
Arab J Sci Eng (2016) 41:2801–2811
DOI 10.1007/s13369-015-2011-4

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Efficient Processing of the Skyline-CL Query

Zhenhua Huang1 · Juan Zhang2,3 · Chunqi Tian1

Received: 28 March 2015 / Accepted: 10 December 2015 / Published online: 24 December 2015
© King Fahd University of Petroleum & Minerals 2015

Abstract Given a set of k-dimensional objects, the skyline-
CL query returns all clusters over skyline objects according
to their cardinalities. A naïve solution to this problem can be
implemented in two phases: (1) using existing skyline query
algorithms to obtain all skyline objects and (2) utilizing the
DBSCAN algorithm to cluster these skyline objects. How-
ever, it is extremely inefficient in real applications because
phases 1 and 2 are all CPU-sensitive. Motivated by the
above facts, in this paper, we present Algorithm for Efficient
Processing of the Skyline-CL Query (AEPSQ), an efficient
sound and complete algorithm for returning all skyline clus-
ters. During the process of obtaining skyline objects, the
AEPSQ algorithm organizes these objects as a novel k-ary
tree SI (k)-Tree which is first proposed in our paper, and
employs several interesting properties of SI (k)-Tree to pro-
duce skyline clusters fast. Furthermore, we present detailed
theoretical analyses and extensive experiments that demon-
strate our algorithm is both efficient and effective.

Keywords Skyline · Cluster processing · DBSCAN ·
Performance evaluation

B Zhenhua Huang
huangzhenhua@tongji.edu.cn

1 Department of Computer Science, Tongji University,
Shanghai 200092, China

2 Open Fund of Robot Technology Used for Special
Environment Key Laboratory of Sichuan, Mianyang 621010,
Sichuan, China

3 School of Information Engineering, Southwest University of
Science and Technology, Mianyang 621010, Sichuan, China

1 Introduction

The skyline query technology has attracted much attention
recently. This is mainly due to the importance of skyline
results in many applications, such as multi-criteria decision
making, data mining, and information recommender systems
[1,2]. A skyline query over k dimensions selects the objects
that are not dominated by any other objects restricted to those
dimensions. However, in most real applications, the size of
skyline result with k dimensions and ℘ input objects will
exceed (ln℘)k−1/(k − 1)! where “ln” and “!” denote the
natural logarithm and the factorial, respectively [3]. It is not
difficult to see that the number of skylineswill grow exponen-
tially as ℘ and k increase. Consequently, the result returned
by the existing skyline query algorithms [4–12] is very huge
and the users hardly efficiently analyze the whole skyline set.

In many real applications, we notice that the input objects
are usually clustered, and hence in this paper, we present a
novel extension of skyline, i.e., skyline-CL (skyline clus-
ter), to produce similar objects within the skyline result.
And in each skyline cluster, the users can locate their inter-
ested objects. Compared with skyline, skyline cluster has at
least three advantages: (1) The interested optimal objects can
be more quickly found within each cluster whose cardinal-
ity is smaller than that of the whole skyline set. (2) It can
avoid wasting of much time in searching the similar opti-
mal objects within the whole skyline set. (3) The interested
optimal objects can tend to be as diversified as possible.

Motivation example (milk products selection) Assume
there exists a milk marketing system which has 150 product
items. Each item includes two attributes: price and expira-
tion date. A milk product is better if its price is lower, and its
expiration date is longer. Figure 1 shows this application sce-
nario, in which there exists 42 skyline items represented by
solid points. The user Jukie wants to buy somemilk products

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-015-2011-4&domain=pdf

2802 Arab J Sci Eng (2016) 41:2801–2811

Fig. 1 Example for milk product selection

within these skyline items, but he hardly efficiently analyzes
and locates his interested milk products. As an alternative in
this application scenario, 42 skyline items can be clustered
into four groups G1−G4, based on their two attributes, and
then Jukie can locate the optimalmilk products in each group.

Motivated by the above facts, in this paper, we integrate
the density-based clusteringmethods [13,14] into the skyline
query for efficient mining of skyline clusters. A straightfor-
ward solution consists of three key phases: (i) obtain the
skylines from input objects, using any known skyline query
approaches, such as the algorithms MR-GSC [9] and CDCA
[10]; (ii) utilize the DBSCAN algorithm [13] to cluster these
skyline objects; and (iii) Return all skyline clusters according
to their cardinalities. However, it is inefficient because phases
1 and 2 are all CPU-sensitive, and their time complexities are:

�(k℘ lg℘ + (k − 1)k−3℘) and O

(
k

(
(ln℘)k−1

(k−1)!
)2)

, respec-

tively,where “�” denotes the asymptotic lower bound in time
complexity, and “lg” denotes the denary logarithm [3]. In this
paper, we present Algorithm for Efficient Processing of the
Skyline-CL Query (AEPSQ), an efficient sound and com-
plete algorithm for implementing the skyline-CL query. Dur-
ing the process of obtaining skyline objects, theAEPSQalgo-
rithm organizes these objects as a novel k-ary tree SI(k)-Tree
which is proposed in our paper, and employs several interest-
ing properties of SI(k)-Tree to produce skyline clusters fast.

In summary, this papermakes the following contributions:

• We propose the concept of skyline-CL, which clusters
the skyline objects and makes users zoom into different
groups of skyline objects.We also propose to extendSQL
with a SKYLINE-CLOF keyword, which can efficiently
enhance the query engine functions of RDBMS.

• We investigate efficient implementation of the skyline-
CL query. And an efficient approach (i.e., AEPSQ) is
developed. It is based on the novel index tree SI(k)-Tree
which is proposed in our paper, and employs several
interesting properties of SI(k)-Tree to produce the skyline
clusters fast.

• A performance study using both synthetic and real
datasets is conducted to evaluate our approaches. We
use the real dataset which is meaningful in practice. We
also use the synthetic dataset with anti-correlated dis-
tribution. Our experimental evaluation indicates that the
proposed approaches are both efficient and effective.

The rest of the paper is organized as follows: Sect. 2 for-
mally describes the concept of skyline-CL. Section 3 presents
and discusses the AEPSQ algorithm which can efficiently
produce all skyline clusters. We present experimental study
in Sect. 4. Finally, Sect. 5 concludes the paper with directions
for future work.

2 Related Works

Borzsonyi et al. [4] first consider how to efficiently obtain
skyline objects in the database community, and propose two
feasible algorithms BNL and DC. The BNL algorithm essen-
tially compares each object in the database with all the others
and returns the objects that are not dominated by any oth-
ers. The DC algorithm divides the input objects into several
groups that can fit in memory. The skyline objects in all
groups are computed separately using a memory-based algo-
rithm and then merged to produce the final result. Kossmann
et al. [5] propose a full space skyline computation algorithm
based on the indexed dataset. It is based on the nearest neigh-
bor query, which adopts the divide-and-conquer paradigm on
the R-tree index. Papadias et al. [6,7] propose a branch and
bound algorithm to progressively output skyline objects on
dataset indexed by R-tree. One of the most important prop-
erties of this technique is that it guarantees the minimum I/O
costs. Chomicki et al. [8] propose the SFS algorithm which
sorts the input objects according to a preference function
and then returns the skyline objects in another pass over the
sorted list. Chan et al. [9] propose an effective approximate
algorithm that is based on extending a Monte Carlo counting
algorithm to fast return the skyline objects. Huang et al. [10]
present an efficient cell-dominance computation algorithm
(i.e., CDCA) for processing arbitrary single subspace skyline
query. The CDCA algorithm uses the regular grid index and
prunes all the cells which are dominated by any other ones.
Li et al. [11] propose a system model that can support sub-
space skyline query in mobile distributed environment. This
algorithm uses mapreduce and can obtain the meaningful
subset of points from the full set of skyline points in any sub-
space. Huang et al. [12] focus on supporting concurrent and
unpredictable subspace skyline queries over data streams. To
balance the query cost and update cost, the authors onlymain-
tain the full space skyline and then propose an efficient and
scalable two-phase algorithm to process the skyline queries
in different subspaces based on the full space skyline.

Recently, several literatures study the extensions of sky-
line. Jin et al. [15] propose the concept of thick skyline, to

123

Arab J Sci Eng (2016) 41:2801–2811 2803

return not only skyline objects but also their nearby neigh-
bors within ε distance. Chan et al. [16] present the concept of
k-dominant skyline, which relaxes the idea of dominance to
k-dominance and returns the k-dominant skyline set whose
size is smaller than the skyline set. Huang et al. [17] propose
a novel type of l-SkyDiv query which returns l skylines hav-
ing maximum diversity. The authors prove that the l-SkyDiv
query belongs to the NP-hard problem theoretically, and give
three efficient heuristic algorithms whose time complexities
are polynomial to fast implement the query. Lin et al. [18]
propose to select k skyline objects so that the number of
objects, which are dominated by at least one of these k sky-
line objects, is maximized. The authors first give an dynamic
programming-based exact algorithm in a 2D space. Then,
they prove that the problem is NP-hard for three or more. Tao
et al. [19] give a new definition of representative skyline that
minimizes the distance between a non-representative skyline
object and its nearest representative. Like Lin et al. [18], Tao
et al. present a dynamic programming-based exact algorithm
in a 2D space, and prove that the problem is NP-hard for
three or more. Lee et al. [20] discuss to support personal-
ized skyline queries as identifying interesting objects based
on user-specific preference and retrieval size k. The authors
abstract personalized skyline ranking as a dynamic search
over skyline subspaces guided by user-specific preference.
Huang et al. [21] integrate K -means clustering into skyline
computation and return K “representative” and “diverse”
skyline objects to users. The authors propose an efficient
evaluation approach which is based on the regular grid index
to seamlessly integrate subspace skyline computation, K -
means clustering and representatives selection.

Note that the concept of skyline-CL query proposed in our
paper is different from the above extensions of skyline. The
existing extensions mainly focus on the problem of select-
ing k representative skyline objects where k is the parameter
and smaller than the number of skyline objects. However,
they at least have two drawbacks: (1) They only return the k
representative skyline objects, and these k objects may not
be the ones that the users are interested in. (2) For three or
more dimensions, the problem of selecting k representative
skyline objects is NP-hard, and hence they need a great deal
of time for the high-dimensional skyline applications.

Different from the existing extensions, our skyline-CL
query fast produces several clusters of skyline objects and
assists the users to locate their interested objects.

3 Related Concepts of Skyline-CL Query

In this section, we present several related concepts of
skyline-CL query. Also, we propose to extend SQL with a
SKYLINE-CL OF keyword, which can enhance the query
engine functions of RDBMS.

Definition 1 (dominance relationship) Give two
k-dimensional objects ϑ and λ. ϑ dominates λ if they sat-
isfy the following conditions:

(1) ∀i ∈ [1, k], ϑ[i] ≤ λ[i];
(2) ∃ j ∈ [1, k], ϑ[j] < λ[j].

For simplicity, the relationship that ϑ dominates λ is denoted
as λ ≺ ϑ .

Definition 2 (skyline set) Let ℘ be the set of k-dimensional
objects. Then, the skyline set of ℘ can be expressed as:
∇(℘)={ϑ |ϑ ∈ ℘ ∧ ¬∃λ ∈ ℘, ϑ ≺ λ}.

Definition 3 (dominance region) The dominance region
ϑ.DR of a k-dimensional object ϑ is the area of the data
space dominated by ϑ . Specifically, ϑ.DR is an axis-parallel
rectanglewhosemajor diagonal is decided byϑ and the “max
corner” of the data space (having the maximum coordinates
on all dimensions).

Definition 4 (non-dominance region) [22] Given a data
space D and the dominance region ϑ.DR of a k-dimensional
object ϑ . Then the non-dominance region of ϑ denoted by
ϑ.DR, is D\ϑ.DR(i.e., the minus space of D and ϑ.DR).

Based on Definition 3, we define the dominance region of
a k-dimensional object set ℘ as the union of the dominance
regions of all objects in ℘ and denote it by ℘.DR. And based
on Definition 4, its non-dominance region of ℘, denoted by
℘.DR, is D\℘.DR.

Definition 5 (skyline distance) [22] Let ϑ and λ be the two
k-dimensional objects. Then the skyline distance between
these two objects is the volume of the distance area between
them which can be specified by the following equation:
SKYDIST(ϑ, λ) = VOL((ϑ.DR\λ.DR) ∪ (λ.DR\ϑ.DR)).

Based on Definition 5, the skyline distance between 2 sets
℘1 and℘2, denoted by SKYDIST (∇(℘1),∇(℘2)), is equal to
VOL((∇(℘1).DR\∇(℘2).DR) ∪ (∇(℘2).DR\∇(℘1).DR)).

Definition 6 (ξ -neighborhood of a skyline object) Let ℘

and ξ be the set of k-dimensional objects and the distance
parameter. For a skyline object ϑ[d1, . . ., dk] ∈ ∇(℘), its
ξ -neighborhood is defined by NBHξ (ϑ) = {η[d1, . . ., dk] ∈
∇(℘)|SKYDIST(ϑ, η) ≤ ξ}.

Definition 7 (core skyline object)Let℘, ξ and
 be the set of
k-dimensional objects, the distance parameter and the num-
ber threshold. Then, an object ϑ[d1, . . ., dk] is called a core
skyline object if it satisfies the following conditions:

(1) ϑ ∈ ∇(℘);
(2) |NBHξ (ϑ)| ≥
.

123

2804 Arab J Sci Eng (2016) 41:2801–2811

Based on Definitions 6 and 7, for two skyline objects ϑ

and λ, we say “λ is directly density-reachable from ϑ”
if λ ∈NBHξ (ϑ) and |N B Hξ (ϑ)| ≥
. Clearly, directly
density-reachable is symmetric for pairs of core skyline
objects.

Definition 8 (density-reachable) Let ℘ be the set of k-
dimensional objects. A skyline object λ is density-reachable
from the skyline object ϑ with respect to the distance para-
meter ξ and the number threshold
, if there exists a chain of
skyline objects c1, c2, . . ., cn , c1 = λ and cn = ϑ such that
ci+1 is directly density-reachable from ci with respect to ξ

and
, for 1 ≤ i ≤ n, ci ∈ ∇(℘).

Obviously, density-reachable is also symmetric for pairs
of core skyline objects. For simplicity, the relation that the
skyline object λ is density-reachable (density-unreachable)
from ϑ is denoted as λ � ϑ(λ�̄ϑ).

Based on the following two lemmas in [13], we can give
the concept of skyline cluster which is described in Defini-
tion 9.

Lemma 1 Let ℘, ξ and
 be the set of k-dimensional
objects, the distance parameter and the number threshold.
If NBHξ (ϑ)| ≥
, then C = {c|c ∈ ∇(℘) and c is density-
reachable from ϑ} is a cluster w.r.t. ξ and
.

Lemma 2 Let C be a cluster w.r.t. the distance parameter ξ

and the number threshold
 and let ϑ ∈ ∇(℘) be any skyline
object in C with NBHξ (ϑ)| ≥
. Then C equals to the set
C ′ = {c′|c′ ∈ ∇(℘) and c′ is density-reachable from ϑ}.
Definition 9 (skyline cluster) Let ℘ and
 be the set of k-
dimensional objects and the number threshold. If SkyC ⊆ ℘

satisfies the following conditions, then it is a skyline cluster:

(1) SkyC⊆ ∇(℘);
(2) ∀ϑ ∈ SkyC, |SkyC| �= 1 ⇒ ∃λ ∈ SkyC ∧ ϑ � λ;
(3) ∀ϑ ∈ SkyC,¬∃λ ∈ SkyC ∧ ϑ �̄λ;
(4) ∀ϑ ∈ SkyC,¬∃λ /∈ SkyC ∧ ϑ � λ.

It is not difficult to see that the skyline cluster concept
defines a series of maximal skyline groups that are based on
“density-reachable.”

In order to specify the skyline-CL query, we propose to
extend SQL SELECT statement by an optional SKYLINE-
CL OF clause as follows:
SELECT … FROM …WHERE …
GROUP BY … HAVING …
SKYLINE-CL OF [DISTINCT] Dis_param=ξ ,

Thr_param =
,

d1[MIN|MAX],
. . .

dm[MIN|MAX]

ORDER BY…
Keywords Dis_param and Thr_param denote the dis-

tance parameter and the number threshold, respectively;
d1, . . . , dm denote the dimensions of the skyline objects;
MIN, MAX specify whether the value in that dimension
should be minimized or maximized. The optional DIS-
TINCT specifies how to deal with duplicates. The semantics
of the SKYLINE-CL OF clause are straightforward. The
SKYLINE-CL OF clause is executed after the SELECT …
FROM … WHERE … GROUP BY … HAVING … part of
the query, but before the ORDER BY clause and possibly
other clauses that follow. The SKYLINE-CL OF clause cap-
tures all skyline clusters and returns them according to their
cardinalities.

There are several advantages of the proposed SKYLINE-
CL OF keyword and skyline cluster operator. First, users can
calculate the skyline clusters in one concise and semantic-
clear query. Second, they provide more optimization oppor-
tunities. As will be discussed in the rest of this paper, there
are much more efficient algorithms to compute the skyline
clusters than the naïve solution which handles skyline query
and clustering process separately.

4 Efficient Implementation of the Skyline-CL
Query

In this section,we presentAEPSQ for processing the skyline-
CL query. During the process of obtaining skyline objects,
theAEPSQalgorithmorganizes these objects as a novel k-ary
tree SI(k)-Tree, and employs several interesting properties of
SI(k)-Tree to produce skyline clusters fast. Table 1 summa-
rizes some symbols that will be used frequently throughout
the paper.

4.1 Constructing the Index Structure SI (k)-Tree

In this subsection, we propose the efficient approach to con-
struct the index structure SI(k)-Tree for skyline objects.

Definition 10 (SI (k)-Tree) The multiple-dimensional tree
structure MIS is an index tree SI(k)-Tree if it satisfies the
following five properties (let χ(k) be the set of nodes ofMIS):

(1) ∀ℵ ∈ χ(k), ℵ(3) ≤ k;
(2) ∀ℵ ∈ χ(k),¬∃
 ∈ χ(k), ℵ(1) ≺
(1);
(3) ∀ℵ ∈ χ(k), ∀
 ∈Desc(ℵ), ℵ(2) <
(2);
(4) ∀ℵ,
 ∈ χ(k),ℵ ∈ Anc(
) ∧
 ∈ Cht(ℵ, γ) ⇒{

∀δ ∈ Desc(
) − Cht (ℵ, γ), skyE D(ℵ, δ)< skyE D(ℵ,
)

∀θ ∈ Cht (
, γ), skyE D(ℵ, θ) > skyE D(ℵ,
);
(5) ∀ℵ,
, δ ∈ χ(k),ℵ ∈Anc(
)∩Anc(δ)∧
 ∈Cht(ℵ, γ)

∧δ ∈Desc(ℵ)-Cht(ℵ, γ)
⇒

{
skyE D(ℵ,
) < skyE D(
, δ)

skyE D(ℵ, δ) < skyE D(
, δ)
.

123

Arab J Sci Eng (2016) 41:2801–2811 2805

Table 1 Frequently used
symbols

Symbol Description

⇀

O
⇀

O is the origin

ℵ, Par(ℵ) ℵ and Par(ℵ) are the node of SI(k)-Tree and the parent of ℵ,
respectively. ℵ includes three components: (i) ℵ(1) is the
corresponding object of ℵ; (ii) ℵ(2) is the skyline distance between

ℵ(1) and
⇀

O , and (iii) ℵ(3) is ℵ ’ order number within the subnodes of
Par(ℵ)

Anc(ℵ) Anc(ℵ) is the set of ancestor nodes of ℵ
Desc(ℵ) Desc(ℵ) is the set of offspring nodes of ℵ
Cht(ℵ, γ) Cht(ℵ, γ) is the γ -th substree of ℵ
skyED(ℵ1, ℵ2)

=SKYDIST(ℵ(1)
1 , ℵ(1)

2)

skyED(ℵ1, ℵ2) is the node distance between the nodes ℵ1 and ℵ2

From the above definition, we can see that if MIS satisfies
five key properties, then it becomes an index tree SI(k)-Tree.
Property (1) requires that MIS is the k-ary ree, i.e., each node
in MIS has at most k children. Property (2) requires that for
each ℵ in MIS, the corresponding object of ℵ (i.e., ℵ(1)) is
a skyline object in the set χ(k). For each node ℵ in MIS
and its any offspring node
 , Property (3) requires that the
skyline distance between ℵ(1) and

⇀

O needs to be less than
that between each offspring node of
(1) and

⇀

O . Let
 be in
the γ -th substree of ℵ, and θ (δ) be any offspring node of

that is (not) in the γ -th substree of
 . Property (4) requires
that the node distance between δ (θ) and ℵ needs to be less
(larger) than that between
 and ℵ. Assume that
 and δ

are in the γ -th and λ-th substree of ℵ, respectively (γ �= λ).
Property (5) requires that the node distance between
 and
δ needs to be larger than that between
 (δ) and ℵ.
Definition 11 (NN-sphere) [23] Let Q and NN be a query
point and the nearest neighbor of Q. Then NN-dist=
SKYDIST (Q, NN) is the distance of the nearest neighbor
and the query point. The NN-sphere NNSP(Q, NN) of Q
is defined as the sphere with center Q and radius r =
NN − dist.

In the following part, we discuss how to organize skyline
objects as an index tree SI(k)-Tree during skyline computa-
tion. Inspired by [6,7], we present the CONST_SI(k)-Tree
algorithm to realize this task. The algorithm is based on the
following theorem.

Theorem 1 (minimal skyline distance) Let ℘ be the set of
k-dimensional objects. Then ϑ[d1,…, dk] ∈ ℘ is bound to be
a skyline object of ℘ if it satisfies the following condition:
¬∃λ[d1, d2,…, dk] ∈ ℘, SKYDIST(ϑ,

⇀

O) > SKYDIST(λ,
⇀

O).

Proof Let Θ be the whole k-dimensional data space. Since
¬∃λ[d1, . . ., dk] ∈ ℘, SKYDIST(ϑ,

⇀

O) > SKYDIST(λ,
⇀

O),
we can get that ∀λ[d1,…, dk] ∈ ℘, VOL((Θ\δ.DR) ∪
(δ.DR\Θ)) ≤VOL((Θ\λ.DR) ∪ (λ.DR\Θ)). Because Θ

is the whole data space, δ.DR\Θ = λ.DR\Θ = ∅.
And therefore ∀λ[d1, . . ., dk] ∈ ℘, VOL(Θ\δ.DR) ≤

VOL(Θ\λ.DR)). Then we can have ∀λ[d1, . . ., dk] ∈ ℘,
VOL(δ.DR) ≥ VOL(λ.DR). That is, for any k-dimensional
object λ in ℘, the volume of ϑ.DR is equal to or larger than
that of λ.DR. Thus, we can get ∃di (i ∈[1, k]), and ϑ[di]
is minimal among the objects in ℘. Then based on Defini-
tions 1 and 2, we know that ¬∃λ[d1, . . ., dk] ∈ ℘, λ ≺ ϑ .
Consequently, ϑ is a skyline object of ℘. ��
The complete algorithm is shown below.

Furthermore, in order to improve the efficiency of comput-
ing skyline distances, we utilize the approximation technol-
ogy ATCSD which is proposed in [23]. ATCSD is based on
the Monte Carlo sampling approach and approximates it by
randomly sampling points and computing the ratio between
samples that fall into the SKYDIST region defined by Defin-
ition 5 and the ones that do not. When we give the number of
objects used in Monte Carlo sampling, the amount of sam-

123

2806 Arab J Sci Eng (2016) 41:2801–2811

ples which fall into the SKYDIST region is determined. The
ratio between the samples located in the SKYDIST region
and the ones that do not give an approximation of the skyline
distances.

In the following part, we present a detailed proof that t TS
which is produced by the CONST_SI(k)-Tree algorithm is an
index tree SI(k)-Tree.

Theorem 2 When the CONST_SI (k)-Tree algorithm termi-
nates, the tree structure TS satisfies the five properties of
SI(k)-Tree that are presented in Definition 10.

Proof In the CONST_SI(k)-Tree algorithm, when a node ℵ
is inserted into TS, k subregion is added into the listwDS, and
for a subregion, there exists at most one node that becomes
the subnode of ℵ. Hence, TS is a k-ary tree. Thus, TS satisfies
Property (1). For any node ℵ inTS, ℵ(1) = δ is the nearest
neighbor of

⇀

O within F R, and hence according to Theorem 1,
ℵ(1) is a skyline object in the set ℘. That is, TS satisfies
Property (2). Let ℵ be the node whose first component ℵ(1)

is the nearest neighbor of
⇀

O within F R. We can get that for
each offspring node
 of ℵ, its first component
(1) falls
inside the region F R, and the skyline distance between ℵ(1)

and
⇀

O is bound to be less than that between
(1) and
⇀

O .
That is, ℵ(2) <
(2). Therefore, TS satisfies Property (3).
Assume that
 is the node whose first component
(1) is
the nearest neighbor of

⇀

O within F R, and locates in the γ -th
substree of the node ℵ. When η locates in the i-th (1≤ i ≤ k,
i �= γ) substree of
 , we can get that R R ⊂ F R, where
η(1) is the nearest neighbor of

⇀

O . Hence, η(1) falls inside the
region determined by ℵ(1) and
(1). Thus, SKYDIST(ℵ(1),
η(1)) < SKYDIST(
(1), ℵ(1)). On the other hand, When η

locates in the i-th (i=γ) substree of
 , we can get that R R ∩
F R = ∅. That is, η(1) falls outside the region determined by
ℵ(1) and
(1). Since ℵ is the ancestor node of
 , η and ℵ
locate on the different sides of
 . Therefore, SKYDIST(ℵ(1),

η(1)) > SKYDIST(
(1), ℵ(1)). Consequently, TS satisfies
Property (4). Let
 and η locate in the different subtrees of
ℵ. We can get that
(1) and η(1) locate on the different sides
of ℵ(1). Hence, we can have the inequations SKYDIST(ℵ(1),

(1)) < SKYDIST(
(1), η(1)) and SKYDIST(ℵ(1), η(1)) <

SKYDIST(
(1), ℵ(1)). Thus, TS satisfies the Property (5).
��

4.2 Efficiently Producing Skyline Clusters

In this subsection, we present an efficient algorithm, i.e
GEN_SkyCLs, to fast produce all skyline clusters based on
several interesting properties of the index structure SI(k)-
Tree. Without loss of generality, we assume that the distance
parameter and the number threshold are ξ and
. Before for-
mal description of the GEN_SkyCLs algorithm, we present
an important concept, i.e., nearest node set (NNS).

Definition 12 (nearest node set) We define the nearest node
set of ℵ as follows: NNS(ℵ) = {
 | there exists the position
i such that F R = (F R[1], . . ., F R[i − 1],
(1)[i], F R[i +
1], . . ., F R[k]) and q �= ∞}, where F R is the region within
which ℵ(1) is the nearest neighbor of

⇀

O .
Next, we give three key properties of NNS(ℵ).

Theorem 3 (The properties of NNS) Let Ω be the set of
nodes of the index treeSI(k)-Tree. For every node ℵ in Ω , its
nearest node set NNS(ℵ) has the following three important
properties: (1) the cardinality of NNS(ℵ) is smaller than or
equal to k; (2) NNS(ℵ) is a subset of Anc(ℵ); and (3) for each
node
 ∈ Ω-NNS(ℵ), there exists a node η ∈NNS(ℵ) such
that η(1) is nearer than
(1) to ℵ(1).

Proof (i) Since F R is the region within which ℵ(1) is the
nearest neighbor of

⇀

O and has k dimensions, the cardinality
of NNS(ℵ) does not exceed k. Hence, Property (1) is cor-
rect. (ii) The correctness of Property (2) is obvious because
each node belonging to NNS(ℵ) locates in the tree path PT
from the root node to ℵ. And each node on PT is the ances-
tor node of ℵ. Hence, NNS(ℵ)⊆Anc(ℵ). (iii) Clearly, every
node
 which does not belong to NNS(ℵ) falls outside the
region F R. Therefore, for
 , there exists at least one node
η belonging to NNS(ℵ) such that �
(1)η(1)ℵ(1) >90

◦
. That

is, �
(1)η(1)ℵ(1) is an obtuse angle. Hence, SKYDIST(η(1),
ℵ(1)) < SKYDIST(
(1),ℵ(1)). Thus, Property (3) is correct.

��
In the following part, we describe and analyze the

GEN_SkyCLs algorithm. The basic idea of GEN_SkyCLs
can be described as follows. The algorithm visits each node

123

Arab J Sci Eng (2016) 41:2801–2811 2807

ℵ of TS from the root in a breadth-first mode and computes
the node distance skyED(ℵ, χ) between ℵ and each node χ

belonging toNNS(ℵ). If it is not larger than the distance para-
meter ξ , GEN_SkyCLs adds χ into the TC(ℵ). And then for
the parent ϑ of χ , GEN_SkyCLs checks whether ϑ belongs
to TC(ℵ). If yes, GEN_SkyCLs adds all offspring nodes of
ℵ that do not locate in the γ -th child of ℵ into TC(ℵ). Else
GEN_SkyCLs selects and adds each offspring node τ of ℵ
which does not locate in the γ -th child of ℵ and the node
distance skyED(χ , τ) is not larger than ξ intoTC(ℵ). If the
cardinality of TC(ℵ) is not less than the number threshold
,
GEN_SkyCLs inserts ℵ into the list csoL which includes all
core skyline objects after the algorithm terminates. Finally,
according to Definition 9, GEN_SkyCLs divides csoL into
Υ groups and returns these groups according to their cardi-
nality.

The complete GEN_SkyCLs algorithm is shown below.

Theorem 4 (The correctness of algorithm) Let ℘, ξ and

be the set of k-dimensional objects, the distance parameter

and the number threshold. When GEN_SkyCLs terminates,
Υ skyline clusters produced by the algorithm satisfy the fol-
lowing conditions: (I) The skyline set ∇(℘) just consists of
the objects belonging to these Υ skyline clusters; (II) the car-
dinality of each skyline clusters is not less than
; (III) for
any two skyline objects ϑ and λ, λ is density-reachable from
ϑ with respect to ξ ; and (IV) for any two skyline objects ϑ

and λ, if ϑ and λ belong to different skyline clusters, then λ

is density-unreachable from ϑ with respect to ξ .

Proof The node setND of the SI(k)-Tree tree TS just includes
the skyline objects of AD. That is, ND= ∇(℘). On the other
hand, the algorithm visits each nodeℵ of TS from the root in a
breadth-first mode and putsℵ in a specific skyline cluster. So,
∪γ

i=1SC(i) = ∇(℘). And hence the condition (I) is satisfied.
In the GEN_SkyCLs algorithm, Step 20 only inserts the node
ℵ whose corresponding set TC(ℵ) has at least
 elements.

Hence the condition (II) is satisfied. In the GEN_SkyCLs
algorithm, for each node ℵ in the SI(k)-Tree tree TS, there

123

2808 Arab J Sci Eng (2016) 41:2801–2811

exist three places that can add a node p into TC(ℵ): Step
9, Step 14 and Step 18. And according to the properties (4)
and (5) of the SI(k)-Tree tree, it is not difficult to see that
in these three places, GEN_SkyCLs only adds each node p
into TC(ℵ) such that the node distance skyED(ℵ, p) is not
larger than the distance parameter ξ . Therefore, according to
Definition 7, ℵ(1) is a core skyline object. Moreover, in the
GEN_SkyCLs algorithm, Step 22 uses Definition 9 to divide
the list csoL into Υ clusters. Hence, the conditions (III) and
(IV) are satisfied. ��

5 Experiments

This section conducts an empirical study of our methods
using both synthetic and real datasets. We evaluate the effi-
ciency and the scalability of the proposed algorithms. All our
experiments are implemented in Java, running on a PC with
PIV 2.4 GHz processor and 2G main memory.

The real dataset is European football players’ technical
statistics. It involves 21,649 records from 1920 to 2006. And
each record has 8 attributes. Using the data generator [4], we
generate the synthetic dataset with anti-correlated distribu-
tionwhere if a record is good in on dimension, it is unlikely to
be good in other dimensions. It involves 170,000 records and
each record has 8 attributes. For simplicity, we denote the real
dataset and the synthetic dataset as RDS and SDS, respec-
tively. Without loss of generality, all the values of objects are
normalized in range [0, 1].

In the following experiments, we let the dimensionality
vary in the range [2, 8]. The number of skylines on each
dimensionality is shown in Table 2. On the other hand, the
distance parameter ξ and number threshold
 can also deter-
mine the number of skyline clusters. The skyline distance
between any two objects becomes larger with the increase
in dimensionality. And the value of
 is inverse ratio with
the number of skyline clusters. Hence, in order to balance of
the number of skyline clusters on each dimensionality, the
different range of ξ and the different value of
 are cho-
sen for different dimensionality. Table 3 shows the details.
For convenience, we use Parami (i = 1−4) to denote the
values of two parameters ξi and
i in the following experi-
ments.

Table 2 Number of skylines on each dimensionality

Datasets Dimensionality

2 4 6 8

RDS 67 1294 5811 16659

SDS 168 6573 39539 130638

Table 3 Range of ξ and

The parameters Dimensionality

2 4 6 8

Param1 ξ1 0.2 0.5 0.9 1.3

1 1 5 10 20

Param2 ξ2 0.4 0.8 1.2 1.6

2 1 5 10 20

Param3 ξ3 0.6 1.1 1.5 1.9

3 1 5 10 20

Param4 ξ4 0.8 1.4 1.8 2.2

4 1 5 10 20

5.1 Evaluating the Number of Skyline Clusters

This subsection focuses on evaluating the number of skyline
clusters. Figure 2 shows experimental results.

Comparing the number of skyline objects shown inTable 2
and the number of skyline clusters shown in Fig. 2, we can
observe that multiple skyline objects correspond to the same
skyline cluster. When we are unable to evaluate the whole set
of skyline objects, we can reduce the range of evaluation and
focus on a specific skyline cluster where the skyline objects
have strong correlations. We can further observe that for the
dataset RDS, when the dimensionality equals 8, the number
of skyline objects is equal to 16659 (about 77% of that of
the whole dataset); however, the number of skyline clusters
is 13 (ξ = 2.2 and
 = 20). And for the dataset SDS, when
the dimensionality equals 8, the number of skyline objects is
equal to 130638 (about 79% of that of the whole dataset);
however, the number of skyline clusters is 28 (ξ = 2.2 and

 = 20). On the other hand, for the experimental results,
we can observe that the average number of skyline clusters
becomes larger with the increase of ξ . This is mainly because
more pairs of skyline objects are density-reachable with the
increase of ξ .

5.2 Evaluating Top-3 Skyline Clusters

In this subsection, we focus on evaluating the top-3 skyline
clusters w.r.t. the number of skyline objects. Figures 3 and 4
show the experimental results for these two datasets, respec-
tively. For simplicity, we denote “top j (j = 1−3) of the real
dataset” as “D1T j”, and “top j (j = 1−3) of the synthetic
dataset” as “D2T j”.

From the experimental results, we observe that the num-
ber of objects in each top-3 skyline cluster becomes larger
with the increase of ξ . This is because more pairs of sky-
line objects are density-reachable with the increase of ξ . For
example, in Fig. 3d, when ξ = 1.3 and
 = 20, the top-3
skyline clusters contain 2706, 1983 and 1491 skyline objects,

123

Arab J Sci Eng (2016) 41:2801–2811 2809

Fig. 2 Evaluation for the
number of skyline clusters. a
Dimensionality equals 2. b
Dimensionality equals 4. c
Dimensionality equals 6. d
Dimensionality equals 8

Fig. 3 Evaluation for the real
dataset. a Dimensionality equals
2. b Dimensionality equals 4. c
Dimensionality equals 6. d
Dimensionality equals 8

respectively. However, when ξ = 2.2 and
 = 20, the top-3
skyline clusters contain 8640, 6275 and 4834 skyline objects,
respectively. We further find that in Fig. 3d, when ξ = 2.2
and
 = 20, the first top skyline cluster consists of seven
parts such that each part is a skyline cluster when ξ = 1.3
and
 = 20; the second top skyline cluster consists of five
parts such that each part is a skyline cluster when ξ = 1.3

and
 = 20; and the third top skyline cluster consists of four
parts such that each part is a skyline cluster when ξ = 1.3
and
 = 20. On the other hand, from Fig. 4, we observe that
the number of each top-3 skyline clusters increases markedly
when ξ changes from the third value to the fourth value. For
example, in Fig. 4d, when ξ = 1.3 and
 = 20, the top-3
skyline clusters contain 9265, 7591 and 7082 skyline objects,

123

2810 Arab J Sci Eng (2016) 41:2801–2811

Fig. 4 Evaluation for the
synthetic dataset. a
Dimensionality equals 2. b
Dimensionality equals 4. c
Dimensionality equals 6. d
Dimensionality equals 8

Fig. 5 Evaluation for the
runtime. a The real dataset. b
The synthetic dataset

respectively. However, when ξ = 2.2 and
 = 20, the top-
3 skyline clusters contain 29821, 20074 and 16255 skyline
objects, respectively. This is mainly because the skyline dis-
tances between most pairs of objects do not exceed 2.2.

5.3 Evaluating the Time Cost

In this subsection, we focus on the time cost of AEPSQ
which first uses the CONST_SI(k)-Tree algorithm (Sect. 4.1)
to organize the skyline objects as a SI(k)-Tree tree and then
utilizes the GEN_SkyCLs algorithm (Sect. 4.2) to obtain the
skyline clusters fast. The compared solution consists of three
separate procedures: (1) use the MR-GSC algorithm [9] to
obtain all skyline objects; (2) utilize the DBSCAN algorithm
[11] to cluster these skyline objects; and (3) return all skyline
clusters according to their cardinalities. And we denote the

compared solution as TPNVE. For simplicity, ξ and
 are set
to (0.6, 2), (1.1, 6), (1.5, 10) and (1.9, 14) for 2D, 4D, 6D and
8D, respectively. Figure 5 shows the experimental results.

From Fig. 5, we can observe that the AEPSQ solution evi-
dently outperforms the TPNVE solution in all cases. And the
superiority of AEPSQ over TPNVE becomes more marked
as the dimensionality increases. This is mainly because that
the pruning ability of SI(k)-Tree gradually enhances with
the increase of the dimensionality. For instance, for the real
dataset, when the dimensionality is equal to 2, the runtime
of AEPSQ is about 42% of that of TPNVE, and when the
dimensionality is equal to 8, the runtime of AEPSQ is about
27% of that of TPNVE. For the synthetic dataset, when the
dimensionality is equal to 2, the runtime of AEPSQ is about
45%of that of TPNVE, andwhen the dimensionality is equal
to 8, the runtime of AEPSQ is about 22% of that of TPNVE.

123

Arab J Sci Eng (2016) 41:2801–2811 2811

We can further observe that the effect of AEPSQ on the syn-
thetic dataset is more evident than that on the real dataset.
This is mainly since the skyline distances of most pairs of
parent–child nodes do not exceed ξ in the synthetic dataset.

6 Conclusions

In this paper, we introduce the density-based clustering
technology into real skyline query applications and first pro-
pose the concept of skyline-CL, which clusters the skyline
objects andmakes users zoom into different groups of skyline
objects. Also, we propose to extend SQL with a SKYLINE-
CL OF keyword, which can efficiently enhance the query
engine functions of RDBMS. On the other hand, an efficient
solution (i.e., AEPSQ) is developed for efficiently process-
ing the skyline-CL query. Our solution is based on the novel
index tree SI(k)-Tree which is first proposed in our paper,
and employs several interesting properties of the index tree
to obtain the skyline clusters fast. Furthermore, we present
detailed theoretical analyses and extensive experiments that
demonstrate our solution is both efficient and effective.

Future workwill focus on using somemore efficient index
structures to improve the performance of our algorithms,
extending our algorithms to stream environments, and on
more experimentation.

Acknowledgments This work is supported by the Shanghai Rising-
Star Program (No. 15QA1403900), the National Natural Science Foun-
dation of China (Nos. 61272268, 61072138, 61379005), the Program
for New Century Excellent Talents in University (NCET-12-0413), the
Fok Ying-Tong Education Foundation (142002), the Southwest Univer-
sity of Science and Technology (12zx7127).

References

1. Lin, X.; Xu, J.; Hu, H.; Lee, W.: Authenticating location-based
skyline queries in arbitrary subspaces. IEEE Trans. Knowl. Data
Eng. 26(6), 1479–1493 (2014)

2. Jiang, T.; Zhang, B.; Lin, D. et al.: Incremental evaluation of top-k
combinatorial metric skyline query. Knowl. Based Syst. 74, 89–
105 (2015)

3. Godfrey, P.: Skyline cardinality for relational processing. In: Inter-
national Conference on Foundations of Information and Knowl-
edge Systems, pp. 78–97 (2004)

4. Borzsonyi, S.; Kossmann, D.; Stocker, K.: The skyline operator. In:
International Conference onData Engineering, pp. 421–430 (2001)

5. Kossmann, D.; Ramsak, F.; Rost, S.: Shooting stars in the sky: an
online algorithm for skyline queries. In: Proceedings of the 28th
International Conference on Very Large Data Bases, pp. 311–322
(2002)

6. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B.: An optimal and pro-
gressive algorithm for skyline queries. In: Proceedings of the 2003
ACM SIGMOD international conference on Management of data,
pp. 467–478 (2003)

7. Papadias, D.; Tao, Y.; Fu, G.; Seeger, B.: Progressive skyline com-
putation in data systems. ACM Trans. Database Syst. 30(1), 41–
82 (2005)

8. Chomicki, J.; Godfrey, P.; Gryz, J.; Liang, D.: Skyline with Pre-
sorting:Theory and Optimization. In: International Conference on
Intelligent Information Systems, pp. 595–604 (2005)

9. Chan, C.; Jagadish, H.; Tan, K.; Tung, A.; Zhang Z.: On High
Dimensional Skylines. In: International Conference on Extending
Database Technology, pp. 478–495 (2006)

10. Huang, Z.; Guo, J.; Sun, S.;Wei,W.: Efficient optimization of mul-
tiple subspace skyline queries. J. Comput. Sci. Technol. 23(1), 103–
111 (2008)

11. Li,Y.; Li, Z.;Dong,M. et al.: Efficient subspace skyline query based
on user preference using MapReduce. Ad Hoc Netw. 35, 105–
115 (2015)

12. Huang, Z.; Sun, S.; Wang, W.: Efficient mining of skyline objects
in subspaces over data streams. Knowl. Inf. Syst. 22(2), 159–
183 (2010)

13. Sander, J.; Ester, M.; Kriegel, H.P. et al.: Density-based clustering
in spatial databases: The algorithm gdbscan and its applica-
tions. Data Min. Knowl. Discov. 2(2), 169–194 (1998)

14. Gan, J.; Tao, Y.: DBSCAN Revisited: Mis-Claim, Un-Fixability,
and Approximation. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, pp. 519–530.
ACM (2015)

15. Jin, W.; Han, J.; Ester, M.: Mining thick skylines over large data-
bases. In: Proceedings of PKDD, pp. 255–266 (2004)

16. Chan, C.; Jagadish, H.; Tan, K.; Tung, A.; Zhang, Z.: Finding K-
dominant skylines in high dimensional space. In: Proceedings of
ACM SIGMOD, pp. 503–514 (2006)

17. Huang, Z.; Xiang, Y.; Lin, Z.: l-Skydiv query: effectively improve
the usefulness of skylines. Sci. China Inf. Sci. 53(9), 1785–
1799 (2010)

18. Lin, X.; Yuan, Y.; Zhang, Q.; Zhang, Y.: Selecting stars: the k
most representative skyline operator. In: International Conference
on Data Engineering, pp. 86–95 (2007)

19. Tao, Y.; Ding, L.; Lin, X.; Pei, J.: Distance-based representative
skyline. In: International Conference onDataEngineering, pp. 892-
903 (2009)

20. Lee, J.;You,G.;Hwang, S. et al.: Personalized top-k skyline queries
in high-dimensional space. Inf. Syst. 34(1), 45–61 (2009)

21. Huang, Z.; Xiang, Y.; Zhang, B. et al.: A clustering based approach
for skyline diversity. Expert Syst. Appl. 38(7), 7984–7993 (2011)

22. Berchtold, S.; Böhm, C.; Keim, D.A.; et al.: A cost model for near-
est neighbor search in high-dimensional data space. In: Proceedings
of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pp. 78–86. ACM (1997)

23. Lee, J.; You, G.; Hwang, S.: Personalized top-k skyline queries in
high-dimensional space. Inf. Syst. 34(1), 45–61 (2009)

123

	Efficient Processing of the Skyline-CL Query
	Abstract
	1 Introduction
	2 Related Works
	3 Related Concepts of Skyline-CL Query
	4 Efficient Implementation of the Skyline-CL Query
	4.1 Constructing the Index Structure SI(k)-Tree
	4.2 Efficiently Producing Skyline Clusters

	5 Experiments
	5.1 Evaluating the Number of Skyline Clusters
	5.2 Evaluating Top-3 Skyline Clusters
	5.3 Evaluating the Time Cost

	6 Conclusions
	Acknowledgments
	References

