
Arab J Sci Eng (2016) 41:2771–2785
DOI 10.1007/s13369-015-2012-3

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Reliable Communication Protocol for Applications in Multi-Robot
Systems

Shahabuddin Muhammad1 · Mayez Al-Mouhamed2 · Nazeeruddin Mohammad1

Received: 9 April 2015 / Accepted: 10 December 2015 / Published online: 23 December 2015
© King Fahd University of Petroleum & Minerals 2015

Abstract Multi-robot systems (MRSs) have a wide variety
of applications, such as search and rescue in disaster scenar-
ios, where many robots coordinate with each other to accom-
plish a task. Such MRS applications use infrastructureless
environment in which robots rely on inherently unreliable
ad hoc network to communicate with each other. Reliable
communication among the peers can greatly enhance the
performance of a multi-robot system. This paper proposes
a reliable communication protocol (RCP) for applications in
multi-robot systems. RCP acts as an interface between MRS
applications and the underlying communication framework.
RCP accepts data fromMRS applications and reliably deliv-
ers it to other peers. RCP is transparent to MRS applications
as well as the underlying communication hardware. To eval-
uate its performance, we have implemented RCP on seven
Stargate micro-controllers that communicate with each other
using an ad hoc network. Further, to test the performance of
RCP in MRS applications involving higher number of peers,
we have also implemented RCP on laptops with Intel i7 mi-
croprocessors. The obtained results show that RCP achieves
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reliability while reducing packet delivery time as well as the
number of retries needed to deliver a failed packet.

Keywords Peer-to-peer networks · Ad hoc networks ·
Multi-robot systems

1 Introduction

Multi-robot systems (MRSs) are composed of two or more
coordinating autonomous robots to accomplish a common
objective or goal. When compared to single-robot systems,
MRSs have better task completion times, higher quality re-
sults, and increased robustness against individual robot fail-
ures [1]. Because of these benefits, MRSs have several mil-
itary and civil applications. One of the key applications of
MRS is to assist humans in urban search and rescue scenarios
in dangerous situations (or after large-scale disasters). MRS
is also a good candidate for surveillance and environment
monitoring.

Multi-robot coordination is the key factor that influences
MRS performance [2]. Team-based MRS applications such
as search and rescue typically deploy a fixed number of ro-
bots. These robots need to coordinate with their peers to
achieve the assigned task. The communication among au-
tonomous robots in MRS can happen implicitly or explicitly.
In implicit modes of communication, the robots are restricted
to derive the internal states of their teammates through pas-
sive observations or sensing their surroundings [3], whereas
in explicit modes of communication the robots can request
and notify the internal states of teammates. Under noisy and
dynamic environments, if robots need to succeed in coordi-
nated efforts, the communicationmust be done explicitly [4].
Another important application that needs explicit communi-
cation is a team of robots playing in a soccer field (e.g.,
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Fig. 1 Reliable communication
protocol acts as an interface
between application layer
protocols and the underlying
communication framework

in RoboCup competitions). Each robot needs to inform its
current position to other teammates at frequent intervals.
Message exchanges continuously take place in such environ-
ments, and successful delivery of these messages is essential
to achieve the goals of the competition.

The inherent characteristics of all these applications de-
mand an infrastructureless environment that supports reli-
able communication among coordinating robots. An ad hoc
network is a key candidate that provides a communication
framework in which individual devices can send their mes-
sages to their peers in such applications. The main charac-
teristic of ad hoc networks is their non-reliance on fixed
infrastructure. In addition, ad hoc networks also share the
same features as peer-to-peer networks, such as decentral-
ization, autonomy, and symmetry of peers [5]. Therefore, ad
hoc networks are ideally suitable for applications with multi-
robot systems.

As compared to traditional wired networks, wireless chan-
nels are noisy and have much higher bit error rates. This
results in increased packet loss in a wireless network includ-
ing ad hoc networks. Therefore, ad hoc networks without any
additional support cannot provide reliable communication to
MRS applications. This paper presents a reliable and efficient
communication protocol forMRS applications in ad hoc net-
works. We propose a peer-to-peer-based reliable communi-
cation protocol (RCP) that works as themiddle layer between
MRS applications and communication hardware as shown in
Fig. 1. RCP receives packets fromMRS applications, encap-
sulates them into RCP data packets (RDPs), and ensures the
reliable delivery ofRDPs through an underlyingwireless net-
work. The RCP layer at the receiving side decapsulates the
received RDPs and delivers them to MRS applications. RCP
achieves reliability seamlessly without any modification at

the application layer as well as without any changes in the
communication
protocols.

To investigate the effectiveness of our proposed protocol,
we create a testbed environment consisting of seven Stargate
micro-controllers that implements a peer-to-peer communi-
cationmodel.Moreover, to test the performance in largeMRS
scenarios, we have also implemented the proposed protocol
in a multi-threaded environment using Intel i7 microproces-
sors. In both implementations, RCP allows each robot to send
data without any dependence on other peers.

The rest of the paper is organized as follows. Section 2
summarizes various communication models proposed for
MRS in the literature. Section 3 provides some background
onwhy there is a need formobile, P2P, reliable auction-based
communication system. Section 4 presents the architecture,
communication algorithm, and implementation details of the
proposed protocol RCP. Section 5 explains the experimen-
tal results followed by comparisons with other ACK-based
approaches. Section 6 presents the results related to the im-
plementation and testing of RCP for largeMRS applications.
The paper is concluded in Sect. 7.

2 Related Work

A variety of communication systems have been studied for
MRS. The proposed communication models for MRS in
the literature can be broadly classified as client/server, pub-
lish/subscribe, and peer-to-peer (P2P). In the client/server
model, one robot acts as a server performing the major-
ity of the processing tasks. The other robots in the MRS
act as clients, initiating connections with the server when-
ever there is a need to request or transfer the coordination
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data. In the publish/subscribe model [6], there are publish-
ers which post messages to a group of subscribers that are
subscribed to a class. The publishers do not have control
over the intended recipients, and they are decoupled with
the subscribers. In peer-to-peer (P2P) communicationmodel,
any node can communicate randomly with other nodes. P2P
model is well suited for MRS applications that need quick
coordination among peerswithout any centralized infrastruc-
ture. In general, the performance of MRS communication
protocols depends upon the characteristics of network and
the purpose ofMRS [7]. The following are some examples of
proposed/implemented communication strategies for MRS
in research literature.

RoboCup TeamRFC Stuttgart used a communication sys-
tem based on a centralizedmessage dispatcher [8]. All agents
(robots) establish a TCP connection with a special entity
called message dispatcher (MD). All agent communications
happen over the MD. In systems where agents are autono-
mous, MD does not process the messages received from
agents except for some filtering. MD sorts the received mes-
sages based on priority and dispatches high-priority mes-
sages first. Messages are dropped when they become older
than a certain predefined threshold. The main benefit of this
approach is that agents do not need to have any knowledge
about the other agents in the system, and need to know only
the MD’s address. The main disadvantages of this approach
are: (1) Messages are delayed when MD is overloaded; (2)
additional communication overhead in maintaining several
distributed MDs in order to avoid single point of failure; (3)
TCP connections allow continuous stream of data, so agents
need to provide their own encoding to differentiate between
the messages.

The Cooperative Autonomous Mobile Robots with Ad-
vanced Distributed Architecture (CAMBADA) team [9] of
the University of Aveiro uses a middleware infrastructure for
robot communication.Thismiddleware implements aRecon-
figurable and Adaptive Time Division Multiple Access (RA-
TDMA) communication protocol with self-configuration ca-
pabilities. In order to avoid collisions, TDMA disperses the
transmissions of teammembers in time. The duration of time
slots (Ttup) is adapted dynamically. Further, they provided
mechanisms for self-configuration capabilities to dynami-
cally adapt to the number of active team members [10].
Although this protocol provides a solution for dispersing
the robot states, it lacks explicit support for synchronization
messages. The synchronization messages are delayed when
several rounds of communication are needed between robots.
In MRS applications that need a guaranteed delivery, some
extra mechanisms need to be implemented. In [11,12], the
authors have extended RA-TDMA solution to accommodate
synchronization messages among robots. They propose two
modes, one for transmission of robot state messages and the
other for transmission of synchronization messages. For this,

they use UDP multi-cast groups composed of all agents in
the team. To tolerate packet losses, all agents multi-cast the
responses so that if an agent does not get initial packet it
will get all needed information from the next packet. How-
ever, this results in unnecessary communication overhead on
resource constrained agents and networks.

Several MRS systems use publish/subscribe models for
message passing among robots. The Mission Oriented Op-
erating Suite (MOOS) [13] is a popular publish/subscribe-
based message passing system in the underwater robotics
community. All communications in MOOS are sent through
a central server, and clients periodically “pull” messages.
The Carnegie Mellon Robot Navigation Toolkit (CARMEN)
[14] also uses a central hub to coordinate communications be-
tween modules. It uses push-based publish/subscribe model
that dispatches themessages to subscribers immediately. This
toolkit also provides a configuration option to accommodate
direct communications among clients.

The SAE standard Joint Architecture for Unmanned Sys-
tems (JAUSs) implements a messaging architecture that en-
ables communication and control of unmanned air/ground/
sea systems [15]. JAUS is designed around a routed mes-
sage passing system in which each message has a specific
destination. JAUS uses a hierarchical organization consist-
ing of subsystems, nodes, and components. Components do
not communicate directly with each other, but rather through
the node manager. Messages that pass outside of a subsys-
tem boundary are routed by the communicator. JAUS does
not guarantee message delivery. Standard and custom JAUS
services are utilized to support command and control of un-
manned air systems (UAS) and unmanned underwater vehi-
cles (UUV) [16].

The lightweight communications and marshaling (LCM)
[17] library is designed for message passing and data mar-
shaling in real-time robotic research applications. It uses
push-based publish/subscribe model for message passing,
which internally uses UDP multi-cast as transport protocol.
LCM does not use a centralized mediator for relaying mes-
sages; instead it simply broadcasts all messages to the clients.
LCM provides only a best-effort packet delivery mechanism
and gives preference to the recent messages.

Robotics operating system (ROS) [18] uses a messag-
ing subsystem that provides a publish/subscribe model and
a service-oriented model. Their message passing interface
is generic, and different transports are supported including
shared memory, TCP, and UDP. The communication system
offered by standard ROS alone cannot guarantee a reliable
communication among peers [19]. Integrated mission plan-
ning for heterogeneous robotic agents (IMPERA) [20] ex-
tends standardROS communication frameworkwith a cloud-
based communication layer. They propose cloud-based pub-
lish/subscribe mechanism that enables reliable communi-
cation between robots using the data distribution service
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(DDS) [21] as the transport layer. Their experimental results
show that the cloud-based DDS overcomes issues related
to packet losses that occur in pure centralized approaches
[19].

In [22], authors design a multi-robot system consisting of
heterogeneous robots to help disabled and elderly in homeen-
vironments. They used a centralized server (portal) to collect,
aggregate, and process data from robots. Portal also gener-
ates appropriate control actions and sends the control signals
to robot manipulators. Communication between portal and
robots is established using one of the variants of 802.11.
Portal uses cloud services for processing computationally
intensive tasks such as simultaneous localization and map-
ping (SLAM), image processing, and the kinematics and path
planning. They have also proposed a high level of integration
with ROS.

In addition to publish/subscribe communication models,
several P2P approaches have been proposed in the litera-
ture to efficiently achieve reliable communication in MRS.
In [23], aTCP/UDP-based communication is proposedwhere
a central node sends an auction to all intended recipients se-
quentially using TCP/UDP packets. The central node sends
an auction to the next recipient only after receiving the ac-
knowledgment fromprevious recipient. Such sequential com-
munication is not scalable and increases auction comple-
tion time. In UDP Broadcast with Token Passing (UBTP)
scheme [23], auctions carrying a sequence (SEQ) of recip-
ients are broadcasted by a central node. The SEQ dictates
the order in which the recipients should reply. When the first
node sends the reply to the central node, it also sends a to-
ken to the next node in the sequence. This process continues
until all the recipients in the SEQ are exhausted. If for some
reason a token has not reached the next intended recipient,
then it acknowledges the auction automatically after wait-
ing for a certain time. An auction is successfully concluded
when all acknowledgments are received. Otherwise the auc-
tion is repeatedwith aSEQcontainingonly the IDsofmissing
nodes. In general, all of these approaches that employ a cen-
tral node are not suitable for decentralized MRS. In [24],
UBTP scheme is extended to support sending auctions by
any peer instead of by a single central node, but this scheme
also relies on token passing to maintain the acknowledgment
order.

UBPP-Back [25] attempts to remove the tokens by broad-
casting the acknowledgments. Upon receiving an auction, the
first node in the sequence sends ACK immediately, whereas
the remaining nodes wait for an ACK from the previous
node in the sequence. UBPP-Back is well suited for envi-
ronments where packet losses are minimal. Its performance
degrades significantly when there are packet losses in the
system, which is typical of MRS communication under ad
hocnetworks. Furthermore, broadcastingACKs increases the
network traffic considerably.

In short, there are several recurring themes used in the
literature for MRS communication. Publish/subscribe model
is the most commonly used, with TCP being the most com-
mon transport protocol [26]. The following are a few main
drawbacks of these approaches. Client/server communica-
tionmodel is not suitable inMRS as all robots generally have
equal processing power. Therefore, dependence on one robot
for the server tasks creates a bottleneck and delays the whole
coordination process. Further, communication is tightly cou-
pled between client and server, and connection loss may re-
sult in data losses. Publish/subscribe type of communication
is also not suitable in MRS as the target robots for a mes-
sage are decided dynamically by the sender, which implies
several class formations resulting in unnecessary overhead.
Another drawback is that all these architectures have a cen-
tralized component. Even if some publish/subscribe architec-
tures support peer-to-peer communications on a component
level, a centralized hub serves as a lookup table for ports and
addresses of the modules [19]. Cloud-based solutions elimi-
nate the dependence on central component by distributing the
service across many servers. Cloud-based solutions do help
in a few MRS applications, but there are many other MRS
applications where continuous access to cloud infrastructure
is not possible. Peer-to-peer (P2P) robot communication in
infrastructureless mode provides an alternative for MRS ap-
plications.

This paper proposes a P2P communication protocol called
reliable communication protocol (RCP) that provides reli-
able data delivery to MRS applications without relying on
any central component. The proposed protocol uses UDP
and does not require any changes in the underlying TCP/IP
stack. In addition to typical auction-based MRS applications
such as [27,28], RCP can also be used in generic MRS ap-
plications.

3 Distributed Intelligence for Multi-Robot Systems

A multi-robot cooperative architecture is a general frame-
work for implementing distributed artificial intelligent be-
haviors. The most commonly used control architecture in
multi-robot systems is based on three-level architecture [29–
32], which are:

– At the strategic level, the behaviors are typically delib-
erative. These are characterized by real-time cooperative
decision making. This requires intensive communication
due to extensive negotiations, which are difficult to meet
the real-time decision-making requirements in a soccer
game.

– At the tactical level, the behaviors are reactive and de-
liberative. Behaviors are characterized by peer process
cooperation aiming at implementing a chosen strategy
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such as tactical playing using a defensive strategy, role
(agent) re-assignment, and synchronization.

– At the operational level, the behaviors are basically re-
active, which requires closed sense–think–act loops with
tight real-time requirements.

Example of multi-robot systems that need the above in-
telligent architecture can be found in a set of mobile robots
playing soccer [33], an expedition of robots moving in a hos-
tile area [34], a team of rescue robots exploring a building
after a disaster [35], etc. In this paper, we focus on the ap-
plication of a team of mobile robots playing soccer. In the
following, we briefly describe each layer in the above three-
level architecture:

3.1 The Deliberative Component

The deliberative component is a cooperative behavior (CB)
[32,36] that can be found in a team of autonomous robots
that exchange their beliefs using a series of collective com-
munications. The objective is to cooperate in evaluating the
present opportunity under the current state, exchanging infor-
mation about the current location of own teamandopponents,
carrying out some geometric evaluation, resolving conflicts
in roles and coverage, and finding the best role assignment
to implement a recently tuned strategy. Hence, a CB con-
sists of a team of independent robots that cooperate toward
achieving a goal while complementing each other and resolv-
ing conflicts. At the strategic level, the game strategy allows
tuning to a more or less offensive or defensive strategy in
response to some emerging conditions. The game strategy
varies based on kick off, half time, final objective, game time,
and goal difference. In addition to strategy tuning, dynamic
role switching provides a flexible approach to rapidly adapt
the robot team to unforeseen situations. Hence, distributed
coordination is based on a comprehensive view of the en-
vironment. Due to the dynamic nature of the game, it must
be implemented as a distributed query on the robots because
each has partial environment information.

3.2 The Tactical Component

At the tactical level, the game conditions may require coop-
erative decision to adopt different collective tactics such as
choosing a more defensive tactic when the opponent team
is noticeably advancing in the game score. A new tactic is
implemented by re-assigning roles (tasks or behaviors) to
adapt the team to current team tactic and game state using
inter-robot negotiations. Role negotiation and task alloca-
tion [29,30,37] lead to dynamic role assignment depending
upon changes in game state and emerging opportunities. The
above can be accomplished by using two supporting compo-
nents, which are (1) role playing and (2) commitment. Both

of these components are based upon intensive communica-
tion with information exchange among the team members.

The main role playing primitives are: cooperative posi-
tioning (CP), role negotiation (RN), goal clearance (GC),
striker-defender (SD), etc. CP re-assigns roles based on cur-
rent position of robot, ball, own team, and opponent’s team.
RN coordinates the analysis of game state and collectively
determines whether the team should defend or attack as a
function of remaining time and goal difference, and assign-
ment of new roles. GC coordinates moving the goalie which
is closer to the ball than any other teammates and passes
the ball to some partner. SD assigns the robot closest to the
ball as a striker and the others as defenders after examining
the distance to ball and the position of the opponent team
members as seen by the own teammates [2,38,39].

The commitment is a temporary alliance among a few
team members toward the achievement of a team objective
like scoring a goal. Examples of temporary commitments are
the ball-passing (BP) and dribbling-helper (DH) behaviors.
The dribbling with a helper allows an attacker to dribble the
ball while coordinating its movements with another attacker
in preparation for kicking toward the goal or ball passing.
As an example of the above negotiation mechanisms, we
describe the behavior–communication aspects of a commit-
ment for ball passing. A robot becomes a kicker when it
has control of the ball. When the goal is not visible due to
surrounding opponents, the kicker may detect the need to es-
tablish a relational commitment with a partner to carry out
the ball-passing technique. The kicker broadcasts an auction
announcing the detection of an opportunity for scoring and
asking its own teammates to make a bid based on their in-
stantaneous game conditions like availability in some field
area and a good visibility of the goal. The bids are received
and analyzed by the kicker which may return a grant mes-
sage to the winner, which becomes the partner, and the other
bidders become free. In the case where no such a partner
can be found the attacker behavior may decode another ac-
tion like dribbling the ball in some favorable direction. If a
partner is found for the ball passing, the kicker re-evaluates
the scene and may change its state to prepare for the ball
passing. For this, frequent synchronization with the partner
is done through peer-to-peer auction (multi-cast) messaging.
However, the dynamic game conditions, like visibility of the
goal at the kicker and partner, may change into one of the
following scenarios:

– The goal becomes quite visible and the kicker must kick
the ball and end the previously established relational
commitment, which frees the partner.

– The kicker coordinates and synchronizes the ball passing
with the partner if the goal is quite visible from its current
location. In this case, the partner state becomes the ball
intercepting,whichmay lead to dynamically kick theball.
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– While intercepting the ball, the partner finds the goal
weakly visible. This may trigger the need to establish
another relational commitment and restart all over again.

3.3 The Reactive Component

The reactive component is based on a set of sense–think–
act behaviors, each is represented by a specific finite state
machine [30,32,35,40,41]. A typical reactive behavior con-
sists of grabbing an image of the environment, analyzing the
image to identify a number of state parameters including self-
localization, and using the parameters to traverse a decision
tree, which results into an action. Examples of reactive be-
haviors that are frequently used in RoboCup competitions
(humanoid league) [42] are searching-ball, walking-to-ball,
stand-behind-ball, kick-ball, etc. In the walking-to-ball, if an
attacker is away from the ball, traversing the decision tree
leads to “continue moving toward the ball” action until the
robot is very close to the ball. Note that soccer game im-
poses hard real-time requirements such as moving toward
the ball, ball capturing, and ball dribbling which all require
fast response based onmotion, vision and action, but without
communicating with teammates (at this level).

3.4 Hybrid Architecture

Research in the last two decades showed that the above three-
level cooperative architecture is unlikely to be scalable due to
the intensive collective communication and the difficulties to
meet the real-time requirements in cooperative decisionmak-
ing. In addition, unpredictable eventsmayoffset the benefit of
costly planned behaviors, especially in dynamic situations.
For this, most of the proposed architectures mainly use a
hybrid approach combining of the both reactive and delibera-
tive components. The reactive component improves response
time, while the deliberative component supports some intel-
ligent behaviors.

Both the deliberative and tactical components can be built
on the top of a specific collective communication layer. The
application domain of the proposed approach is the soc-
cer game. The basic communication style consists of a set
of well-defined queries. A query is issued by a peer node
about a specific topic, which requires imperative reply from
all or a subset of nodes including the return of some local
topic-related information. The requesting node combines the
received information and uses it to traverse its own decision
tree. The node may announce the outcome to the concerned
nodes seeking their own perception of the outcome. This
process can be repeated by other teammates until a consensus
is reached. For the above reasons, we propose a P2P reli-
able, light weight, auction-based communication framework
to efficiently support the implementation of a distributed ne-
gotiation mechanism.

4 Reliable Communication Protocol (RCP)

This section describes our proposed strategy, RCP, which
provides reliable and efficient communication for MRS ap-
plications. To achieve efficiency, RCP employs UDP as a
transport layer protocol because it has lower overhead as
compared to TCP. As observed in [24] TCP performed 4–5
times slower than different variants of UDP-based auction
schemes in multi-robot applications. Reliability in RCP is
achieved through a combination of ACK sequencing and
packet retransmission. Every RCP packet is associated with
an acknowledgment sequence that dictates the order in which
ACKs should be sent. This reduces the number of collisions
by allowing only one ACK to be sent at a time. Further-
more, RCP also uses broadcast/unicast retry mechanism to
deal with missing ACKs.

RCP implementation has two main parts: dispatcher and
receiver. Each peer participating in the ad hoc network per-
forms these two tasks which run in parallel as threads. The
pseudo-code for dispatcher and receiver threads is shown in
Algorithm 1. We briefly describe the working of each thread
in the following subsections.

4.1 Dispatcher Thread

The dispatcher thread broadcasts RCP data packet (RDP)
and waits for the acknowledgments from other nodes in the
network to ascertain the successful delivery of the packet. In
addition to notifying the sender the successful delivery of an
RDP, an ACK can also carry RDP response. For example, an
ACK contains auction response in auction-basedMRS appli-
cations. Each RDP is sent with a sequence (seq[1 . . . n−1]),
which defines the order in which recipient nodes should send
acknowledgments (ACKs). Figure 2 shows RCP packet for-
mat, and Fig. 3 shows a scenario consisting of seven Stargate
devices in the network. Node 1 broadcasts an RDP with
the sequence “3, 4, 2, 5, 6, 7”, so the node with ID 3 ac-
knowledges the RDP first followed by the nodes with IDs 4,
2, 5, 6, and 7 respectively. In general, each node waits for
(s − 1) ∗ TinterACK, where s is the position of the node’s ID
in the sequence and TinterACK is the minimum time between
two acknowledgments to avoid collisions. In other words,
the node in the first position will acknowledge immediately
and other nodes wait for TinterACK, 2 ∗ TinterACK, etc. A dis-
patcher waits for Ttimeout to receive all the acknowledgments.
If all the acknowledgments are not received in Ttimeout, then
the dispatcher rebroadcasts the RDP with a new sequence
containing only the IDs of the missing nodes. The dispatcher
retries only for a fixed number of times (nr ) before mark-
ing the RDP delivery unsuccessful. This sequencing option
can be switched off (using NoSeq mode) in which nodes can
acknowledge an RDP without any order. This removes the
time restrictions on other nodes to send acknowledgments.
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Dispatcher Thread
pkt_id ← 1; n ← total number of nodes;
retransmit ← false;
recd_acks[pkt_id, ack1, ack2, · · · , ackn] ← 0;
seq[1...n − 1] ← 0;
while RCP data packet is available do

generate random ack sequence;
bcast_pkt(pkt_id);
wait until Ttimeout expires;
if total_acks_recd < n − 1 then

if num_retries ≤ nr then
refill ack sequence randomly;
num_retries ← num_retries + 1;

else
pkt_id ← pkt_id + 1;

end
else

pkt_id ← pkt_id + 1;
end

end
Receiver Thread
while true do

Listen on port 2222 and wait for incoming packets;
if src_id == my_id then

continue;
end
if pkt_type == RDP then

if no sequence used then
if ack already sent then

continue;
end
send ack;

else
∃i ∈ {1 · · · n − 1} s.t. my_id ∈ seq[i] ⇒ s = i ;
send ack after (s − 1) ∗ Tinter ACK ;

end
else

if delayed/duplicate ack received then
return;

end
update recd_acks;

end
end
Algorithm 1: RCP Dispatcher and Receiver Threads

Fig. 2 RCP data and ACK packets

In this case, once an RDP is received, nodes do not wait for
(s − 1) ∗ TinterACK. Rather they send ACKs immediately.

In the case of missing ACKs, RCP may choose to resend
the RDP by either unicasting (Uc mode) or broadcasting (Bc
mode) it. In Uc mode, RDP is resent to only those nodes
whose acknowledgments were not received. The rationale

Fig. 3 Schematic diagram of the communication between Stargate de-
vices: node 1 broadcasts RCP data packet (solid line) with sequence:
3, 4, 2, 5, 6, 7. All the other nodes acknowledge the reception (dashed
line) in their respective turns

behind this approach is that the majority of nodes reply in
the first attempt, and it may be more conservative to send
fewer unicast RDPs to the missing nodes than a broadcast
RDP to everyone. If RDP is broadcasted, every node needs
to process the packet to find out whether it needs to send an
ACK, whereas unicast RDPs are sent to only selected nodes.
This results in a reduced processing overhead for those nodes
whose ACKs were successfully received by the dispatcher in
the previous attempt.

4.2 Receiver Thread

The receiver thread continuously listens for packets. If the
received packet is a data packet, it determines whether its ID
is in the sequence. If its ID is missing, it simply ignores the
packet. Otherwise it will send anACK in one of the following
two ways.

– In sequence mode, the receiver thread determines its or-
der (s) in the sequence and calculates the waiting time
((s−1) ∗ TinterACK) to send the acknowledgment. For this
purpose, the receiver starts a new thread which waits for
the required time and sends the acknowledgment packet
after the timer expires.

– In non-sequencemode, ACK is sent immediately without
any delay.

If the received packet is an acknowledgment for the lat-
est RDP sent by this node, then the receiver processes the
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packet and updates the record recd_acks as shown in Algo-
rithm 1. All duplicate ACKs received for obsolete RDPs are
discarded.

4.3 RCP Traffic Analysis

Let pb and Pe be a single bit and packet error probabilities,
respectively. Let S be the total packet size in bits, n be the
total number of nodes (Stargate devices) present in the net-
work, and Np be the total number of packets generated by
the system and r be the number of retries. We look into three
cases for analyzing the total traffic generated by the system.
In the first case, we assume ideal channel. That is, no error
in the packet transmission or reception. In the second case,
we assume minimum probability of error in the system in
case of non-ideal channel. That is, out of n − 1 receivers,
only one ACK is missing. So auction needs to be retransmit-
ted to only one node. In the last case, we assume maximum
probability of error in the system due to non-ideal channel.
In this case, none of the ACKs are received by the auctioneer
in the first and second tries, so auction needs to be retrans-
mitted the third time. In the case of ideal channel (case 1)
and channel with minimum error (case 2), the total number
of packets in the system will be the same in unicast-based
and broadcast-based retries. That is, Np = n2 in case 1 and
Np = n(n + 1) in case 2. But in case 3, the total number
of packets is [n + r(n − 1)]n in unicast-based retries and is
(n + r)n in broadcast-based retries. That is, for larger MRS,
broadcast-based retries introduce lesser traffic in the network
than unicast-based retries.

In the case of non-ideal channel, probability of packet
error Pe can be calculated as Pe = 1 − ((1 − pb)S). Since r
is the number of retransmissions required to deliver a packet
successfully, P[r = i] = (1 − Pe)Pi

e for i = 0, 1, 2. Now,
the total number of packets sent for unicast-based retries can
be calculated as Np = 1 · P[0] + (n − 1) · P[1] + (n −
1)P[2] + (n − 1) and Np = 1 · P[0] + 1 · P[1] + 1 · P[2] +
(n − 1) in worst and best cases, respectively. Similarly, the
total number of packets sent for broadcast-based retries is
Np = 1 · P[0] + 1 · P[1] + 1 · P[2] + (n − 1).

5 Stargate Experiments and Results

To evaluate the proposed approach, we have created an ad
hoc network with seven Stargate devices. A Stargate device
is a single-board computer that consists of an Intel 32-bit
400MHz Xscale processor, 96MB of memory, and a daugh-
ter card with 802.11b Wireless LAN support. RCP is im-
plemented in Java, and the byte code is transferred to the
Stargate devices. For our experiments, it is assumed that a
device always has RDPs and it broadcasts packets sequen-
tially independent of other nodes in the ad hoc network. This

Table 1 Parameters used in Stargate experimental setup

Parameters Values

Total RDPs per node (Stargate) 500

Number of nodes 7

nr 2

Ttimeout 50, 75, 100ms

TinterACK 10ms

implies that multiple outstanding RDPs (MOR) are present
in the system. That is, in a network of 7 Stargate devices,
at any given time there will be on average 6–7 outstanding
RDPs. The parameters used in Stargate experiments are given
in Table 1.

RCP has been tested for four different options depending
on whether acknowledgments are sent in a sequence or not,
and whether an unsuccessful delivery of an RDP is retrans-
mitted via multiple unicast messages or a single broadcast
message:

(1) SeqBc: There is an acknowledgment sequence in each
RDP and unsuccessful RDPs are retransmitted using a
broadcast message.

(2) SeqUc: This is similar to SeqBc except that unsuccess-
ful RDPs are retransmitted using unicast messages.

(3) NoSeqBc: In this case as in SeqBc, unsuccessful RDPs
are retransmitted using broadcast, but acknowledg-
ments for an RDP are sent immediately, that is, without
any sequence.

(4) NoSeqUc: This is similar to NoSeqBc except unsuc-
cessful RDPs are retransmitted using unicastmessages.

RCP with the above options is compared in terms of av-
erage packet delivery time (Tavg), total time to deliver 3500
RDPs (Ttotal), total time to deliver 70% of RDPs (T70%), and
percentage of RDPs delivered with zero, one, and two retries.
The experimental results for the above cases are summarized
in Table 2. The detailed results are plotted in Figs. 4, 5, 6, 7,
8 and 9.

Figure 4 represents four cases of RCP in terms of packet
delivery time. It plots the percentageof successfully delivered
RDPs for various time intervals. It can be seen in the figure
that with RDP delivery timeout of 50ms, both the options
that use sequence in ACKs (SeqBc and SeqUc) delivered
few RDPs in the beginning (that is, before 75ms) because
each node waits for its sequence before sending an ACK.
This implies that the last node in the sequence will wait for
(n − 1) ∗ TinterACK before sending an ACK. With smaller
RDP delivery timeout, a dispatcher considers an RDP to be
undelivered sooner than the time it takes for a node to wait
for its turn to send an ACK. This is also evident from Fig. 5
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Table 2 Summary of RCP results for Stargate with Ttimeout of 50, 75, and 100ms

RCP modes SeqBc SeqUc NoSeqBc NoSeqUc

Ttimeout (50, 75, 100) ms (50, 75, 100) ms (50, 75, 100) ms (50, 75, 100) ms

Tavg ms 126, 108, 98 135, 100, 97 52, 53, 57 49, 52, 54

T70% ms 140, 120, 100 155, 110, 100 60, 50, 50 55, 50, 50

Ttotal ms 81,856, 71,128, 63,189 82,129, 63,368, 61,628 40,722, 42,735, 46,359 36,826, 40,180, 42,579

Percentage of TotalRDPs(nr = 0) 2, 37, 76 1, 44, 78 73, 81, 83 74, 82, 85

Percentage of TotalRDPs(nr = 1) 66, 56, 22 51, 54, 21 24, 17, 15 25, 17, 15

Percentage of TotalRDPs(nr = 2) 33, 7, 2 48, 2, 1 3, 2, 2 1, 1, 0

Total packets sent 29,365, 26,950, 25,410 52,010, 36,540, 29,260 25,550, 25,235, 25,165 25,445, 25,165, 25,025

Fig. 4 Distribution ofRDPdelivery time for different RCPmodeswith
timeout 50ms

Fig. 5 Number of retries needed for different RCPmodeswith timeout
50ms

that most of the RDPs are not delivered in first attempt. The
majority of the sequence-based RDPs are delivered in sec-
ond and third attempts. When the RDP delivery timeout is

Fig. 6 Distribution ofRDPdelivery time for different RCPmodeswith
timeout 75ms

Fig. 7 Number of retries needed for different RCPmodeswith timeout
75ms

increased to 75 and 100ms (Figs. 6, 8), a dispatcher waits a
little longer and most of the ACKs are received in a sequence
within 75–100ms. This is the reason that in sequence-based
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Fig. 8 Distribution ofRDPdelivery time for different RCPmodeswith
timeout 100ms

Fig. 9 Number of retries needed for different RCPmodeswith timeout
100ms

approaches almost 50%ofRDPs are delivered in first attempt
when timeout is increased to 75ms (Fig. 7) and the majority
of RDPs are delivered in first attempt with 100ms timeout
(Fig. 9). This can also be seen in Table 2 that Tavg and Ttotal
have decreased with the increase in timeout in sequence-
based approaches.

The approaches with no sequence (NoSeqBc and NoSe-
qUc) deliver most of their RDPs quickly because there is
no wait time involved and each node acknowledges imme-
diately. This results in reduced average RDP delivery time
(Tavg) and total RDP delivery time (Ttotal) as given in Ta-
ble 2. Furthermore, it is interesting to note that increasing
the timeout in non-sequence-based approaches has a nega-
tive impact on Tavg and Ttotal. This is due to the fact that Tavg
is proportional to nr ∗ Ttimeout, so with higher timeouts a

Fig. 10 CDF of time needed to successfully deliver RDP for different
RCP modes with timeout 50ms

dispatcher has to wait a little longer before retransmitting an
RDP, thereby increasing Tavg and Ttotal.

It is also clear from the table that resending a failed RDP
via unicast or broadcast in both cases (sequence or non-
sequence-based ACKs) has only a slight effect in their RDP
delivery times where unicast-based retries slightly outper-
form the broadcast-based retries. Figure 10 shows an inter-
esting scenario where SeqBc performs better than SeqUc.
This is because the majority of the sequence-based RDPs
could not be delivered in smaller timeout of 50ms. There-
fore, it is better to resend an RDP via a single broadcast
instead of many unicast RDPs. The results in Sect. 6.3 will
further elaborate this point.

The total number of packets sent by the system is given in
Table 2. These results match the analytical values obtained
in Sect. 4.3. It clearly indicates that in smaller multi-robot
systems there are very few missing ACKs due to which
broadcast-based retries introduce similar number of pack-
ets in the system as unicast-based retries. Only when many
ACKs are missing (as in the case SeqUcwith timeout 50ms),
unicast-based retries produce more packets.

In short, the current experimental setup with 7 Stargate
devices suggests that usingACKsequence and retransmitting
RDPs via broadcast result in performance degradation. We
can deduce that in small MRS communication using ad hoc
networks (1) it is better not to use sequence because adding an
additional sequence requirement in ACK causes extra delay
which outweighs the benefits of organizing ACKS to avoid
collision; (2) it is better to resend the undelivered RDPs via
unicast messages as RDP delivery is usually failed due to
missingACKs from fewnodes. Therefore, it is recommended
to send a unicast message to these nodes instead of sending
a broadcast to all the nodes of the network.
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Table 3 Comparison of RCP with similar ACK-based approaches in multi-robot systems

Options Tavg (ms) T70% (ms) Ttotal Percentage of TotalRDPs (ms) Avg attempts (nr = 0) Power consumption (mW)

RCP-SeqBc 98 100 63,189 76 1.28 20.73

RCP-SeqUc 97 100 61,628 78 1.23 20.52

RCP-NoSeqBc 57 50 46,359 83 1.19 20.06

RCP-NoSeqUc 54 50 42,579 85 1.15 11.42

UDB-P2P 99 100 63,211 75 1.31 20.77

UBTP-P2P 108 110 69,355 69 1.4 22.85

UBPP-Back 175 205 185,590 53.9 1.5 37.05

5.1 Comparison with Other ACK-Based Approaches

This section compares the proposed approach with other
ACK-based approaches for achieving reliability in multi-
robot systems. The compared approaches areUDPBroadcast
with Token Passing (UBTP) where ACKs are synchronized
by tokens [23], UDP P2P Distributed Broadcast (UDB-P2P)
[24] where ACKs are synchronized by a sequence number,
and UDP Broadcast Peer-to-Peer with Broadcasted ACKs
(UBPP-Back) [25] where ACKs are synchronized by broad-
casting them. For a fair comparison, a peer-to-peer version
of UBTP (UBTP-P2P) is used where all nodes have equal
opportunity to send packets instead of a single node.

All the above-mentioned approaches are tested with the
same parameters as given in Table 1 except for Ttimeout, which
is set to 100ms. The results are compared in terms of average
packet delivery time (Tavg), total time to successfully deliver
3500 packets (Ttotal), total time to deliver 70% of packets
(T70%), percentage of packets delivered in one attempt, aver-
age number of retries needed to deliver a packet, and average
power consumed per packet delivery. The obtained results
are summarized in Table 3.

The approaches compared in the table can be grouped to-
gether based on whether the ACKs are received with or with-
out a sequence. The results clearly indicate that adding a se-
quence deteriorates the performance. All the sequence-based
approaches (RCP-SeqBc, RCP-SeqUc, UDB-P2P, UBTP-
P2P, and UBPP-Back) have worse packet delivery time as
well as a higher number of attempts to deliver the packet.
Therefore, employing sequence in order to reduce contention
is not suitable in such applications. Among the sequence-
based approaches, reliance on any external mechanism to
achieve sequence in ACKs further deteriorates the perfor-
mance. It can be seen in bothUBTP-P2P andUBPP-Back.As
UBTP-P2P relies on tokens to achieve sequence in ACKs, its
performance isworse thanUDB-P2P,RCP-SeqUc, andRCP-
SeqBc. Also, UBPP-Back performs worst among sequence-
based approaches as broadcasting acknowledgments intro-
duced extra overhead in the system. On the other hand, RCP
approaches where sequence is not used (RCP-NoSeqBc and
RCP-NoSeqUc) perform better than any sequence-based ap-

proach as the burden of managing sequenced delivery of
ACKs outweighs the benefits of reduced contention in or-
derly delivered ACKs.

6 RCP Performance in Large Multi-Robot Systems

In this section, we evaluate the performance of RCP when
the total number of nodes in a team increases beyond seven.
As we do not have many Stargate devices to conduct this
experiment, we have implemented a different experimental
setup. This setup consists of three laptops with Intel Core i7
2.8GHz processors connected through an ad hoc network.
Each laptop runs multiple threads where each thread im-
plements a dispatcher which represents a peer of an MRS.
All dispatchers are assigned unique IDs and independently
send RDPs without any correlation with the RDPs originat-
ing from other dispatchers (even if they are running on the
same laptop). Each laptop also runs a receiver thread which
processes all incoming packets from local and remote dis-
patchers. The receiver thread is given higher priority over
any other thread running on the same laptop.

Using this experimental setup, we have analyzed the be-
havior of RCP for SeqBc, SeqUc, NoSeqBc, and NoSeqUc.
We increased the number of peers from 1 to 16 per node
(laptop). As we used 3 laptops in these experiments, the total
number of peers varies from 3 to 48. Approximately 500 total
RDPs were generated by the system.

Increasing the number of peers has a twofold effect: one
on the total number of RDPs and the other on the total num-
ber of acknowledgments generated by the system. In order
to get a better understanding of these changes, we have con-
ducted two sets of experiments, one with restricted multiple
outstanding RDPs (RMOR) and another with unrestricted
multiple outstanding RDPs (UMOR).

6.1 Restricted Multiple Outstanding RDPs (RMOR)

In these experiments, the maximum number of concurrent
RDPs is limited to 9. That is, at any moment of time there
will be at most 9 multiple outstanding RDPs in the system.
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Table 4 Parameters used in large MRS scenarios

Parameters Values

Total RDPs per node (laptop) 500

Number of nodes 3

Number of dispatchers 3–48

nr 2

Ttimeout 100ms

TinterACK 1ms

Table 4 summarizes the list of parameters used in this
experimental setup. Notice that TinterACK is reduced to 1ms
in these experiments. This is because in the Stargate experi-
ments described in Sect. 5 a typical RDPdelivery took at least
50ms and we had 7 Stargate micro-controllers, so we chose
10ms inter-ACK time. Otherwise, if smaller timeouts were
chosen, timers would have expired before receiving ACKs
for any RDP. In the current experimental setup, a typical
RDP delivery completes in around 9–10ms, so even a less
inter-ACK time (1ms) is appropriate to differentiate between
sequence versus non-sequence-based approaches.

Figure 11 shows the percentage of successfully delivered
RDPs in the first attempt: % of TotalRDPs(nr = 0). It is clear
from the figure that with the increase in number of dispatch-
ers, every dispatcher has to processmoreACKs for eachRDP,
which increases the likelihood of a missing ACK. Hence,
fewer RDPs get delivered in the first attempt. All the remain-
ing RDPs will be scheduled for second and third attempts,
thereby increasing the overall average delivery time as shown
in Fig. 12. With the increase in number of dispatchers, the
performance in all RCP modes degraded in terms of both
Tavg and % of TotalRDPs (nr = 0). This effect is even worse
in unicast-based approaches as sending individual messages
to many nodes takes longer than sending a single broadcast
message.Among all these approaches, SeqBc performed bet-
ter. To further verify the results, we executed several RMOR
scenarios with a varying number of dispatchers and RDP de-
livery timeout values (Ttimeout) and found similar results in
all the experiments.

Figure 13 shows the total number of packets processed
(which includes all sent and received packets) in all RCP
modes. The number of packets processed increases with the
increase in the number of dispatchers. As expected, for large
number of dispatchers, broadcast-based modes result in a
higher amount of packets processed by the system when
compared to unicast-based modes regardless whether the se-
quence is used or not.

From these experiments, we conclude that in applications
involving large multi-robot systems, sequenced ACKs with
broadcasting failed RDPs (SeqBc) results in the best RDP
delivery time. However, broadcasting increases the number
of packets processed by the system.

Fig. 11 Percentage of successfully delivered RDPs in first attempt in
RMOR

Fig. 12 Tavg in RMOR

Fig. 13 Number of packets processed in RMOR
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Fig. 14 Tavg for all attempts in UMOR (inter-ACK time=1ms)

6.2 Unrestricted Multiple Outstanding RDPs (UMOR)

We have conducted another set of experiments to evaluate
the effect of a higher number of multiple outstanding RDPs.
That is, with the number of multiple outstanding RDPs equal
to the number of dispatchers at any time. Although MRS
applications have a limited number of peers at a given time,
we are interested in the performance of RCP under heavy
loads. We conducted these experiments with the same value
of Ttimeout as in RMOR. We observed that with this Ttimeout

almost none of the RDPswere delivered. To analyze it further
we looked at the RDPs delivered successfully in the first
attempt and noticed that theminimumRDPdelivery timewas
more than 100ms. Hence, we increased Ttimeout to 500ms
in these set of experiments. Figure 14 plots average RDP
delivery time for various number of dispatchers. It can be
seen from the figure that SeqBc performs better than other
RCP options in terms of RDP delivery time. However, in
these experiments the difference inRDPdelivery time among
all four options is marginal.

Figure 15 shows the total number of packets processed for
the various modes of RCP. As expected, irrespective of the
sequencing in ACKs, the schemes in which unsuccessfully
delivered RDPs are broadcasted resulted in a higher amount
of processed packets by the system.

6.3 Unicast Versus Broadcast RDP Retransmission

In order to evaluate the performance of unicast versus broad-
cast RDP retransmission, we have created two distinct testing
scenarios. In the first scenario, the majority of the nodes ac-
knowledge a received RDP in the first attempt, and in the
second scenario only a few nodes acknowledge an RDP in
the first attempt. In both scenarios, none of the RDPs are de-

Fig. 15 Number of packets processed in UMOR

Fig. 16 Number of packets sent in two test scenarios for unicast versus
broadcast RDP retransmission

livered in the first try.We are interested in evaluating whether
unicast or broadcast should be used when resending an RDP.

It can be seen from Figs. 16 and 17 that in scenario 1 in
which most of the nodes acknowledge an RDP, unicasting a
failed RDP results in better performance in terms of the total
number of packets received as well as average RDP delivery
time. This is because it is simple to send a unicast message
to the missing node instead of broadcasting an RDP to all
nodes of the system.

On the other hand, in scenario 2 in which most of the
dispatchers do not respond to a received RDP, resending the
RDP using a single broadcast message puts less burden on
the dispatcher, thereby increasing the overall performance of
the system in terms of the total number of packets sent as
well as the average RDP delivery time.
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Fig. 17 Number of packets received in two test scenarios for unicast
versus broadcast RDP retransmission

7 Conclusion

In this paper, we presented the design, implementation, and
experimental results of a reliable peer-to-peer protocol called
RCP. RCP uses broadcasts for communication and requires
acknowledgments with packet retransmission to ensure re-
liable delivery. RCP is implemented and tested on Stargate
micro-controllers and as a multi-threaded application on lap-
tops. The results from different sets of experiments gave dif-
ferent perspectives about RCP. Experimental results suggest
that, in multi-robot systems with fewer robots, sequenced
ACKs have a negative effect on the performance. In small
MRS, avoiding sequence makes the algorithm simpler,
quicker, and efficient. On the other hand, in bigger MRS,
sequenced ACKs reduce average RDP delivery time.

The choice of unicasting or broadcasting an unsuccessful
RDP depends on the number of missing ACKs. When this
number is higher, it is efficient to rebroadcast the RDP, which
could be the case in bigger MRS. However, in smaller MRS
only few ACKs may be missing and hence unicasting the
RDP is preferable.

The results from this study encourage us to develop an
adaptive RDP delivery mechanism, which dynamically se-
lects appropriate options depending on various conditions.
In future, we are planning to implement dynamic RCP and
analyze its effectiveness in multi-robot systems.
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