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Abstract In this paper, the free vibration and torsional
static analysis of cylindrical shell are developed using mod-
ified strain gradient theory. In doing this, the governing
equations and classical and non-classical boundary condi-
tions are derived using Hamilton’s principle. After obtaining
equations governing the problem, the differential quadrature
method is used to discretize the equations of motion of the
vibration problem and to examine the single-walled carbon
nanotube (SWCNT) with two clamped-free and clamped–
clamped supports as a special application of this formulation.
Also, torsional static analysis is carried out for the clamped–
clamped SWCNT. Results reveal that SWCNT rigidity in
strain gradient theory is higher than that in couple stress the-
ory or the classical theory,which leads to increase in torsional
frequencies and decrease in torsion of SWCNT. Results also
demonstrate that the effect of size parameter and SWCNT
torsion in different lengths and diameters is considerable.

Keywords Torsional vibration · Static analysis · Cylindri-
cal shell · Modified strain gradient theory · Size effect

1 Introduction

Torsional vibration and static analysis of single-walled
carbon nanotubes (SWCNTs) are very significant in design-
ing nano-devices such as nano-sensors, nano-oscillators
and nano-actuators under torsion. Besides, examination of

B Hamid Zeighampour
h.zeighampour@yahoo.com

Yaghoub Tadi Beni
tadi@eng.aku.ac.ir

1 Faculty of Engineering, Shahrekord University, Shahrekord,
Iran

dynamic behavior of such nano-structures demands complete
knowledge of their dynamic behavior during torsional vibra-
tion. It is impossible, due to the minute size of SWCNTs,
to study their dynamic behavior and mechanical properties
using traditional methods and hence the use of methods such
as molecular dynamic (MD) simulation [1] and continuum
theories. MD simulation demands complicated and lengthy
calculations; therefore, it is not economical.Recently, higher-
order continuum theories, due to their capabilities in the
nanoscale, have attracted considerable attention.

In view of the extensive application of SWCNTs, their
mechanical modeling is of considerable significance. Since
SWCNTs are geometrically similar to cylindrical shells, they
could be modeled by cylindrical shells. Hence, in this paper,
because of the practicality of vibration and torsional static
analysis, the nano-shell formulation was developed. Besides,
due to the examination of nano-shells in nano-dimensions,
use of higher-order continuum theories and consideration
of size effects can predict the dynamic behavior of such
nano-structures. These theories include couple stress theory
[2–11], modified strain gradient theory [12–20] and surface
stress theory [21–23].

In recent years, special attention has been drawn to the use
of modified strain gradient theory and couple stress theory
in investigation of the mechanical behavior of micro-/nano-
structures. Akgöz et al. examined microbeam buckling using
strain gradient theory andmodified couple stress theory. They
used the Euler–Bernoulli model to examine buckling for the
size parameter in various boundary conditions [24]. Wang et
al. examined the free vibration and static bending of Tim-
oshenko beam using strain gradient theory. They examined
size effects and Poisson’s coefficient on natural frequency
and beam deformation, demonstrating that the size para-
meter has a considerable impact on natural frequency [25].
Zhao et al. examined nonlinear vibration, buckling and static
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bending of the Euler–Bernoulli beam with distributed load
using strain gradient theory. They compared frequency, crit-
ical load and deformation of the beam with the linear case
and the classical theory [26]. Yin et al. examined the free
vibration of fluid-conveying microbeam, demonstrating that
increase in fluid velocity is accompanied by decrease in nat-
ural frequencies, and compared to couple stress theory and
the classical theory, strain gradient theory predicts natural
frequencies with higher values [27].

In recent year, vibration and torsional instability of micro-
/nano- structures have drawn researchers’ attention. Natsuki
et al. examined instability of the double-walled SWCNT
using the classical theory and the shell model. They calcu-
lated the critical torsional force resulting from the torsional
buckling of the double-walled nanotube for values of differ-
ent parameters [28]. Asghari et al. [29] modeled the torsional
instability of nano-peapod using the non-local theory and
the shell model and examined the critical torsional buck-
ling for different parameters. Gheshlaghi et al. [30] studied
microbeam torsional vibration using couple stress theory,
demonstrating that increase in the size parameter accompa-
nies increase in SWCNT vibrational frequency. Lim et al.
[31] examined the torsional vibration of a SWCNT using the
non-local theory. They examined the effect of size parame-
ter and boundary conditions on SWCNT frequencies. They
also examined SWCNT torsional vibration with longitudinal
motion.

Considering the above discussion, in this paper, torsional
equations of motion of the cylindrical shell are developed
using modified strain gradient theory. Development of these
equations is aimed at achieving two basic objectives over-
looked by previous research. These objectives are as follows.

First, because of the use ofmodified strain gradient theory,
the newly developed formulation is able tomodel size effects;
therefore, it is appealing and has extensive application in
nanoscale modeling. Hence, torsional vibration and static
analysis of nanoscale structures can be examined using this
formulation.

Second, due the increasing use of elements in the shape
of cylindrical shells, such as SWCNTs, in the nanoscale, it
is essential to model such elements more precisely. Using
the cylindrical shell model instead of the beam model, the
new formulation is able to carry out more precise and real
simulation of geometrical shapes, and hence, it is appropriate
for use in the nanoscale.

After deriving the equations, torsional vibration and
static analysis of a SWCNT are examined. For this pur-
pose, the shell theory, taking into consideration the size
effect parameter and two types of supports (clamped-free
and clamped–clamped), is used. Equations governing the
problem aswell as boundary conditions derived usingHamil-
ton’s principle are discretized through differential quadrature
method and are solved under different boundary conditions.

Finally, the effect of various parameters such as size effect
and length scale on SWCNT vibration and torsion is exam-
ined.

2 Preliminaries

2.1 Modified Strain Gradient Theory

Modified strain gradient theory contains a new set of equi-
librium equations as well as classical equilibrium equations
along with five elastic constants. Strain energy for the elastic
and isotropic substance in area � (with volume element V)
with infinitesimal deformation is obtained as [32]:

U = 1

2

∫
�

(σi jεi j + piγ j + τ
(1)
i jk η

(1)
i jk + ms

i jχ
s
i j )dV (1)

where εi j is the strain tensor, γ j is the dilatation gradient

vector, η(1)
i jk is the deviatoric stretch gradient tensor, χ

s
i j is the

symmetric rotation gradient tensor, which are defined by

εi j = 1

2
(∂i u j + ∂ j ui ) (2)

γi = ηimm (3)

η
(1)
i jk = ηsi jk − 1

5

(
δi jη

s
ppk + δikη

s
ppj + δ jkη

s
ppi

)
,

ηsi jk = 1

3
(ηi jk + η jki + ηki j ), (4)

χ s
i j = 1

4

(
eipqη j pq + e jpqηi pq

)
(5)

where ui , δi j and e jpq are the displacement vector com-
ponents, the Kronecker delta and permutation symbol,
respectively. Also, σi j , pi , τ

(1)
i jk ,m

s
i j , respectively, stand for

the components of Cauchy tensor and higher-order tensors,
which are defined using constitutive equations in strain gra-
dient theory in the elastic area as:

σi j = Ci jklεkl (6)

pi = 2l20μγ j (7)

τ
(1)
i jk = 2l21μη

(1)
i jk (8)

ms
i j = 2l22μχ s

i j (9)

In the above equation, μ,Ci jkl represent shear modulus
and elastic constants, respectively; l0, l1 and l2 represent
extra length parameters dependent on dilatation gradient,
deviatoric stretch gradient and symmetric rotation gradient,
respectively.
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2.2 Classical and Higher-Order Strains in the
Cylindrical Shell

In general, classical and higher-order strains in cylindrical
coordinates and shell theory are obtained as [33]:

εzz = ∂w

∂z
, εθθ = 1

R (1 + z/R)

[
∂v

∂θ
+ w

]
, εxx = ∂u

∂x
(10)

εθ z = εzθ = 1

2

[
1

R (1 + z/R)

∂w

∂θ
+ ∂v

∂z
− v

R (1 + z/R)

]
,

εzx = εxz = 1

2

[
∂w

∂x
+ ∂u

∂z

]
,

εxθ = εθx = 1

2

[
∂v

∂x
+ 1

R (1 + z/R)

∂u

∂θ

]
.

ηxxx = ∂2u

∂x2
, ηxxθ = ∂2v

∂x2
,

ηxθθ = ηθxθ = 1

R (1 + z/R)

[
∂2v

∂x∂θ
+ ∂w

∂x

]
,

ηθxx = ηxθx = 1

R (1 + z/R)

∂2u

∂x∂θ
,

ηθθx = 1

R (1 + z/R)

[
1

R (1 + z/R)

∂2u

∂θ2
+ ∂u

∂z

]
,

ηθθθ = 1

[R (1 + z/R)]2

[
∂2v

∂θ2
+ 2

∂w

∂θ

+ R (1 + z/R)
∂v

∂z
− v

]
,

ηθθ z = 1

[R (1 + z/R)]2

[
∂2w

∂θ2
− 2

∂v

∂θ

+ R (1 + z/R)
∂w

∂z
− w

]
, (11)

ηzθθ = ηθ zθ = 1

R (1 + z/R)

[
∂2v

∂z∂θ
− 1

R (1 + z/R)

∂v

∂θ

+ ∂w

∂z
− w

R (1 + z/R)

]
,

ηzzθ = ∂2v

∂z2
, ηzθ z = ηθ zz = 1

R (1 + z/R)

×
[

∂2w

∂z∂θ
− 1

R (1 + z/R)

∂w

∂θ
− ∂v

∂z
+ v

R (1 + z/R)

]
,

ηxxz = ∂2w

∂x2
, ηzxx = ηxzx = ∂2u

∂x∂z
,

ηzzz = ∂2w

∂z2
, ηzzx = ∂2u

∂z2
, ηzxz = ηxzz = ∂2w

∂x∂z
,

ηzθx = ηθ zx = 1

R (1 + z/R)

[
∂2u

∂z∂θ
− 1

R (1 + z/R)

∂u

∂θ

]
,

ηzxθ = ηxzθ = ∂2v

∂x∂z
,

ηxθ z = ηθxz = 1

R (1 + z/R)

[
∂2w

∂x∂θ
− ∂v

∂x

]
.

Fig. 1 SWCNT with clamped-free support

2.3 Equations of Motion and Corresponding Boundary
Conditions

Figure 1 illustrates the nano-shell with clamped-free support
where R is the SWCNT diameter.

Based on the shell model, and with the assumption that
the shell is only under torsional vibration and hence its cross
section will not undergo elastic deformation, displacement
is expressed as [34]:

u(x, θ, z, t) = 0, (12)

v(x, θ, z, t) = (R + z) ϕ(x, t)

w(x, θ, z, t) = 0.

where u, v and w are displacement vectors along x, θ and
z axes, respectively, and t stands for time. As illustrated by
Fig. 1, rotation vector ϕ is expressed around x-axis.

Besides, classical and high-order strains are calculated
by considering the assumption of Love’s thin shell theory
((1 + z/R) ≈ 1). By substituting Eq. (12) into Eqs. (10) and
(11), classical and higher-order strains are obtained as:

εxx = εθθ =εzz = εzθ =εzx =0, εxθ = R

2

(
∂ϕ

∂x

)
, (13)

ηxxθ = R
∂2ϕ

∂x2
, ηxθ z = ηθxz = −

(
∂ϕ

∂x

)
,

ηxxx = ηxθθ = ηθxθ = ηθxx = ηxθx = ηθθx = ηθθ z = 0,

ηθθθ = ηzθθ = ηθ zθ = ηxxz = ηzxx = ηxzx = ηzxθ

= ηxzθ = 0,

ηzzz = ηzθ z = ηθ zz = ηzθx = ηθ zx = ηzzx = ηzxz

= ηxzz = ηzzθ = 0. (14)

By substituting Eq. (14) into Eq. (5), symmetric rotation gra-
dient strains are obtained as:

χzz = χθx = χxθ = χθ z = χzθ = 0,
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χxx = −1

2

(
∂ϕ

∂x

)
, χθθ = 1

2

(
∂ϕ

∂x

)
,

χxz = χzx = R

4

(
∂2ϕ

∂x2

)
. (15)

By substituting Eq. (14) into Eq. (4), deviatoric stretch gra-
dient strains are expressed as:

η
(1)
θθx = η

(1)
xθθ = η

(1)
θxθ = η

(1)
θθ z = η

(1)
zθθ = η

(1)
θ zθ = 0,

η(1)
xxz = η(1)

zxx = η(1)
xzx = η(1)

zzx = η(1)
zxz = η(1)

xzz

= η(1)
xxx = η(1)

zzz = 0,

η
(1)
zzθ = η

(1)
zθ z = η

(1)
θ zz = − R

15

(
∂2ϕ

∂x2

)
,

η
(1)
xxθ = η

(1)
θxx = η

(1)
xθx = 4R

15

(
∂2ϕ

∂x2

)
,

η
(1)
θθθ = − R

5

(
∂2ϕ

∂x2

)
, η

(1)
xθ z = η

(1)
θxz = η

(1)
zxθ = η

(1)
xzθ

= η
(1)
zθx = η

(1)
θ zx = −1

3

(
∂ϕ

∂x

)
. (16)

By substituting Eq. (14) into Eq. (3), dilatation gradient
strains are expressed as:

γx = γθ = γz = 0, (17)

The nonzero stresses σ are obtained by substituting Eq. (13)
into Eq. (6) as follows:

σxθ = μR

(
∂ϕ

∂x

)
. (18)

By substituting Eq. (15) into Eq. (9), the components of non-
classical stresses χ are obtained as follows:

mxx = −μl22

(
∂ϕ

∂x

)
, mθθ = μl22

(
∂ϕ

∂x

)
, mxz = mzx

= μl22 R

2

(
∂2ϕ

∂x2

)
. (19)

By substituting Eq. (16) into Eq. (8), the components of non-
classical stresses η are obtained as follows:

τ
(1)
zzθ = τ

(1)
zθ z = τ

(1)
θ zz = −2μl21 R

15

(
∂2ϕ

∂x2

)
,

τ
(1)
xxθ = τ

(1)
θxx = τ

(1)
xθx = 8μl21 R

15

(
∂2ϕ

∂x2

)
,

τ
(1)
θθθ = −2μl21 R

5

(
∂2ϕ

∂x2

)
, τ

(1)
xθ z = τ

(1)
θxz = τ

(1)
zxθ = τ

(1)
xzθ

= τ
(1)
zθx = τ

(1)
θ zx = −2μl21

3

(
∂ϕ

∂x

)
. (20)

In this paper, Hamilton’s principle was used to derive the
equations. As is clear, to use Hamilton’s principle, it is nec-
essary to calculate strain energy, kinetic energy and the work
done by external loads acing on the shell. In Eqs. (13)–(17),
strains are calculated in the strain gradient theory and the shell
model. Now, by substituting these equations in the constitu-
tive equations in (6)–(9), one can calculate the components of
classical and non-classical stress tensor. And by substituting
the result for the components of classical and non-classical
stress and strain in Eq. (1) and simplifying it, strain energy
is obtained as follows:

Us = 1

2

∫ 2π

0

∫ L

0

{[
Nxθ − Y (2)

xx

2R
+ Y (2)

θθ

2R
− 2Y (1)

θxz

R

]
∂ϕ

∂x

+
[
Y (2)
zx

2
− Y (1)

θθθ

5
− Y (1)

zθ z

5
+ 4Y (1)

xθx

5

]
∂2ϕ

∂x2

}
R2dxdθ

(21)

In the above equations, classical and higher-order forces and
moments are written as follows:

Ni j =
∫ h/2

−h/2
σi jdz, (22)

Y (2)
i j =

∫ h/2

−h/2
mi jdz, (23)

Y (1)
i jk =

∫ h/2

−h/2
τ

(1)
i jk dz, (24)

The kinetic energy for nano-shell is stated as follows:

T = 1

2
ρ

∫
A

∫ h/2

−h/2
R2

(
∂φ

∂t

)2

dzdA (25)

where ρ is the material density.
The work of external load acting on the nano-shell is

expressed as:

W =
∫ L

0
T (x, t)ϕdx + T̄ϕ

∣∣+
x=0,L T̄ h

(
∂ϕ

∂x

)∣∣∣∣
x=0,L

(26)

ByusingHamilton’s principle (
∫ t2
t1

(δT − δU + δW )dt = 0)
and substituting Eqs. (21)–(26) into it, performing varia-
tion and integration by parts, discretizing the equations, and
performing some mathematical calculations, the equation of
motion and boundary conditions is obtained as follows:

S1
∂4ϕ

∂x4
− S2

∂2ϕ

∂x2
+ ρh

∂2ϕ

∂t2
= T (x, t) , (27)
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where

S1 = μh

(
8l21
15

+ l22
4

)
, S2 = μh

(
1 + 4l21

3R2 + l22
R2

)
, (28)

And boundary conditions will be as follows:

{
∂ϕ

∂x

[
μh

(
1 + 4l21

3R2 + l22
R2

)]

−∂3ϕ

∂x3

[
μh

(
8l21
15

+ l22
4

)]
− T̄

}∣∣∣∣∣
x=0,L

= 0 or

δϕ|x=0,L = 0{
∂2ϕ

∂x2

[
μh

(
8l21
15

+ l22
4

)]
− T̄ h

}∣∣∣∣∣
x=0,L

= 0 or

δ

(
∂ϕ

∂x

)∣∣∣∣
x=0,L

= 0 (29)

Equations (27) and (29) are equations of torsional motion
and classical and non-classical boundary conditions for the
cylindrical shell in the strain gradient theorywhich is reduced
to the following theories in the special case:

If the size parameters are assumed as l0 = l1 = 0 and
l2 = l in the equations derived, the governing equations in
strain gradient theory are reduced to modified couple stress
theory.

If the size parameters are assumed as l0 = l1 = l2 =
0 in the equations derived, the governing equations in the
modified couple stress theory are reduced to the classical
continuum theory [34].

3 Examination of the Vibration and Static
Torsional Behavior of the SWCNT as the Special
Application of the Formulation Developed

3.1 Free Vibration Case

Using the equation of motion and boundary conditions in
Eqs. (27) and (29), free torsional vibration equation for a
SWCNTwith length L , radius R and thickness h, in clamped-
free and clamped–clamped support conditions, is expressed
as follows:

S1
∂4ϕ

∂x4
− S2

∂2ϕ

∂x2
+ ρh

∂2ϕ

∂t2
= 0, (30)

The boundary conditions for the SWCNT with clamped-free
support are as follows. In boundary conditions, it is assumed
that there is no higher-order force.

ϕ(0, t) = 0,
∂2ϕ(0, t)

∂x2
= 0.

μh

(
1 + 4l21

3R2 + l22
R2

)
∂ϕ(L , t)

∂x

−μh

(
8l21
15

+ l22
4

)
∂3ϕ(L , t)

∂x3
= 0,

∂2ϕ(L , t)

∂x2
= 0. (31)

And the boundary conditions for the SWCNTwith clamped–
clamped support are as follows:

ϕ(0, t) = 0,
∂2ϕ(0, t)

∂x2
= 0.

ϕ(L , t) = 0,
∂2ϕ(L , t)

∂x2
= 0. (32)

To solve the vibration problem in Eq. (30) and boundary
conditions in Eqs. (31) and (32), the differential quadrature
method (DQM) is used. In this method, the derivative of a
function at a given point could be stated as a weighted linear
summation of the values of the function at all the points in
the domain. The kth derivative of function ϕ is approximated
as [35]:

∂k

∂ζ k
{ϕ}|ζ=ζ j

=
N∑

m=1

C (k)
jm {ϕ(ζm, t)} (33)

where N is the number of nodes in the domain and C (k)
jm is

the weighted coefficients obtained through recursive equa-
tions. The coefficients of the mth point are obtained through
Chebyshev–Gauss–Lobatto formula [36].

ζm = 1

2

[
1 − cos

(
m − 1

N − 1
π

)]
, m = 1, 2, . . . , N (34)

Equation (26) with one of the boundary conditions in Eqs.
(29) and (30) is expressed in the matrix form as:

Fig. 2 SWCNT with clamped–clamped support under distributed tor-
sional load (T0)
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[
Kdd Kdb

Kbd Kbb

] {
dd
db

}
+

[
Mdd Mdb

0 0

]{
d̈d
d̈b

}
= 0 (35)

where subscripts d and b are related to the equation of motion
and boundary conditions, respectively. The equations are
solved using the following equation:

{dd , db} = {
d̄d , d̄b

}
eωt (36)

whereω represents the natural frequency. By substituting Eq.
(36) in Eq. (35), the results are rewritten as follows:

(
K + ω2M

) {
d̃d
d̃b

}
= 0 (37)

where [K ] , [M] are stiffnessmatrix andmassmatrix, respec-
tively, and the natural frequency is obtained from Eq. (37) by
setting the determinant of equal coefficients to zero.

3.2 Static Case

In this section, for the static case as a case study, a SWCNT
under distributed torsional load (T0) with clamped–clamped
support is examined as illustrated in Fig. 2.

Using Eq. (27) and clamped–clamped boundary condi-
tions for static torsion case, and considering ∂

∂t = 0 and
∂ϕ
∂x = dϕ

dx , one can conclude that:

Fig. 3 SWCNT natural
frequency in length–radius ratio
and different theories. a
Clamped-free support, b
clamped–clamped support
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S1
d4ϕ

dx4
− S2

d2ϕ

dx2
= T0, (38)

ϕ(0, t) = 0,
d2ϕ(0, t)

dx2
= 0. ϕ(L , t) = 0,

d2ϕ(L , t)

dx2
= 0.

(39)

Equation (38) is a non-homogeneous linear ordinary dif-
ferential equation with constant coefficients, which can be
analytically solved. The solution to the above differential
equation, which includes general and special solutions, is
expressed as:

ϕ (x) = C1 + C2x + C3e
−λ1x + C4e

λ1x − T0
2S2

x2 (40)

where

λ1 =
√
S2
S1

(41)

Equation (40) is the analytical solution for SWCNT static
torsion obtained usingmodified strain gradient theory. In this
equation, constant coefficientsC1 andC4 are calculated using
boundary conditions in Eq. (39), which are as follows

C1 = −T0/λ
2
1S2 (42)

C2 = T0L/2S2 (43)

Fig. 4 SWCNT natural
frequency in size parameter and
different theories. a
Clamped-free support, b
clamped–clamped support
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C3 = T0
(
eλ1L − 1

)
/λ21S2

(
e2λ1L − 1

)
(44)

C4 = T0
(
e2λ1L − eλ1L

)
/λ21S2

(
e2λ1L − 1

)
(45)

4 Discussion and Conclusions for SWCNT Torsion

4.1 Free Vibration of SWCNT

In this section, the free vibration of the SWCNT is examined
using the shell theory. Boundary conditions are considered
as clamped–clamped and clamped-free. The effects of var-
ious parameters such as size effect and length–radius ratio
are determined using modified strain gradient theory and are
compared with the couple stress theory and classical theory.
Geometrical and mechanical characteristics for solving the
problem of SWCNT vibration are as follows:

R = 2 nm, h = 0.34 nm, E = 1GPa, L = 10 nm,

υ = 0.25, ρt = 2300 kg/m3. (46)

Incidentally, in this section, to better express the results, size
parameters are assumed as l = l2 = l1 = l0.

Figure 3 displays the effect of length–radius ratio on
the natural frequency of SWCNT with clamped-free and
clamped–clamped supports for the two first frequencymodes
and for l/h = 2. As illustrated, increase in length–radius
ratio is accompanied by decrease in SWCNT natural fre-
quency, which is due to reduction in SWCNT rigidity in
bigger length–diameter ratios. In strain gradient theory and
couple stress theory, increase in length–diameter ratio is
accompanied by decrease in the effect of size parameter on
SWCNT natural frequency and nears the values of frequen-
cies of the classical theory. Consequently, in shorter lengths,
the size parameter in higher-order theories has greater effect
on natural frequencies. The values of frequencies obtained
in clamped–clamped supported SWCNT are greater than in
clamped-free supported SWCNT. This is due to the greater
rigidity of the SWCNT with clamped–clamped support. It
can be concluded from Fig. 3 that variation of natural fre-
quency in the second mode is more than that in the first
mode.

Figure 4 illustrates the natural frequency of the SWCNT
for different size parameters. Increase in the size parameter is
accompanied by increase in SWCNT natural frequency. This
is due to the increase in SWCNT rigidity. Increase in natural
frequency in the strain gradient theory is greater than that in
the couple stress theory and the classical theory, which is due
to the presence of three size parameters in strain gradient the-
ory and one size parameter in couple stress theory. Variation
of frequency in the clamped–clamped supported SWCNT is

higher than that in the clamped-free supported SWCNT and
the second mode.

4.2 Torsional Static Analysis of SWCNT

In this section, the effect of size parameter and length varia-
tion on torsional static analysis of the SWCNT is examined.
Figure 5 illustrates the ratio of SWCNT torsion angle to
the thickness in various size parameters on the basis of
SWCNT length. In this case, L/R = 5 and the support is
clamped–clamped. It can be concluded from the illustration
that increase in size effect, i.e., increase in the l/h ratio, is
accompanied by decrease in SWCNT torsion angle. In fact,
increase in the size parameter is accompanied by increase
in SWCNT rigidity. Consequently, as rigidity increases, the
torsion angle of the SWCNT decreases. On the other hand,
as illustrated by Fig. 5, as the size parameter changes, the
variation in torsion angle across the SWCNT is slighter, and
decrease in size parameter renders the variation in torsion
angle at the two ends greater.

Figure 6 illustrates the effect of SWCNT length varia-
tion on SWCNT torsion in various length–diameter ratios. In
this illustration, the size parameter is considered as l/h = 1;
hence, the solution displayed is dependent on the size effect.
As illustrated by Fig. 6, increase in SWCNT length is accom-
panied by increase in the ratio of torsion angle to thickness. In
other words, as SWCNT length increases, the torsion angle
of SWCNT increases, too. Figure 6 also shows that as the
ratio of length to radius of the SWCNT increases, the vari-
ation in torsion angle becomes slighter in the central points
and greater at the two ends.

Fig. 5 Effect of size parameter based on the ratio of torsion angle to
thickness
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Fig. 6 Effect of length–radius ratio based on the ratio of torsion angle
to thickness

4.3 Validation of Result

In this section, the results of the torsional vibration frequency
ofSWCNTobtainedwith the newmodel proposed in this arti-
cle have been compared with the molecular dynamic (MD)
simulation [37]. In addition, a comparison is drawn between
the results of the two clamped–clamped and clamped-free
cases. According to Fig. 7 in the size parameter (l = 5h),
the torsional vibration frequency of SWCNT using strain
gradient theory has good math with MD simulation results.
However, despite the classic model, torsional vibration fre-
quency provided by the present size-dependent model is very
close to MD simulation values. The value of size parameters

is selected as (l = 5h) to produce the best fit with the MD
simulation. Interestingly, this model is able to accurately pre-
dict the torsional vibration frequency of the SWCNT. It can
be concluded that the present size-dependentmodelmight fill
the gap between MD simulation results and previous classic
theoretical models.

5 Conclusion

In this paper, equations of torsional motion of the cylindri-
cal shell were developed by using modified strain gradient
theory. The purpose of the development of the equations was
to achieve the two basic goals of modeling with more pre-
cise geometry and taking into consideration size effects in
micro-/nanoscale. To achieve this purpose, by using mod-
ified strain gradient theory and Hamilton’s principle, the
higher-order equations as well as boundary conditions of
the SWCNT were obtained. Afterward, using differential
quadrature method, the equations with boundary conditions
for the free vibration of a SWCNT were discretized, and
the torsional natural frequencies of the eigenvalue problem
were determined. The boundary conditions were consid-
ered as clamped–clamped and clamped-free supports, and
the natural frequencies of the SWCNT for various parame-
ters such as size parameter and length–diameter ratio were
examined and were compared to couple stress theory and
the classical theory. Results demonstrated that the torsional
natural frequencies obtained for the SWCNT using modified
strain gradient theory are higher than those obtained using
couple stress theory and the classical theory. The natural fre-
quency in the clamped–clamped case is higher than that in
the clamped-free case. In the smaller length–diameter ratio,
the effect of size parameter on SWCNT natural frequency is

Fig. 7 Comparison of torsional
natural frequencies between
strain gradient theory and MD
simulation for the two cases:
clamped–clamped and
clamped-free supported
SWCNT
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greater. Results also reveal that increase in the size parameter
and decrease in SWCNT length are accompanied by decrease
in SWCNT torsion. In addition, torsional static analysis of the
SWCNTwith clamped–clamped support is examined, which
shows the formulation power in static and dynamic analyses.
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