayed system as PM (s) = ke−θs

τ̃ s+1 where
θ = τ2

2 , τ̃ = τ1 + τ2
2 . Now using SIMC PI setting given in

[19], we get

KP = τ̃

k(λ + θ)
, TI = min{τ1, 4(λ + θ)} (A5)

PID tuning using Honeywell [33]
In this method, we have consider the structure of PID of

the form C(s) = KP

(
1 + 1

TI s

) (
TDs+1
αTDs+1

)
. To evaluate the

tuning,we consider themethod expressed in [33]which gives

KP = 3

k
, TI = τ1 + τ2, TD = τ1τ2

τ1 + τ2
, α = 0.1 (A6)

References

1. Åström, K.J.; Hägglund, T.: Advanced PID Control. ISA-The
Instrumentation, Systems, and Automation Society. Research Tri-
angle Park, NC 27709 (2006)

2. Ho,W.K.; Hang, C.C.; Zhou, J.H.: Performance and gain and phase
margins of well-known PI tuning formulas. IEEE Trans. Control
Syst. Tech. 3(2), 245–248 (1995)

3. Cominos, P.; Munro, N.: PID controllers: Recent tuning meth-
ods and design to specification. IEE Proc. Control Theory
Appl. 149(1), 46–53 (2002)

4. Li, S.; Gu, H.: Fuzzy adaptive internal model control schemes for
PMSM speed-regulation system. IEEE Trans. Ind. Inf. 8(4), 767–
779 (2012)

5. Ho, W.K.; Lim, K.W.; Hang, C.C.; Ni, L.Y.: Getting more
phase margin and performance out of PID controllers. Automat-
ica. 35(9), 1579–1585 (1999)

6. Ntogramatzidis, L.; Ferrante, A.: Exact tuning of PID controllers
in control feedback design. IET Control Theory Appl. 5(4), 565–
578 (2011)

7. Tan, N.; Kaya, I.; Yeroglu, C.; Atherton, D.P.: Computation of
stabilizing PI and PID controllers using the stability boundary
locus. Energy Convers. Manag. 47(18-19), 3045–3058 (2011)

8. Anwar,M.N.; Shamsuzzoha,M.; Pan, S.: A frequency domain PID
controller design method using direct synthesis approach. Arab J.
Sci Eng. 40, 995–1004 (2015)

9. Padula, F.; Visioli, A.: Tuning rules for optimal PID and fractional-
order PID controllers. J. Process Control. 21(1), 69–81 (2011)

10. Isaksson, A.; Hägglund, T.: Editorial: PID control. IEE Proc. Con-
trol Theory Appl. 149(1), 1–2 (2002)

11. Morari, M.; Zafiriou, E.: Robust Process Control. Prentice-Hall,
Englewood Cliffs, NJ (1989)

12. Saxena, S.; Hote, Y.V.: Advances in internal model control tech-
nique: a review and future prospects. IETE Tech. Rev. 29(6), 461–
472 (2012)

13. Rivera, D.E.; Morari, M.; Skogestad, S.: Internal model con-
trol. 4. PID controller design. Ind. Eng. Chem. Process Des.
Dev. 25(1), 252–265 (1986)

14. Hang, C.C.; Ho, W.K.; Cao, L.S.: A comparison of two design
methods for PID controllers. ISA Trans. 33(2), 147–151 (1994)

15. Horn, I.G.; Arulandu, J.R.; Gombas, C.J.; VanAntwerp, J.G.;
Braatz R., D.: Improved filter design in internal model control. Ind.
Eng. Chem. Res. 35(10), 3437–3441 (1996)

16. Lee, Y.; Park, S.; Lee, M.; Brosilow, C.: PID controller tun-
ing for desired closed-loop responses for SI/SO systems. AicHe
J. 44(1), 106–115 (1998)

17. Isaksson, A.J.; Graebe, S.F.: Analytical PID parameter expressions
for higher order systems. Automatica. 35(6), 1121–1130 (1999)

18. Wang,Q-G.;Hang,C.C.;Yang,X.-P.: Single-loop controller design
via IMC principles. Automatica. 37(12), 2041–2048 (2001)

19. Skogestad, S.: Simple analytic rules for model reduction and PID
controller tuning. J. Process Control. 13, 291–309 (2003)

123



Arab J Sci Eng (2016) 41:3473–3489 3489

20. Shamsuzzoha, M.; Lee, M.: IMC-PID controller design for
improved disturbance rejection of time-delayed processes. Ind.
Eng. Chem. Res. 46(7), 2077–2091 (2007)

21. Ali, A.; Makhi, S.: PI/PID controller design based on IMC and per-
centage overshoot specification to controller setpoint change. ISA
Trans. 48(1), 10–15 (2009)

22. Zhao, Z.; Liu, Z.; Zhang, J.: IMC-PID tuningmethod based on sen-
sitivity specification for process with time-delay. J. Central South
Univ. Technol. 18(4), 1153–1160 (2011)

23. Tan, W.: Unified tuning of PID load frequency controller for
power systems via IMC. IEEE Trans. Power Systems. 25(1), 341–
350 (2010)

24. Alcántra, S.; Zhang, W.D.; Pedret, C.; Vilanova, R.; Skogestad,
S.: IMC-like analytical H∞ design with S/SP mixed sensitivity
consideration: utility in PID tuning guidance. Journal of Process
Control. 21(6), 976–985 (2011)

25. Liu, T.; Gao, F.: Enhanced IMCdesign of load disturbance rejection
for integrating and unstable processes with slow dynamics. ISA
Trans. 50, 239–248 (2011)

26. Vilanova, R.: IMC based robust PID design: Tuning guidelines and
automatic tuning. J. Process Control. 18, 61–70 (2008)

27. Lennartson, B.; Kristiansson, B.: Evaluation and tuning of robust
PID controllers. IET Control Theory Appl. 3(3), 294–302 (2009)

28. Sutikno, J.P.; Aziz, B.A.; Yee, C.S.; Mamat, R.: A new tun-
ing method for two-degree-of-freedom internal model control
under parametric uncertainty. Chin. J. Chem. Eng. 21(9), 1030–
1037 (2013)

29. Anderson, B.D.O.; Liu, Y.: Controller reduction: concepts and
approaches. IEEE Trans. Automat. Control. 34(8), 802–812 (1989)

30. Clark, R.N.: Integral of the error squared as a performance index
for automatic control systems. Trans. Am. Inst. Electr. Eng. Part
II: Appl. Ind. 71(6), 467–471 (1961)

31. Garpinger, O.; Åström, K. J.; Hägglund, T.: Criteria and trade-offs
in PID design. In: Proceedings IFAC conference on Advances in
PID control, Brescia, Italy (2012)

32. Precision Modular Servo Control Experiments-33-927S, Manual,
Feedback Instruments Ltd., ParkRoad, Crowborough, East Sussex,
TN6 2QR, UK

33. Panda, R.C.; Yu, C-C.; Huang, H-P.: PID tuning for SOPDT
systems: review and some new results. ISA Trans. 43(2), 283–
295 (2004)

34. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle
River, NJ (2002)

35. Tan,N.;Atherton,D.P.:Anewapproach to the stability of nonlinear
systemswith uncertain plant parameters. In: ProceedingsAmerican
Control Conference, Denever, Colorado, USA (2003)

36. Ouyang, R.; Jayawardhana, B.; Scherpen, J. M. A.: PD control of
a second-order system with hysteric actuator. In: Proc. 52nd IEEE
conference on Decision and Control, Florence, Italy (2013)

37. Shamsuzzoha, M.: A unified approach for proportional-integral-
derivative controller design for time delay processes. Korean J.
Chem. Eng. 32(4), 583–596 (2015)

38. Xia, C.; Yan, Y.; Song, P.; Shi, T.: Voltage disturbance rejection for
matrix converter-based PMSM drive system using internal model
control, IEEE Trans. Ind. Electron. 59(1), 361–372 (2012)

39. Liu, G.; Chen, L.; Zhao, W.; Jiang, Y.; Qu, L.: Internal model con-
trol of permanent magnet synchronous motor using support vector
machine generalized inverse. IEEE Trans. Ind. Inf. 9(2), 890–
898 (2013)

40. Saxena, S.;Hote,Y.V.:Load frequency control in power systemsvia
internal model control scheme and model-order reduction. IEEE
Trans. Power Syst. 28(3), 2749–2757 (2013)

41. Yazdanian, M.; Mehrizi-Sani, A.: Internal model-based current
control of the RL filter-based voltage-sourced converter. IEEE
Trans. Energy Convers. 29(4), 873–881 (2014)

123


	Simple Approach to Design PID Controller via Internal Model Control
	Abstract
	1 Introduction
	2 Fundamentals of IMC
	3 Proposed Control Law
	4 Performance Assessment
	4.1 Integral Error Criterion
	4.2 Maximum Sensitivity to Modeling Error

	5 Numerical Studies
	5.1 Second-Order Over Damped System
	5.2 Second-Order Under Damped System
	5.3 Second-Order Under Damped System Having Delay and RHP Zero
	5.4 Second-Order System Depicting Pole--Zero cancelation
	5.5 Fourth-Order Over Damped System
	5.6 Fourth-Order System Having Zero on LHP
	5.7 Second-Order Undamped System

	6 Application to Nonlinear Systems
	6.1 Second-Order Integrating Type System Having Saturation Nonlinearity
	6.2 Second-Order System Having Backlash Nonlinearity

	7 Discussions
	8 Conclusion
	9 Appendix
	References




