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Abstract Feature selection (FS) is employed to make text
classification (TC) more effective. Well-known FS metrics
like information gain (IG) and odds ratio (OR) rank terms
without considering term interactions. Building classifiers
with FS algorithms considering term interactions can yield
better performance. But their computational complexity is a
concern. This has resulted in two-stage algorithms such as
information gain-principal component analysis (IG–PCA).
Random forests-based feature selection (RFFS), proposed by
Breiman, has demonstrated outstanding performance while
capturing gene–gene relations in bioinformatics, but its use-
fulness for TC is less explored. RFFS has fewer control
parameters and is found to be resistant to overfitting and
thus generalizes well to new data. It does not require use of
a test dataset to report accuracy and does not use conven-
tional cross-validation. This paper investigates the working
ofRFFS forTCand compares its performance against IG,OR
and IG–PCA. We carry out experiments on four widely used
text data sets using naiveBayes’ and support vectormachines
as classifiers. RFFS achieves macro-F1 values higher than
other FS algorithms in 73% of the experimental instances.
We also analyze the performance of RFFS for TC in terms
of its parameters and class skews of the data sets and yield
interesting results.
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1 Introduction

Text classification (TC) is a popular application of machine
learning which deals with the automatic classification of text
documents into one or more predefined classes or categories
[1,2]. Because of the rapidly growing digital text documents,
TC finds its use in a broad spectrum of applications [3]. To
apply machine learning algorithms to text documents a lot of
preprocessing techniques are employed such as tokenization,
stemming, stop-word removal, and pruning [4,5]. For further
details, interested readers should refer to [6,7]. InTC, the data
are most widely represented by the bag-of-words model [8].
The ordering and structure of the text are ignored, and a doc-
ument is taken to be a sequence of terms in this model. The
outcome is a data set D = {dt ,Ct }Nt=1 with N documents
and M terms such that the t th document is dt ∈ RM and
its category is Ct ∈ {±1}. The set T = {T1, T2, . . . , TM }
denotes the M distinctive terms. The value of a term can be
its term frequency (tf) or its term frequency–inverse docu-
ment frequency (tf–idf) [9]. Various otherweighting schemes
are also in practice [10]. In the quest for improving TC’s
performance, joint occurrence of term pairs has also been
proposed [11].

The feature space for a text classifier is made up of a
set of words1 with quite a large M , thus making training
of the classifier computationally infeasible [12,13]. High
dimensionality also compromises the classifier’s accuracy.
This is attributed to the presence of irrelevant and redun-
dant features in data sets [14,15]. Irrelevant terms provide
no useful information about the class or category. Similarly,
redundant features are those which provide no additional
information about the class beyond what has already been
provided by relevant features. These irrelevant and redun-

1 We use the words feature, variable, term, and word interchangeably.
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dant features, which are detrimental for a classifier should
be avoided [16,17]. To reduce the size of the feature
space while enhancing the performance of text classifiers
significantly, dimensionality reduction is employed [18].
This can be achieved through feature transformation or
feature selection methods [19,20]. Feature transformation
(FT) also known as feature extraction maps the original
M features to a new space and selects the most useful
m dimensions of the newly created space. On the other
hand, feature selection (FS) algorithms select a feature
subset of size m from the original feature space with M
features, thus preserving the original meaning of the fea-
tures [21,22]. In this study, our focus is on feature selection
algorithms.

Feature selection algorithms can be broadly categorized
into feature ranking (FR) methods and feature subset selec-
tion (FSS)methods [23]. An FR algorithm evaluates a feature
using a metric and then ranks the features in decreasing order
of their importance according to the metric’s value [24]. The
features are then chosen for classification on the basis of
some threshold value or the number of top ranked features.
Thesemethods are the preferred choice for high-dimensional
data such as the ones of text classification since they run in
linear time [25]. Some popular FR metrics for text classifi-
cation include information gain (IG) [1], Chi-square [26],
and odds ratio (OR) [27]. On the other hand, FSS algo-
rithms, which are broadly classified into filters, wrappers,
and embedded methods [28,29], employ a search algorithm
to find the most useful subset of features. They take the
feature interactions into consideration and thus can be con-
sidered to be better than the feature ranking algorithms while
building classifiers. However, FSS typically run in quadratic
time and are computationally inefficient to work for text data
sets [23].

Random forests-based feature selection (RFFS) [30] has
been used in ecology [31], in bioinformatics for identify-
ing the most useful genes and disease classification [32,33]
and various other domains. However, its use for building
text data classifiers has been less explored. In this paper, we
investigate its performance for TC and compare it against two
popular FRmetrics (IG andOR) and onemultivariatemethod
(IG–PCA). To find out whether or not RFFS performs bet-
ter than IG, OR, and IG–PCA algorithms, we experiment
on four text data sets (Reuters-21578, WebKB, WAP, and
TREC) using two classifiers (naive Bayes’ [34] and support
vector machines [35]).

The remainder of this paper is organized into four sec-
tions. Section 2 provides the related literature to this study
while Sect. 3 describes the working of RFFS algorithm and
compares our study to previous works. In Sect. 4, we present
the experimental setup that we followed for our research.
Results are provided and discussed in Sects. 5 and 6. The
conclusions are drawn in Sect. 7.

2 Related Work

This section describes the work that has been done regarding
feature selection in the text classification domain.

Most of the work that has been done in text classifica-
tion to improve the feature selection stage involves feature
ranking methods. Many comparative studies in this regard
have been carried out including that by Yang and Pederson
[1], Forman [9], and Mladenic and Grobelnik [27] to name
a few. The former found Chi-square and IG to be the most
efficient, while using k-nearest neighbour (kNN) and linear
least-square fitting model (LLSF) as classifiers. Forman [9]
proposed a new feature rankingmetric namely bi-normal sep-
aration (BNS) and compared it to 11 other feature ranking
metrics [IG, OR, document frequency (DF), etc.] using sup-
port vector machines (SVM) as classifier. His results showed
that BNS outperforms the others in majority of the cases
especially in high-skew situations which are quite common
in TC. Mladenic and Grobelnik [27] found odds ratio to be
the best and information gain to be the worst in comparison
with nine other FR metrics using naive Bayes’ as classifier.
The quest for enhancing TC’s performance is going on.More
recently, Uysal and Gunal [12] proposed a new FR metric
namely distinguishing feature selector (DFS) and compared
its performance against Gini index, information gain, and
Chi-square. Let us now describe a few popular feature rank-
ing metrics for text classification that have been previously
mentioned.

2.1 Information Gain (IG)

Information gain (IG) measures the information obtained for
class prediction by knowing the presence or absence of a
term in a document [1,26]. In other words, it measures the
decrease in entropy when the term is present to when it is
absent. It is an information theory-based metric which ranks
individual terms based on their association with the class
variable and neglects possible interactions between the terms
themselves. It is defined as:

IG = e(pos, neg)

− [
Pword × e(tp, fp) + (1 − Pword) × e(fn, tn)

]
(1)

where e(x, y) = − x
x+y log2

x
x+y − y

x+y log2
y

x+y . The pos
and neg are the number of positive and negative cases respec-
tively, Pword is (tp+ fp)/(pos+neg), tp denotes true positives,
i.e., number of actual positive cases containing word and
fn denotes false negatives, i.e., number of actual positive
cases not containing word, while fp denotes false positives,
i.e., number of actual negative cases containing word and tn
denotes true negatives, i.e., number of actual negative cases
not containing word.
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2.2 Odds Ratio (OR)

Odds ratio measures the odds of the word occurring in
the positive class normalized by that of the negative class
[26,27]. The notion behind this feature ranking metric is that
the distribution of features on the relevant documents is dif-
ferent from the distribution of features on the non-relevant
documents. It is normally used in information retrieval,where
theproblem is to rank the features according to their relevance
for the positive class. It is defined as:

OR = tp

fp

tn

fn
(2)

The definitions of tp, tn, fp and fn have been explained in
previous subsection.

2.3 Chi-Square (CHI)

Chi-square is a statistical feature selection metric which
measures the divergence from the expected distribution,
assuming that the occurrence of features is independent of
the class value [9]. It is defined as:

CHI = t (tp, (tp + fp) × Ppos) + t (fn, (fn + tn) × Ppos)

+ t (fp, (tp + fp) × Pneg) + t (tn, (fn + tn) × Pneg)

(3)

where Ppos = tp+fn
tp+fn+fp+tn , Pneg = fp+tn

tp+fn+fp+tn and

t (count, expect) = (count−expect)2

expect . This test is known to
not work for very small expected counts, which are quite
common in text classification applications. This can be both
because of having rarely occurring terms, and sometimes
because of having few positive training examples for a fea-
ture.

2.4 Two-Stage Feature Selection Algorithms

As pointed out by Forman [9], the presence of redundant
terms in text documents can deteriorate the classification per-
formance of TC if feature selection algorithms used do not
take care of term interactions. This has led researchers to
propose two-stage algorithms [13,20]. In the first stage, an
FR metric selects a subset of the most relevant terms. From
this reduced feature subset, redundancy is eliminated in the
second stage. The second stage is a feature transformation
algorithm such as principal component analysis (PCA) [4] or
latent semantic indexing (LSI) [13]. Apart from evaluating
IG and OR, we also evaluated the performance of IG–PCA
against that of RFFS in this study.

In the IG–PCA algorithm [4], two-stage feature selection
and feature extraction is used to improve the performance of

text categorization. In the first stage, each term within the
document is first ranked in decreasing order of importance
for classification using the information gain (IG) method. In
the second stage, principal component analysis (PCA) fea-
ture extractionmethod is applied to the terms and a dimension
reduction is carried out. Thereby, during feature ranking irrel-
evant terms are ignored and feature extraction is applied to
the terms of highest importance.

We next describe the working of random forests, which
selects important features in the forwarddirection taking their
interactions into account.

3 Random Forests-Based Feature Selection (RFFS)

Random forest (RF) algorithm, developed by Breiman [30],
is a parallel ensemble method used for classification and is
an extension of his bagging predictor [36] and classification
and regression tree (CART) [37] algorithms. It combines
numerous binary decision trees built using several bootstrap
samples of the data. In addition to this, random forests change
the method of construction of classification or regression
trees, that is, instead of splitting each node using the best
split among all features as in standard trees, in a random for-
est each node is split using the best among a subset of features
randomly chosen at that node [38]. It is also user-friendly in
the sense that it has only two parameters: the number of vari-
ables in the random subset at each node mtry and the number
of trees in the forest ntree. The RF tree evolution algorithm
can be summarized as follows:

1. The forest consists of ntree trees. Each of these trees is
constructed using bootstrap samples from the original
data, that is, with a new training set that is drawn at ran-
dom with replacement.

2. At each node of a tree:

– a new set of eligible mtry features from the set of all
features are selected at random

– the feature among the mtry features which provides
the best split according toGini impurity function [39]
is selected

3. Each tree is grown with maximum depth (i.e., no pruning
is performed), such that important variables finally make
it into the tree.

4. Each tree then casts a vote on its terminal nodes. For a
binary target the vote will be YES or NO.

5. The forest then takes the majority votes for classification.

If Ntr denotes the number of instances in the training set, then
its running time complexity is ntree · mtry · Ntr log Ntr [23].
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3.1 Variable Importance Using Random Forests

Random forests additionally give ameasure of importance of
the predictor variables. A variable’s importance can be esti-
mated by four different measures [40]. The most widely
adopted is the permutation accuracy importance measure
[41]. The prediction capability of each tree is estimated on
the data not used in its construction. Those instances are
called ‘out-of-bag’ instances (approximately 1/3 of the total
instances) and are used to estimate the importance of a vari-
able. In doing so for an lth variable, its values in the left out
instances for the kth tree are first randomly permuted so that
its original association with the class variable is lost. Then
the permuted variable l, together with the remaining unper-
muted predictor variables, is used to predict the response. The
change in the classification performance for the entire forest
before and after the permutation determines the importance
of the lth feature. The greater the increase in the performance,
more is the importance of the variable.

3.2 Comparison of Our Study with Other SimilarWorks

The studies based on random forests like [38] have focused
on the working of the general algorithm and the usage of
its package in R.2 Chen [42] has focused on using ran-
dom forests as a classifier for learning imbalanced data.
Hapfelmeier [43] has used Random forests as a variable
selection method by developing a new approach based on
permutation tests. Amaratunga [44] has used weighted ran-
dom sampling for choosing the eligible subset of features at
each node. Random forest is thus popular as a classifier and
has also been employed as a feature selectionmethod namely
RFFS in various domains.

There are many other parallel ensembles that have been
studied for classification, for instance, the ensembles based
on k-NNclassifier [45] and for feature selection, for instance,
Group Method of Data Handling (GMDH) [46]. Neumayer,
however, failed to prove that ensembles of k-NN classifiers
outperform a single classifier that is trained on the complete
dataset. GMDH, on the other hand, is based on abductive
network training algorithm and has yielded good results in
various domains [46]. It is based on model synthesis, which
although is amore adequate approach and is free from human
biases, but is not a focus of this study. This can be part of
a subsequent separate study where the merits of GMDH,
RFFS, and other such ensembles can be compared for text
classification.

When it comes to our goal of study, RFFS hasmost widely
been used in the field of bioinformatics for gene ranking
and selection [32,33,43,47] andhas demonstrated promising
results. The working of RFFS has been less explored for text

2 http://www.r-project.org.

classification. Gene expression data and text data have two
attributes in common: both comprise of sparse data sets and
have large number of features. The number of observations
for gene expression data is much low (in mostly order of
tens or sometimes hundreds) than that available for text data.
They are also different in the number of classes, i.e., gene
expression data are two-class problems, while text data are
multi-class. Also, the skew is much higher than that in gene
expression data sets. With these challenging characteristics,
we are interested in determining how good RFFS is at in
improving text classification performance.

When we compare the merits of RFFS over other pop-
ular feature ranking methods that have been described in
this study, the first thing we realize is that FR methods
are univariate methods, meaning that they consider that the
words/features in a document or text corpora are independent
of each other. However, it has been researched that consid-
ering term interactions can yield better performance [48].
RFFS also has a few control parameters and is found to be
resistant to overfitting and thus generalizes well to new data.
It does not require use of a test dataset to report accuracy
(uses ‘out-of-bag’ instances) and does not use conventional
cross-validation. It can even work with missing values in the
data which is not possible with FR metrics.

We next describe ourmethodology for evaluating different
FS algorithms.

4 Experiments

This section describes our experiments, summary of the data
sets and the mechanism for evaluating feature selection algo-
rithms.

We carried out our experiments using the challenge learn-
ing object package (CLOP) [49], which is implemented in
MATLAB [50]. For RFFS and OR, the CLOP implemen-
tation was used while we implemented IG and IG–PCA in
MATLAB. RFFS uses the R package ‘randomForest.’3 The
two main parameters for RFFS are mtry, the number of input
features randomly chosen at each split and ntree, the num-
ber of trees in the forest. These are user-defined. We have
used the default values, i.e., mtry = √

M and ntree = 100.
Brieman suggests trying 1/2 · √M , or 2 · √M for mtry if the
default does not produce good results [30]. For ntree, greater
is its value, greater is the stability of the feature score esti-
mates generated by the algorithm.

4.1 Data Description

We investigated the performance of IG, OR, IG–PCA and
RFFS on four widely used text classification data sets,
namely, WebKB, WebACE, TREC, and Reuters-21578. The

3 http://www.r-project.org.
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Table 1 Summary of the data
sets R8 and WebKB

R8 (M = 4095, N = 7674) WebKB (M = 522, N = 4168)

Class NCT NCTr NCTs Skew Class NCT NCTr NCTs Skew

Acq 2292 1596 696 1:3 Student 1625 1085 540 1:3

Crude 374 253 121 1:22 Faculty 1116 745 371 1:4

Earn 3923 2840 1083 1:2 Course 926 620 306 1:5

Grain 51 41 10 1:134 Project 501 335 166 1:8

Interest 271 190 81 1:29 – – – – –

Money-fx 293 206 87 1:27 – – – – –

Ship 144 108 36 1:51 – – – – –

Trade 326 251 75 1:22 – – – – –

Total 7674 5485 2189 – – 4168 2785 1383 –

M and N denote the number of terms and documents, respectively. NCT denotes the total number of
documents in a class while NCTr and NCTs denote the number of documents in training set and test set of a
class, respectively. Skew is the ratio of NCTr to the total number of training documents

WebKB data set, also made available by Ana
Cardoso-Cachopo, consists of Web pages collected by the
World Wide Knowledge Base (WebKb) project of the CMU
(Carnegie Mellon University) text learning group.4 The
WebACE Projects data set WAP consists of Web pages
listed in the subject hierarchy of Yahoo! For the TREC data
sets, FBIS version was used. The WAP and FBIS data sets
were provided by Karypis.5 For the Reuters-21578 data set,
we used the version R8 made available by Ana Cardoso-
Cachopo [51]. This data set contains documents which came
out on the Reuters newswire in 1987. These four data sets
use the term counts in a document as the term representation.

R8 and WebKb data sets were already split into train-
ing and test sets [51]. For the WAP and FBIS data sets,
this was not the case. In these, the common words were
already removed using stop-word list and words stemmed
using Porters suffix stripping algorithm [52]. We employed
a rare word cutoff and a too frequent word cutoff, i.e., the
terms which appeared in less than three documents and the
ones which appeared in more than 25% of the documents
were removed. The data sets were then randomly split into
training and test sets. The summary of the data sets are given
in Tables 1 and 2.

4.2 Performance Evaluation

A feature selection (FS) algorithm (IG, OR, IG–PCA, or
RFFS) when applied on a class of a data set outputs a list of
terms in the decreasing order of relevance to the class with
the term having the highest relevance as the first term. From
this ranked list, nested subsets containing different number
of top ranked features are generated which are then used to
train a classifier so that the feature selection capability of a

4 http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/.
5 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download.

feature selection algorithm can be evaluated. For theWebKB
data set, size of the nested subsets are 20, 50, 100, 150, 200,
300, 450 while for the other data sets, we have measured the
performance of the feature selection algorithms at subsets
consisting of top 20, 50, 100, 150, 200, 300, 450, 550, 700,
900, 1000, 1300, 1500 and 2000 terms.

Two popular classifiers in the text classification com-
munity namely: naive Bayes’ [34,53] and support vector
machines (SVM) with a linear kernel [2,35] have been used.
The CLOP implementation of these classifiers was used.
There are no tuning parameters for naive Bayes’, while for
SVM, we used the default values of the tuning parameters.
The procedure above is repeated for each class of the four
data sets.

Since our data sets were originally multi-class, so to mea-
sure the performance of the feature selection methods, we
used the popular macro-F1 measure [9]. The F-measure, in
general, measures the classifier’s effectiveness at both pre-
cision and recall. In many studies, it is taken to be is the
ultimate measure of performance of the classifier. The F1
measure, however, is simply the harmonic mean of precision
and recall and gives equal weight to both of them. Themacro-
F1 measure, that we used in this study, is the average of F1
measure over the various classes of a data set. This measure
gives equal weight to all classes of a data set whether they
have high or low skew [9]. It is given by:

Macro F1 =
∑|C|

i=1(F1)i
|C | (4)

where i is the index variable of the classes of a data set,
F1 = 2×recall×precision

recall+precision , recall= tp
tp+fn and precision= tp

tp+fp .
In the discussion to follow, G is a set that contains the

top ranked terms of an FS algorithm and | G | represents its
cardinality. Let %ΔF1 = F1RFFS − F1x , where x ∈ {IG,OR,

IG–PCA} denotes the %age improvement in the macro F1.
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Table 2 Summary of the data
set WAP and FBIS

WAP (M= 8423, N = 1560) FBIS (M= 1907, N = 2463)

Class NCT NCTr NCTs Skew Class NCT NCTr NCTs Skew

People 168 113 55 1:10 3 48 33 15 1:52

Television 130 96 34 1:11 4 43 25 18 1:69

Health 341 246 95 1:4 11 46 27 19 1:64

Media 18 11 7 1:98 12 121 84 37 1:21

Art 15 9 6 1:121 95 38 30 8 1:57

Film 196 127 69 1:9 100 92 58 34 1:30

Business 76 49 27 1:22 108 94 73 21 1:24

Cable 33 24 9 1:46 111 387 275 112 1:7

Culture 54 38 16 1:29 118 139 98 41 1:18

Music 91 66 25 1:17 119 46 32 14 1:54

Politics 65 48 17 1:23 142 506 361 145 1:5

Sports 97 72 25 1:15 161 65 42 23 1:41

Review 91 63 28 1:17 187 125 89 36 1:19

Technology 37 25 12 1:44 189 358 250 108 1:7

Stage 13 12 1 1:91 202 190 120 70 1:14

Entertainment 5 3 2 1:364 221 119 95 24 1:18

Online 40 26 14 1:42 240 46 32 14 1:54

Industry 44 31 13 1:35 – – – – –

Variety 35 27 8 1:40 – – – – –

Multimedia 11 6 5 1:182 – – – – –

Total 1560 1092 468 – – 2463 1724 739 –

M and N denote the number of terms and documents, respectively. NCT denotes the total number of
documents in a class while NCTr and NCTs denote the number of documents in training set and test set of a
class, respectively. Skew is the ratio of NCTr to the total number of training documents

If %ΔF1 ≥ 1, its a win for RFFS. If −1 < %ΔF1 < 1, then
we consider it to be a tie. Otherwise, a loss. In the following
tables, RFFS’swin over IG,OR, or IG–PCA is represented by
a •, its loss by a ◦, and the absence of a symbol indicates a tie.

5 Results

Section 5.1 compares and analyzes the results that we
obtained in terms of macro-F1 measure for the feature selec-
tion methods RFFS, IG, OR, and IG–PCA on the four data
sets. Then, we analyze the changes in performance of RFFS,
also in terms of macro-F1 measure, upon varying the val-
ues of ‘mtry’ and ‘ntree’ parameters for the four data sets in
Sect. 5.2. And finally in the same section, we will be analyz-
ing the performance of RFFS in terms of class skews.

5.1 RFFS Versus IG, OR and IG–PCA

5.1.1 The WebKB Data Set

Let us first look at the performance of the four FS algorithms
on the WebKB data set. The mtry and ntree of RFFS are set
to 23 and 100 respectively. Table 3 provides a detailed look
at the macro F1 performance of RFFS versus IG, OR and

IG–PCA. With naive Bayes, IG and OR have been outper-
formed by RFFS in four out of seven nested subsets, while
performance of IG–PCA was found to be poorer than that of
RFFS in all the cases. Almost similar results were attained
when the nested subsets were evaluated by SVM. Out of
the 14 experimental instances of WebKB, the performance
for RFFS surpasses that of IG, OR and IG–PCA in majority
cases. Hence, we can conclude that RFFS is a better choice
for WebKB.

5.1.2 The WAP Data Set

Now, we are going to compare the performance of RFFS,
IG, OR, and IG–PCA for the WAP data set. Here, mtry is
taken to be 92. The macro-F1 values obtained by the four
FS algorithms using naive Bayes’ and SVM are shown in
Table 4. For the naive Bayes classifier, the RFFS algorithm
demonstrates performance better or comparable to IG. The
other two algorithms OR and IG–PCA are outperformed by
RFFS. When the rankings are evaluated by SVM, we find
that RFFS performs much better than IG, OR and IG–PCA
in 9, 14, and 5 nested subsets, respectively. Hence, it can be
said that the WAP classification task is better performed by
RFFS.
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Table 3 Macro-F1 performance
of RFFS versus IG, OR, and
IG–PCA algorithms on WebKB

| G | Naive Bayes’ Support vector machines

RFFS IG OR IG–PCA RFFS IG OR IG–PCA

20 0.273 0.202 • 0.218 • 0.106 • 0.580 0.543 • 0.479 • 0.458 •
50 0.330 0.316 • 0.297 • 0.199 • 0.516 0.458 • 0.445 • 0.477 •
100 0.455 0.412 • 0.381 • 0.277 • 0.695 0.649 • 0.614 • 0.429 •
150 0.482 0.464 • 0.443 • 0.295 • 0.782 0.752 • 0.713 • 0.508 •
200 0.492 0.496 0.488 0.308 • 0.784 0.774 • 0.765 • 0.605 •
300 0.505 0.519 ◦ 0.516 ◦ 0.356 • 0.786 0.788 0.788 0.672 •
450 0.538 0.541 0.542 0.374 • 0.806 0.811 0.810 0.736 •
G contains the top ranked terms and | G | represents its cardinality. ◦ and • denote the
improvement/degradation of IG, OR, or IG–PCA w.r.t. RFFS in terms of macro F1

Table 4 Macro F1 performance
of RFFS versus IG, OR and
IG–PCA algorithms on WAP

| G | Naive Bayes’ Support vector machines

RFFS IG OR IG–PCA RFFS IG OR IG–PCA

20 0.225 0.244 ◦ 0.219 0.148 • 0.280 0.253 • 0.226 • 0.210 •
50 0.290 0.258 • 0.225 • 0.181 • 0.303 0.303 0.266 • 0.308

100 0.286 0.264 • 0.239 • 0.163 • 0.356 0.385 ◦ 0.310 • 0.418 ◦
150 0.293 0.295 0.230 • 0.154 • 0.402 0.414 ◦ 0.304 • 0.439 ◦
200 0.289 0.310 ◦ 0.240 • 0.138 • 0.425 0.410 • 0.309 • 0.440 ◦
300 0.337 0.342 0.266 • 0.133 • 0.514 0.504 • 0.342 • 0.482 •
450 0.369 0.370 0.310 • 0.195 • 0.579 0.560 • 0.445 • 0.568 •
550 0.346 0.345 0.284 • 0.131 • 0.599 0.595 0.496 • 0.595

700 0.371 0.358 • 0.328 • 0.124 • 0.627 0.568 • 0.544 • 0.609 •
900 0.385 0.355 • 0.334 • 0.123 • 0.625 0.585 • 0.551 • 0.623

1000 0.382 0.347 • 0.348 • 0.123 • 0.649 0.583 • 0.580 • 0.631 •
1300 0.346 0.326 • 0.346 0.084 • 0.638 0.586 • 0.592 • 0.644

1500 0.331 0.323 0.339 0.081 • 0.653 0.576 • 0.594 • 0.646

2000 0.336 0.337 0.352 ◦ 0.080 • 0.611 0.590 • 0.596 • 0.660 ◦
G contains the top ranked terms and | G | represents its cardinality. ◦ and • denote the
improvement/degradation of IG, OR, or IG–PCA w.r.t. RFFS in terms of macro F1

5.1.3 The FBIS Data Set

The mtry of RFFS is initialized to 44. Table 5 provides the
performance comparison of RFFS, IG, OR and IG–PCA for
the FBIS data set. We can see that with naive Bayes’ classi-
fier RFFS outperforms IG, OR and IG–PCA in 9, 10 and 12
nested subsets respectively. A similar performance is exhib-
ited by RFFSwhen the nested subsets are evaluated by SVM.
There are 6, 9 and 12 caseswhereRFFS surpasses IG,ORand
IG–PCA respectively. Hence, we can conclude that RFFS is
the winner on the FBIS data set.

5.1.4 The R8 Data Set

Finally, we compare the four FS algorithms on the R8 data
set. The mtry parameter of RFFS is 64. Table 6 shows their

macro-F1 values. We can observe that using naive Bayes,
the highest macro F1 value is attained by the RFFS algo-
rithm, which comes out to be 0.601 with its top 300 ranked
terms. Out of the 14 experimental instances, RFFS has out-
performed IG in 12 cases, OR and IG–PCA in all cases.
Using SVM, the highest macro F1 value is exhibited by
the RFFS and IG–PCA algorithms. RFFS has achieved this
value with its top 1300 ranked terms while IG–PCA’s top
1000 ranked terms yielded this value. We can see also that
RFFS performs much better than IG and OR but its per-
formance, though good, is quite poor in comparison with
IG–PCA. Also, if we look closely at the results obtained by
RFFS and IG–PCA (with SVM) we see that as the size of
the nested subset increases, the difference between the val-
ues of macro-F1 measure obtained using these algorithms
decreases.
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Table 5 Macro-F1 performance
of RFFS versus IG and OR
algorithms on FBIS

| G | Naive Bayes’ Support vector machines

RFFS IG OR IG–PCA RFFS IG OR IG–PCA

20 0.251 0.241 • 0.238 • 0.055 • 0.239 0.268 ◦ 0.258 ◦ 0.178 •
50 0.298 0.335 ◦ 0.280 • 0.108 • 0.423 0.420 0.330 • 0.311 •
100 0.413 0.392 • 0.370 • 0.149 • 0.577 0.617 ◦ 0.511 • 0.352 •
150 0.459 0.434 • 0.421 • 0.163 • 0.615 0.641 ◦ 0.576 • 0.379 •
200 0.513 0.462 • 0.463 • 0.164 • 0.664 0.657 0.622 • 0.410 •
300 0.549 0.493 • 0.495 • 0.192 • 0.700 0.688 • 0.677 • 0.444 •
450 0.552 0.496 • 0.514 • 0.244 • 0.732 0.703 • 0.712 • 0.502 •
550 0.556 0.504 • 0.535 • 0.241 • 0.742 0.719 • 0.715 • 0.522 •
700 0.547 0.509 • 0.535 • 0.232 • 0.742 0.726 • 0.737 0.568 •
900 0.536 0.525 • 0.523 • 0.230 • 0.753 0.732 • 0.736 • 0.597 •
1000 0.516 0.513 0.525 0.242 • 0.752 0.732 • 0.742 • 0.602 •
1300 0.519 0.526 0.522 0.219 • 0.747 0.742 0.744 0.633 •
1500 0.517 0.498 0.486 0.205 0.740 0.747 0.754 0.650

G contains the top ranked terms and | G | represents its cardinality. ◦ and • denote the
improvement/degradation of IG, OR, or IG–PCA w.r.t. RFFS in terms of macro F1

Table 6 Macro-F1 performance
of RFFS versus IG, OR and
IG–PCA algorithms on R8

| G | Naive Bayes’ Support vector machines

RFFS IG OR IG–PCA RFFS IG OR IG–PCA

20 0.490 0.467 • 0.466 • 0.284 • 0.476 0.360 • 0.444 • 0.586 ◦
50 0.482 0.499 ◦ 0.438 • 0.352 • 0.493 0.473 • 0.438 • 0.634 ◦
100 0.566 0.493 • 0.480 • 0.395 • 0.689 0.619 • 0.508 • 0.748 ◦
150 0.569 0.498 • 0.487 • 0.398 • 0.759 0.714 • 0.531 • 0.787 ◦
200 0.597 0.545 • 0.496 • 0.406 • 0.772 0.726 • 0.614 • 0.818 ◦
300 0.601 0.555 • 0.509 • 0.423 • 0.771 0.764 ◦ 0.655 • 0.829 ◦
450 0.585 0.546 • 0.518 • 0.425 • 0.802 0.781 • 0.697 • 0.858 ◦
550 0.571 0.542 • 0.537 • 0.417 • 0.802 0.803 0.720 • 0.859 ◦
700 0.566 0.542 • 0.534 • 0.425 • 0.798 0.812 ◦ 0.782 • 0.858 ◦
900 0.559 0.542 • 0.531 • 0.412 • 0.823 0.845 ◦ 0.811 • 0.858 ◦
1000 0.555 0.536 • 0.518 • 0.416 • 0.836 0.852 ◦ 0.822 • 0.863 ◦
1300 0.529 0.516 • 0.509 • 0.415 • 0.863 0.838 • 0.843 • 0.858

1500 0.527 0.521 0.506 • 0.411 • 0.860 0.852 0.840 • 0.859

2000 0.518 0.506 • 0.506 • 0.429 • 0.858 0.864 0.846 • 0.858

G contains the top ranked terms and | G | represents its cardinality. ◦ and • denote the
improvement/degradation of IG, OR, or IG–PCA w.r.t. RFFS in terms of macro F1

5.2 Performance of RFFS with Respect to mtry, ntree
and Class Skew

5.2.1 Effect of mtry

The performance of RFFS was analyzed in the previous
section by taking the default values of mtry and ntree, i.e.,
mtry = √

M and ntree = 100 into account. In this section,
we investigate the performance of RFFS by varying the mtry

values to the other two values suggested by Breiman, i.e.,
1/2 · √

M , or 2 · √
M and compare those results with the

ones we already obtained for mtry = √
M . The value of ntree

is fixed at 100, the default.
Results of RFFS obtained for mtry values of 11, 23 and

46, as per Breiman’s suggestion, are listed in Table 7 for the
WebKB case. It is revealed that the performance of RFFS for
WebKB(a data setwith small number of terms) turns out to be
the best with mtry = √

M = 23 in majority of the cases. For
WAP, RFFS was run using mtry values of 46, 92, and 184.
Table 8 provides a detailed comparison. The value of mtry

equal to
√
M gives the best performance forRFFS inmajority

cases. Similarly, upon taking mtry as 22, 44 and 87 for the
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Table 7 Macro F1 performance
of RFFS for WebKB data set
upon varying mtry

| G | Naive Bayes’ Support vector machines

mtry mtrybest mtry mtrybest

11 23 46 11 23 46

20 0.241 0.273 0.251 23 0.524 0.580 0.545 23

50 0.338 0.330 0.352 46 0.508 0.516 0.563 46

100 0.444 0.455 0.464 23 0.680 0.695 0.725 46

150 0.471 0.482 0.490 23 0.760 0.782 0.775 23

200 0.484 0.492 0.490 23 0.783 0.784 0.784 23

300 0.503 0.505 0.503 23 0.797 0.786 0.798 46

450 0.538 0.538 0.541 23 0.807 0.806 0.811 23

G contains the top ranked terms and | G | represents its cardinality. mtrybest is chosen by taking the
maximum of the macro F1 values obtained using each mtry. If however the percentage difference in the
macro F1 obtained using mtry = √

M and the other mtry values is in the range (−1, 1), then we consider it to
be a tie and mtrybest is chosen as

√
M

Table 8 Macro-F1 performance
of RFFS for WAP data set upon
varying mtry

| G | Naive Bayes’ Support vector machines

mtry mtrybest mtry mtrybest

46 92 184 46 92 184

20 0.222 0.225 0.222 92 0.256 0.280 0.285 92

50 0.268 0.290 0.286 92 0.346 0.303 0.307 92

100 0.278 0.286 0.281 92 0.356 0.356 0.363 92

150 0.272 0.293 0.291 92 0.380 0.402 0.399 92

200 0.283 0.289 0.283 92 0.391 0.425 0.397 92

300 0.298 0.337 0.316 92 0.461 0.514 0.545 184

450 0.342 0.369 0.344 92 0.549 0.579 0.624 184

550 0.328 0.346 0.387 184 0.576 0.599 0.615 184

700 0.339 0.371 0.418 184 0.584 0.627 0.628 92

900 0.335 0.385 0.412 184 0.576 0.625 0.639 184

1000 0.336 0.382 0.402 184 0.581 0.649 0.637 92

1300 0.338 0.346 0.396 184 0.611 0.638 0.647 92

1500 0.327 0.331 0.349 184 0.599 0.653 0.670 184

2000 0.311 0.336 0.318 92 0.581 0.611 0.648 184

G contains the top ranked terms and | G | represents its cardinality. mtrybest is chosen by taking the
maximum of the macro F1 values obtained using each mtry. If however the percentage difference in the
macro-F1 obtained using mtry = √

M and the other mtry values is in the range (−1, 1), then we consider it to
be a tie and mtrybest is chosen as

√
M

FBIS data set, RFFS’s performance is tabulated in Table 9.
We can see that for both the classifiers, mtry = 44 yields
better performance than the other mtry values in majority of
the cases.

For the R8 data set, mtry values come out to be 32,
64 and 128 for 1/2 · √

M ,
√
M and 2 · √

M , respec-
tively. The variation in the performance of RFFS is given
in Table 10. For both, naive Bayes’ and SVM classifiers, the

best value of mtry for majority of feature subsets comes out
to be 128. As R8 has a large number of features, select-
ing features from a larger set of features for each node
instead of just

√
M has resulted in better performance for

RFFS.
Hence, we can conclude that for data sets with large num-

ber of terms, one should not choose mtry = 1/2 · √
M as a

parameter value for RFFS.
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Table 9 Macro-F1 performance
of RFFS for FBIS data set upon
varying mtry

| G | Naive Bayes’ Support vector machines

mtry mtrybest mtry mtrybest

22 44 87 22 44 87

20 0.277 0.251 0.268 22 0.245 0.239 0.245 44

50 0.288 0.298 0.310 87 0.394 0.423 0.474 87

100 0.443 0.413 0.441 22 0.575 0.577 0.604 87

150 0.463 0.459 0.475 87 0.611 0.615 0.630 87

200 0.497 0.513 0.511 44 0.653 0.664 0.668 44

300 0.533 0.549 0.533 44 0.696 0.700 0.702 44

450 0.552 0.552 0.542 44 0.723 0.732 0.728 44

550 0.550 0.556 0.547 44 0.734 0.742 0.740 44

700 0.535 0.547 0.531 44 0.738 0.742 0.752 44

900 0.545 0.536 0.531 22 0.750 0.753 0.743 44

1000 0.534 0.516 0.538 87 0.755 0.752 0.747 44

1300 0.524 0.519 0.521 44 0.750 0.747 0.749 44

1500 0.517 0.517 0.522 44 0.754 0.740 0.747 22

G contains the top ranked terms and | G | represents its cardinality. mtrybest is chosen by taking the
maximum of the macro F1 values obtained using each mtry. If however the percentage difference in the
macro F1 obtained using mtry = √

M and the other mtry values is in the range (−1, 1), then we consider it to
be a tie and mtrybest is chosen as

√
M

Table 10 Macro-F1
performance of RFFS for R8
data set upon varying mtry

| G | Naive Bayes’ Support vector machines

mtry mtrybest mtry mtrybest

32 64 128 32 64 128

20 0.478 0.490 0.469 64 0.433 0.476 0.464 64

50 0.448 0.482 0.501 128 0.503 0.493 0.589 128

100 0.533 0.566 0.593 128 0.641 0.689 0.730 128

150 0.554 0.569 0.623 128 0.734 0.759 0.788 128

200 0.560 0.597 0.628 128 0.747 0.772 0.796 128

300 0.570 0.601 0.622 128 0.768 0.771 0.811 128

450 0.590 0.585 0.593 64 0.775 0.802 0.800 64

550 0.599 0.571 0.593 32 0.784 0.802 0.806 64

700 0.573 0.566 0.589 128 0.794 0.798 0.828 128

900 0.558 0.559 0.555 64 0.800 0.823 0.849 128

1000 0.550 0.555 0.553 64 0.806 0.836 0.857 128

1300 0.540 0.529 0.541 128 0.846 0.863 0.857 64

1500 0.536 0.527 0.539 128 0.848 0.860 0.857 64

2000 0.516 0.518 0.542 128 0.862 0.858 0.860 64

G contains the top ranked terms and | G | represents its cardinality. mtrybest is chosen by taking the
maximum of the macro-F1 values obtained using each mtry. If, however, the percentage difference in the
macro F1 obtained using mtry = √

M and the other mtry values is in the range (−1, 1), then we consider it to
be a tie and mtrybest is chosen as

√
M

5.2.2 Effect of ntree

In this section, we analyze the results obtained by running
the RFFS algorithm for the four data sets using ntree = 500
and compare those to the results obtained previously for
ntree = 100. The value of mtry is fixed at

√
M , the default.

Keeping the limitation of page numbers in view, we present
the results for the data sets with the largest and smallest num-
ber of instances.

Among the four data sets, R8 has the largest number of
instances. Lets refer to Table 11 to see the variation in the
performance of RFFS. Although ntree = 100 wins, the dif-

123



Arab J Sci Eng (2016) 41:951–964 961

Table 11 Macro F1 performance of RFFS for R8 data set upon varying
ntree

| G | Naive Bayes’ Support vector machines

ntree ntreebest ntree ntreebest

100 500 100 500

20 0.490 0.486 100 0.476 0.458 100

50 0.482 0.481 100 0.493 0.482 100

100 0.566 0.579 500 0.689 0.685 100

150 0.569 0.595 500 0.759 0.774 500

200 0.597 0.599 100 0.772 0.799 500

300 0.601 0.622 500 0.771 0.792 500

450 0.585 0.598 500 0.802 0.793 100

550 0.571 0.574 100 0.802 0.790 100

700 0.566 0.562 100 0.798 0.804 100

900 0.559 0.553 100 0.823 0.828 100

1000 0.555 0.542 100 0.836 0.836 100

1300 0.529 0.540 500 0.863 0.856 100

1500 0.527 0.536 100 0.860 0.862 100

2000 0.518 0.529 500 0.858 0.862 100

G contains the top ranked terms and | G | represents its cardinal-
ity. ntreebest is chosen by taking the maximum of the Macro F1 values
obtained using each ntree. If however the percentage difference in the
macro F1 obtained using ntree = 100 and ntree = 500 values is in the
range (−1, 1), then we consider it to be a tie and ntreebest is chosen as
100

ference between the macro-F1 values obtained using both
ntree values for majority of cases, especially for larger fea-
ture subsets is trivial. This is due to the fact that since R8 has
quite a large number of instances, so increase in number of
trees in the forest can make the performance better.

Next, we refer to Table 12 to see the performance onWAP.
It can be observed that for 26 out of 28 cases ntree = 100
yields better performance than ntree = 500. We obtained
similar results for the other two data sets. We can conclude
that the performance of RFFS does not vary significantly by
changing ntree, the number of trees in the forest.

5.2.3 Class Skew Analysis

The one thing that affects the performance of any feature
selection algorithm when it comes to text data is the class
skew. So, to analyze the performance of RFFS for low-to-
moderate and high-skew classes of a data set and compare
it to IG, OR and IG–PCA, we first set a threshold, i.e., we
took the classes having skews greater than 1:50 as high skew
and the rest as having low-to-moderate skew. Employing this
threshold, there were two classes of R8 (“grain” and “ship”),
no class of WebKb, five classes of WAP (“Media”, “Art”,
“Stage”, “Entertainment” and “Multimedia”) and six classes
of FBIS (3, 4, 11, 95, 119 and 240) in the high-skew category.

Table 12 Macro F1 performance of RFFS forWAP data set upon vary-
ing ntree

| G | Naive Bayes’ Support vector machines

ntree ntreebest ntree ntreebest

100 500 100 500

20 0.225 0.232 100 0.280 0.269 100

50 0.290 0.258 100 0.303 0.304 100

100 0.286 0.303 500 0.356 0.358 100

150 0.293 0.282 100 0.402 0.368 100

200 0.289 0.286 100 0.425 0.392 100

300 0.337 0.312 100 0.514 0.451 100

450 0.369 0.349 100 0.579 0.534 100

550 0.346 0.368 500 0.599 0.567 100

700 0.371 0.380 100 0.627 0.604 100

900 0.385 0.348 100 0.625 0.629 100

1000 0.382 0.338 100 0.649 0.591 100

1300 0.346 0.345 100 0.638 0.605 100

1500 0.331 0.340 100 0.653 0.619 100

2000 0.336 0.327 100 0.611 0.595 100

G contains the top ranked terms and | G | represents its cardinal-
ity. ntreebest is chosen by taking the maximum of the Macro F1 values
obtained using each ntree. If however the percentage difference in the
macro F1 obtained using ntree = 100 and ntree = 500 values is in the
range (−1, 1), then we consider it to be a tie and ntreebest is chosen as
100

Weobtained the average F1-measure of the low-to-moderate-
skew and high-skew classes of each data set for all the FS
algorithms and tabulated the results as given in Table 13.

For the R8 data set, using naive Bayes’ as classifier, it
can be seen that in both low-skew and high-skew situations
RFFSwins over IG,OR and IG–PCA in 97.6, and 57%cases,
respectively. Using SVM classifier, it can be seen that in
both low-skew and high-skew situations RFFS wins over IG,
OR and IG–PCA in 61.9 and 40.5% cases, respectively. The
deterioration in the results for high-skew situations is because
the performance of RFFS with respect to IG–PCA is very
lossy in high-skew situations.

For the WAP data set, using naive Bayes’ as classifier, it
can be seen that in both low-skew and high-skew situations
RFFS wins over IG, OR and IG–PCA in 57.1 and 95.2%
cases, respectively. Using SVM classifier, the performance
of RFFS with respect to IG and IG–PCA is very lossy in
low-skew situations. Overall for SVM, it can be seen that in
both low-skew and high-skew situations RFFS wins over IG,
OR, and IG–PCA in 42.8 and 78.6% cases, respectively.

For the FBIS data set, using naive Bayes’ as classifier,
it can be seen that in both low-skew and high-skew situ-
ations RFFS wins over IG, OR and IG–PCA in 61.5 and
89.7% cases, respectively. While for SVM classifier, it can
be seen that in both low-skew and high-skew situations RFFS
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Table 13 RFFS versus IG, OR
and IG–PCA in terms of class
skew

Low-to-moderate skew High skew Row-wise total

R8 and naive Bayes’ IG OR IG–PCA IG OR IG–PCA

Wins of RFFS 13 14 14 5 5 14 65

Loss of RFFS 0 0 0 3 3 0 6

Tie with RFFS 1 0 0 6 6 0 13

R8 and SVM

Wins of RFFS 7 14 5 8 8 1 43

Loss of RFFS 1 0 7 4 2 13 27

Tie with RFFS 6 0 2 2 4 0 14

WAP and naive Bayes’

Wins of RFFS 1 9 14 13 13 14 64

Loss of RFFS 9 1 0 1 1 0 12

Tie with RFFS 4 4 0 0 0 0 8

WAP and SVM

Wins of RFFS 3 13 2 13 11 9 51

Loss of RFFS 6 0 8 1 0 4 19

Tie with RFFS 5 1 4 0 3 1 14

FBIS and naive Bayes’

Wins of RFFS 5 6 13 9 13 13 59

Loss of RFFS 2 4 0 2 0 0 8

Tie with RFFS 6 3 0 2 0 0 11

FBIS and SVM

Wins of RFFS 10 10 13 4 1 13 51

Loss of RFFS 0 0 0 6 7 0 13

Tie with RFFS 3 3 0 3 5 0 14

Win/loss denote the number of cases in which RFFS shows significant improvement/degradation w.r.t. IG,
OR, or IG–PCA in terms of average F1

wins over IG, OR and IG–PCA in 84.6 and 46.1% cases,
respectively. The deterioration in the results for high-skew
situations is because the performance of RFFS with respect
to IG and OR is very lossy in high-skew situations.

6 Discussion

The main objective of this study was to find out whether
or not RFFS shows improved performance over IG, OR and
IG–PCAmethods for text data sets. Table 14 summarizes our
results by tabulating collectively the number of experimental
instances in which RFFS shows improved performance in
comparison with IG, OR, and IG–PCA in terms of macro-
F1 measure. The effectiveness of RFFS algorithm for text
classification is quite clear.

The following points are worth noting:

– In terms of macro F1, RFFS shows improved perfor-
mance in comparison with IG, OR and IG–PCA in 210
out of the total 287 instances.

– In terms of %ΔF1 , the average improvement of RFFS
over IG, OR and IG–PCAusingNaive Bayes as classifier

Table 14 RFFS versus IG, OR and IG–PCA in terms of macro F1
measure

Naive Bayes’ SVM

Data set Wins Losses Ties Wins Losses Ties

R8 40 1 1 21 15 6

WebKB 15 2 4 17 0 4

WAP 30 3 8 29 6 7

FBIS 31 1 7 27 4 8

Total 116 7 20 94 25 25

The number of cases in which RFFS shows significant improve-
ment/degradation (denoted by • and ◦ respectively) w.r.t. IG, OR, and
IG–PCA in terms of macro F1, as marked in Tables 3, 4, 5, 6, have
been collected as wins and losses of RFFS w.r.t. other FS methods. The
unmarked cases in the said tables are the ties of RFFS with IG, OR, and
IG–PCA

is 1.96, 3.45 and 20.06% respectively while for SVM
classifier it is 1.84, 5.64, and 6.96%, respectively.

– The improvement in the FR metric’s performance is due
to the fact that RFFS takes term interactions into consid-
eration.
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– For text data sets with fewer classes, RFFS gives better
performance for smaller feature subsets.

– For text data sets with greater number of classes having
extremely high skews, RFFS gives better performance
for medium to large feature subsets.

– If the number of features is quite large then only onemay
need to try 2 · √

M as a value for mtry to achieve better
performance than that for mtry = √

M .
– If the number of instances is quite large than only one

may need to try values of ntree variable greater than 100.

7 Conclusions

Traditionally, the text classification community employs
feature ranking (FR) metrics for feature selection. These
methods, however, do not take term interactions into account.
So we propose using random forests-based feature selec-
tion to find relevant and informative features. We evaluated
the performance of four FS methods, information gain (IG),
odds ratio (OR), IG–PCA, and RFFS, in terms of macro-
F1 measure using naive Bayes’ and support vector machines
as classifiers on four text data sets: Reuters-21578, WebKB,
WAP, and TREC.

We found RFFS to surpass IG, OR and IG–PCA in 73%
of all the experimental instances while matching their per-
formance in 15.6% of the instances. We also analyzed the
performance of RFFS by varying its parameters of mtry (the
number of features selected at each node) and ntree (the num-
ber of trees in the forest) and found that greater values than
the default of mtry and ntree should only be tried when the
number of features and instances is quite large.We also found
that RFFS overall performs better than conventional methods
with respect to both low- and high-skew classes of text data
sets. Thus we can say that using RFFS for feature selection
gives promising results for text classification in comparison
with IG, OR and IG–PCA.
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