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Abstract Water pollution can occur with a variety of rea-
sons such as the change in water colour, the presence of
harmful bacteria and toxic waste spills. This paper presents
an application of an optical tomography system based on ar-
tificial neural network (ANN) to predict the turbidity level of
water sample. The systemmade use of the independent com-
ponent analysis algorithm to calculate the K value, which
indicates the attenuation value of the water turbidity level.
The K value then is utilized by ANN to estimate the tur-
bidity level. The optical tomography system can be used to
evaluate the water turbidity level in the pipeline without dis-
turbing the flow process. Evaluation of the mean square error
(MSE), sum square error (SSE) and regression analysis (R)
also enabled us to determine the network performance which
demonstrated that the neural network is effective in inspect-
ing the water turbidity level. The best neurone structure is
revealed when two hidden layers with 20 and 10 neurones
in the first and the second layer, respectively, are used. The
training result shows 9.7147×10−7 forMSE, 0.1432 for SSE
and 0.99911 for regression. For the testing part, the result for
the neurone structure is 8.1473× 10−5 for MSE, 0.7509 for
SSE and 0.98525 for regression. The results revealed that
the performance of ANN demonstrated a good prediction
capability when the turbidity level changed. Thus, an opti-
cal tomography system with ANN proved to be an efficient
tool to classify the water quality level and is beneficial to the
water industry.
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1 Introduction

Water, air and noise pollution can give bad effect to the
health of human, animal and plants. This is caused by a lack
of awareness among people about the dangers of pollution.
Rapid technological development also contributed to an in-
crease in the pollution statistics, especially in the city. In
the pursuit of the status of a developed and high-technology
country, many factors contribute to pollution. Air pollution,
for example, occurred when dust and smoke from factories
and vehicles are released into the air. Air pollution gives
very harmful effect upon the plants. Plants suffered dam-
age in three ways, namely necrosis (loss of leaves), chlorosis
(colour change) and decreasing plant’s growth [1]. Barley,
cotton and apples are among the plants susceptible to damage
by sulphur dioxide pollutants contained in the air. In addition,
vegetable products such as tomatoes, beans and potatoes also
suffered damage due to air pollution. This condition causes a
shortage of quality food and creates suspicions among con-
sumers on the safety of food resources.

Water is said to be contaminated when it experienced
changes in colour, nature and shape. Contaminated water
is subjected to physical and chemical changes. Physically,
the presence of litter and faeces in water sources contributed
to water pollution. In terms of chemistry, water pollution
occurred with the presence of bacteria and microorganisms
which can harm consumers. For example, water pollution
caused by the rat urine viruses called “Leptospirosis” is very
dangerous because it spreads quickly in the river and causes
death. Therefore, the responsible authorities have taken dras-
tic actions to close the river from public use. Other than that,
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the presence of liquid such as oil spills and toxic waste also
led to a decrease in the quality of water. Aquatic animals such
as fishes are adversely affected since oil preventedwater from
absorbing oxygen. As a result, the income of fishermen is af-
fected, and the government needs to spend a lot of money for
cleaning up the oil spills.

There are many tools and techniques that can be used to
measure the water turbidity level. Many types of sensor are
specifically designed to identify and measure the level of
turbidity level based on the physical and chemical charac-
teristics in water. Electronic tongue has got much research
attention in the last decade as a tool to monitor and analyse
the quality of water which is based on the tasting sense.
Two types of electronic tongues that are popularly used are
potentiometric sensor and voltammetric sensor. For the po-
tentiometric sensor, themeasurement has to bemade between
electrodes under the conditions of no current flow. The po-
tential energy is generated when the process for getting the
equilibrium condition is conducted and redox reactions are
not involved in this kind ofmeasurement [2]. The second type
of electronic tongue is the voltammetric sensor. The electrode
for this sensor involved the redox reaction which is gener-
ated between two different types of electrodes. This reaction
led to an increase in the current value, and this parameter is
used for further analysis [2]. The determination of the water
quality level can be based on the observation of the aquatic
animal’s behaviour such as fish since it is very sensitive to the
surrounding abnormal environment. The research regarding
live fish behaviour for water environmental monitoring has
attracted the interest from the researchers in marine and wa-
ter quality field [3–5]. Ma et al. [6] investigated the different
fish trajectories in natural water and contaminated water us-
ing a charge-coupled device (CCD) camera. The experiment
is conducted using several water samples from pH 5 to 9, and
the abnormal rate per cycle time is obtained using artificial
neural network (ANN). The result indicates that the abnormal
rate per cycle time increased from the threshold rate when the
fish was tested in alkaline and acidic water. Other than using
livefish,many researches have successfully developed the ro-
botic fish forwater quality assessment. Themain advantage is
that the assessment and measurement process can be directly
performed in the test field location [7]. However, the use of
fish robots significantly limited the range of application. It is
sufficient for deep and large reservoirs, but in shallow reser-
voirs, therewould be problemswhen applying the fish robots.
The problem occurred in terms of the robot’s movement and
swing where it would damage the propulsive stability and
affect the operating reliability of sensor-based system [8].

Optical sensors are popularly used since the concept is
easy and low cost. A turbidimeter investigates the optical
characteristic of the light to be scattered and absorbed rather
than transmitted in the straight line [9]. Several investiga-
tions have been carried out by researchers around the world

for improving the current turbidimeter. Garcia et al. [10],
Bilro et al. [11] and Prerana et al. [12] proposed the design
of turbidimeters using optical fibres. The use of optical fi-
bre is expanded by Aisteran et al. [13] where they applied
the fibre tomeasure the volume and turbidity of low-viscosity
fluid. Niskanen et al. [14] have successfully designed amulti-
function spectrophotometer for the determination of optical
properties, which enables them to control the observation
of transmission, reflection and light scattering from a liquid
sample. Research conducted by Lambrou et al. [15], Tai et
al. [16], Ranasinghe and Ariyaratne [17], Orwin and Smart
[18] and Chang et al. [19] also used optical sensors for eval-
uating the water turbidity level. However, the sensors have
to be touched or have to be taken out from the water sample
in order to measure the turbidity level. This technique is not
suitable for accessing the turbidity level in the pipelines.

Tomography is known as a technique that can identify
the internal characteristic of pipelines using non-destructive
method. The technique is widely used in flow measurement,
nuclear and chemical engineering field. In the process indus-
tries, the parameters that have investigated are concentration
profiles ofmulti-phase flow [20], bubble flow [21], mass flow
rate [22] and velocity measurement [23]. Like turbidimeter,
tomography also has several sensors that can be used such as
ultrasound, electronic capacitance, magnetic inductance and
optical. The optical tomography system enabled us to evalu-
ate thewater turbidity level at any point in thewater conveyor
without disturbing the flow process. The turbidity sensor is
usually marketed as a point sensor mode, which means the
sensor has to collect or be placed in a water sample in order
to measure the turbidity level. However, this sensor is not ap-
propriate in flow industrial process since it cannot measure
directly from the pipe and it disturbed the flow process [24].
Hence, a new design for predicting the turbidity water level
is proposed using a non-invasive technique based on the use
of an optical tomography system combined with an ANN
approach.

2 Mathematical Modelling

This section elaborates the Beer–Lambert law for investigat-
ing the attenuation of light when the light passes through
pure water and contaminated water. The algorithms applied
to this experiment which consists of the independent com-
ponent analysis (ICA) and ANN are also discussed.

2.1 Beer–Lambert Law

This subsection explained the modelling for predicting the
turbidity level of water. Three conditions of water have been
selected, which are pure water, slightly contaminated water
and heavily contaminated water. Based on the Beer–Lambert
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Fig. 1 Modelling of light in pure water

Law, the energy of light will be attenuated when it travels in
different medium and distance. The Beer–Lambert law can
be expressed by the following equation:

VR = VT exp[−(αl)] (1)

where VR, the receiving sensor voltage; VT, the initial trans-
mitted voltage; l is the path length of liquid medium (mm);
α, attenuation coefficient for material (mm−1).

The model for light path in pure water is shown in Fig. 1.
The attenuation coefficient for water is α = 0.0287mm−1

[25]. Light will be transmitted through water contained in a
pipe having a diameter of 100mm, and the length of path light
is considered equal to the diameter of the pipe. In this exper-
iment, the medium in the pipe is water. Supposed the value
of the transmitting voltage, VT, is 5V. Hence, the equation
for the receiver voltage, VR, can be written as:

VR = 5 exp[−(0.0287)(100)] (2)

VR = 5[0.0567] (3)

VR = 0.2835V (4)

The energy of light is attenuated when it passes through
water. The estimation of water quality level is based on the
value of the receiver voltage, VR, and it is a function of the
exponential value. For contaminated water, the pure water is
polluted by adding the green colour of food ingredientswhich
resembles the contaminants. This modelling will emphasize
on the effect of the attenuation coefficient value when optical
light passed through the contaminated water. The attenua-
tion coefficient for the water medium is expected to decrease
when the water is contaminated. It is because the light energy
has been absorbed by water and hence affects the attenua-
tion coefficient value. The model for contaminated water is
shown in Fig. 2. Let the new coefficient for the slightly con-
taminated water be 0.0263mm−1. The Beer–Lambert’s law
equation can be expressed as:

100 mm

Transmitter ReceiverLight path

Pipe 

Contaminated 
water

Fig. 2 The model of contaminated water

VR = 5 exp[−(0.0263)(100)] (5)

VR = 5[0.0721] (6)

VR = 0.3603V (7)

Let the new coefficient for the heavily contaminated water
be 0.0250mm−1. The Beer–Lambert’s law equation can be
expressed as:

VR = 5 exp[−(0.0250)(100)] (8)

VR = 5[0.0821] (9)

VR = 0.4105V (10)

By comparing all cases, it can be observed that the exponen-
tial value for the contaminated water model is higher than
the pure water model, and the value of receiver voltage, VR,
is a function of the exponential value.

2.2 Algorithm Method

In this section, the concept and implementation of ICA and
ANN algorithms are elaborated briefly. The previous studies
regarding both algorithms are also discussed.

2.2.1 Independent Component Analysis

Independent component analysis was introduced in 1990 as
a method that can separate an independent source from a
linear mixture and solve the mixed signal problem [26]. It is
widely used in many fields such as biomedical [27], signal
processing [28] and water quality estimation [29]. ICA can
be expressed as:

X = AS (11)

where X is the matrix of source signals mixture, A is the
mixing matrix, and S is the matrix denoting a source signal.
The aim is to recover S and the process started by obtaining

123



3372 Arab J Sci Eng (2016) 41:3369–3379

α4 α3

α1 α2

L1= Length 1

L2= Length 2

L3= Length 3

TX3

TX4

TX1

TX2

RX2RX3

RX4 RX1

TX = Transmitter

RX = Receiver

Fig. 3 Model of four sensor’s pair with four pixels

the separating matrix, W where W = A−1. Hence, the inde-
pendent source, Ŝ, can be obtained by:

Ŝ = WX (12)

The parameter of interest isW since it contained the attenua-
tion coefficient (α) and it is related to the turbidity factor (M).
ICA is implemented in this research in order to extract the
transmitters’ signal which is detected by the receiver. Eigh-
teen transmitters and eighteen receivers are used where the
sensors are mounted surrounding the pipelines. Therefore, a
total of 324 pixels (18 × 18 pixels) are formed using ICA.
But, the measurement of K value is considered for the pix-
els which are in the pipe cross section only. Hence, only 280
pixels are taken for measurement consideration since the rest
of the pixels are outside the pipe. The calculation procedure
for getting the K value which indicated the attenuation value
is elaborated in [30].

For simplicity, themodelling for the algorithm is described
using four transmitters and four receivers, while the actual
system consists of eighteen transmitters and eighteen re-
ceivers as shown in Fig. 3. It is because, the explanation of
the ICA concept using eighteen pairs of sensors is complex
to explain since the matrix equation is too long. Hence, four
pairs of sensors and four absorptions coefficients are chosen.
Transmitters 1, 2, 3 and 4 are represented as TX1, TX2, TX3
and TX4, while receivers 1, 2, 3 and 4 are represented as
RX1, RX2, RX3 and RX4. The attenuation coefficients are
represented as α1, α2, α3 and α4.

In this model, each receiver is supposed to detect light
from all transmitters. Take for example receiver RX1. The
four signals received at RX1 have been mixed where each
light has its own characteristics such as the light length and
the absorption coefficient. The equation of receiverRX1volt-
age, VR1, can be written as:

VR1 = VT1 exp (− ∝2 l1) + VT2 exp (− ∝2 l1)

+VT3 exp (− ∝3 l2) + VT3 exp (− ∝2 l3)

+VT4 exp (− ∝1 l2) + VT4 exp (− ∝2 l3) (13)

where VT1 is transmitter TX1 voltage, VT2 is transmitter TX2
voltage, VT3 is transmitter TX3 voltage, VT4 is transmitter
TX4 voltage, α1 is the attenuation coefficient for material
1, α2 is the attenuation coefficient for material 2, α3 is the
attenuation coefficient formaterial 3, andα4 is the attenuation
coefficient for material 4, l1 is length 1, l2 is length 2, and l3
is length 3. Equation (13) can be arranged as:

VR1 = VT1 exp (− ∝2 l1) + VT2 exp (− ∝2 l1)

+VT3 exp (− ∝3 l2− ∝2 l3)

+VT4 exp (− ∝1 l2− ∝2 l3) (14)

The equations for receiver RX2 voltage, receiver RX3
voltage and receiver RX4 voltage are simplified as:

VR2 = VT1 exp (− ∝2 l2− ∝3 l3) + VT2 exp (− ∝3 l1)

+VT3 exp (− ∝3 l1)

+VT4 exp (− ∝4 l2− ∝3 l3) (15)

VR3 = VT1 exp (− ∝1 l2− ∝4 l3)

+VT2 exp (− ∝3 l2− ∝4 l3) + VT3 exp (− ∝4 l1)

+VT4 exp (− ∝4 l1) (16)

VR4 = VT1 exp (− ∝1 l1) + VT2 exp (− ∝2 l2− ∝1 l3)

+VT3 exp (− ∝4 l2− ∝1 l3)

+VT4 exp (− ∝1 l1) (17)

Equations (14) until (17) can be transformed into matrix
as shown in Eq. (18), where X is a matrix of mixture of
source signals, represented by the voltage receiver (VR). The
exp(−αl) is symbolized as a mixing matrix (A), and voltage
transmitter (VT) is signified as a source signal (S).

X = A S⎡
⎢⎢⎣
VR1
VR2
VR3
VR4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
e−∝2l1 e−∝2l1 e−∝3l2−∝2l3 e−∝1l2−∝2l3

e−∝2l2−∝3l3 e−∝3l1 e−∝3l1 e−∝4l2−∝3l3

e−∝1l2−∝4l3 e−∝3l2−∝4l3 e−∝4l1 e−∝4l1

e−∝1l1 e−∝2l2−∝1l3 e−∝4l2−∝1l3 e−∝1l1

⎤
⎥⎥⎦

⎡
⎢⎢⎣
VT1
VT2
VT3
VT4

⎤
⎥⎥⎦

(18)
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ICA is utilized to separate themixture of source signalswhere
in Eq. (19), the matrix position of source signals (S), repre-
sented as VT, is interchanged with VR denoted by matrix of
mixture of source signals (X). The separating matrix (W ) is
formed to replace the mixing matrix (A)where theoretically,
W is obtained by the inversing process of A.

Ŝ = W X⎡
⎢⎢⎣
VT1
VT2
VT3
VT4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
W1,1 W1,2 W1,3 W1,4

W2,1 W2,2 W2,3 W2,4

W3,1 W3,2 W3,3 W3,4

W4,1 W4,2 W4,3 W4,4

⎤
⎥⎥⎦

⎡
⎢⎢⎣
VR1
VR2
VR3
VR4

⎤
⎥⎥⎦

(19)

In this case, the parameter considered for computing the wa-
ter turbidity level is thematrix A. However, thematrix cannot
be acquired directly from the ICA method. Hence, the re-
lated parameter regarding Ais supported where matrix W is
obtained as an inverse process in order to find the matrix
A. Matrix W is inversed first before calculating the value
of K . S is a source signal which it obtained before ICA is
applied to the system. Ŝ is an estimation of the source signal
which is obtained after ICA is utilized. The matrix shown
in Eq. (18) is formed in an arbitrary row after utilizing the
ICA and the Ŝ value represented as VT can assist in rear-
ranging the matrix row. VT is set by a peripheral interface
controller (PIC) microcontroller to have different pulse du-
ration values. Hence, the rearrangement of the matrix’s row
is according to the order of VT from 1ms until 18 ms. The er-
ror in the estimating process using ICA sometimes occurred
when the 18 transmitter’s signal is not separated properly
[31]. From 18 transmitters’ signals, the ICA algorithm some-
times separated 17 or 16 signals only. This problem can be
solved by rearranging manually the row of matrix W for
the missing signals. Among the most widely used ICA algo-
rithms are FastICA and Infomax. This research implemented
the FastICA algorithm which provides recovery of indepen-
dent sources by employing the higher-order statistics, and the
estimation process is done one by one [31]. The algorithm
separates the source signals based on their non-Gaussianity,
and it finds one independent component at a time instead of
solving the mixing matrix [28]. The advantages of FastICA
are it is parallel, simple for computation process and requires
small memory size [32].

2.2.2 Artificial Neural Network

Artificial neural network (ANN) is a tool that can deal with
uncertainty and complexity of the system. The tool is very
suitable and appropriate to use for nonlinear function predic-
tion and can produce the good estimation process even if the
data are complex [33]. The artificial neurones are the com-
puting elements of neural networks and cooperate to perform

the desired task. The neurone is expressed in terms of theMc-
Culloch Pitt’s model:

γ =
k∑

i=1

wi xi + β (20)

where k is the number of inputs, w is the weight associated
with the i th input xi , and β is the bias. The output y is given
by:

y = g (γ ) (21)

TheANNapproach has been introduced recently in thewater
monitoring field. ANN provides an alternative way to over-
comehigh cost and time consumption for predicting thewater
quality [34]. Iglesias et al. [34] accessed the water turbidity
level in the Nalón River basin (Northern Spain) by using
ANN. The turbidity level is predicted from ammonium, con-
ductivity, dissolved oxygen and pH. These parameters were
tested with two types of condition: with temperature consid-
eration and no temperature consideration. The results showed
that the different temperature levels affected the process of
turbidity estimation.The results also indicated that the turbid-
ity estimation process performs better when the temperature
is considered. Khalil et al. [35] investigated the application
of neural network for estimating the water quality in Nile
Delta, Egypt. The structures of ANN model such as inputs,
hidden layer and nodes of hidden layer were varied in or-
der to get the best output result. The result of the ANN
model is compared with the linear regression model which
showed that the ANN model performed better in terms of
accuracy.

Bayram et al. [36] used feed-forward ANN for predicting
the suspended sediment concentration (SSC) from six sam-
pling stations in the Eastern Black Sea Basin, Turkey. The
output result is compared between ANN and the regression
analysis (RA). The total data used for the ANN modelling
were 144 data. Out of this number, 108 data were used for
training, 24 for testing and 12 for validation. ANN indicated
a better result by showing smaller root mean square (RMSE)
and mean absolute error (MAE) of 11.40 and 17.87, respec-
tively. Meanwhile, the RA method showed 19.12 for RMSE
and 25.09 for MAE. Gazzaz et al. [37] predicted the wa-
ter quality index (WQI) using ANN in eight measurement
station in Kinta River, Malaysia. Twenty-three water qual-
ity parameters such as water colour, pH, salinity, dissolve
oxygen were taken for sampling. A three-layer perceptron
network is used for this study which comprised one input
layer, one hidden layer and the output layer. This study also
employed a parallel, fully connected and feed-forward net-
work to obtain a nonlinear regression model for estimating
the WQI. The result showed that the optimal network for
the ANN model is 23-34-1 which means 23 inputs, 34 neu-
rones of hidden layer and a single output. The combination of
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Table 1 Neural network performance from previous study

Network structure Parameters Performance Reference

Feed-forward 6-70-1 Ammonium, conductivity dissolve
oxygen (DO), pH and
temperature values

R2 = 0.7
R2 = 0.8

Iglesias et al. [34]

Feed-forward 2-3-1 Dissolved oxygen (DO), biological
oxygen demand (BOD),
chemical oxygen demand (COD)

RMSE = 68.2 Khalil et al. [35]

Feed-forward 3-3-2 Suspended sediment concentration
(SSC)

MAE = 11.40
RSME = 17.87

Bayram et al. [36]

Feed-forward 23-34-1 Water colour, pH, salinity, dissolve
oxygen (DO), chemical oxygen
demand (COD), total solids (TS)

r = 0.977
R2 = 0.95

Gazzaz et al. [37]

Hopfield structure Biological oxygen demand (BOD),
permanganate index, ammonia
nitrogen, copper (Cu), zinc (Zn)

MSE = 9.8463 × 10−7 Chu et al. [38]

Feed-forward 5-100-20 Dissolved oxygen (DO), turbidity
Water colour, pH, oxidability,
ammonia nitrogen, conductivity

RSME = 0.49
r = 0.84

Rak [39]

Feed-forward 6-12-1 Turbidity, pH, temperature values
transmembrane pressure

MSE = 2.16 × 10−4 Kabsch-Korbutowicz
and Kutylowska [40]

RMSE = 2.16 × 10−2

r = 0.8295

this network with the quick propagation training algorithm
provided a high correlation, r = 0.977, and coefficient of
determination, R2 = 95.4%.

Chu et al. [38] developed the factor analysis and Hop-
field neural network method to access the water quality in
Liao River, China. The work involved analysing the sam-
ples for total nitrogen (TN), total phosphorus (TP), dissolved
oxygen (DO), biochemical oxygen demand (BOD5), etc.
The result indicated that the combination of factor analy-
sis and Hopfield neural network method is much better than
the Hopfield neural network alone in effectively reducing
the degree of Hopfield neural network over-fitting. Rak [39]
proposed a Bayesian model of neural networks and Gaussian
processes to estimate the water treatment turbidity in a newly
operating water treatment system at the Sosnówka reservoir,
Poland. Kabsch-Korbutowicz and Kutylowska [40] imple-
mented ANN for predicting water quality after implement-
ing the coagulation/ultrafiltration processes in an immersed
membrane. The performances of the various neural network
models are summarized in Table 1.

The network structure and network specification are two
major steps for designing the ANN. The network structure
determines the numbers for layer and neurones for input, hid-
den and output phase. The network specification covers the
classification of the training algorithm, value of learning rate,

value of momentum rate, number of iterations and training
stop criteria [37]. Although there are many different factors
that may affect the ANN modelling, only two factors were
studied in this experiment which are the number of hidden
layers and the number of neurones in the hidden layer. The
back-propagation (BP) algorithm and Hopfield neural net-
works (HNN) are commonly used to assess water quality.
The structure of neural network can be classified to feed-
forward and recurrent neural network. Feed-forward neural
network structure has unidirectional flow of information as
illustrated in Fig. 4. The recurrent neural network is any net-
work whose neurones send feedback signals to each other.
BP is made up of a large number of interconnected neurones
which contain three types of layers: input, hidden and out-
put layer. Each neurone in the input layer is connected to
all neurones in the hidden layer. Besides, all the neurones in
the hidden layer are connected to the output neurones. This
network structure is named as multi-layer perceptron (MLP)
since there is no connection between the neurones in the same
layer. The input signal is sent forward to the neurones in the
hidden layer. The network will send back the signal if any
errors existed, whereas at the same time, the optimization
of the weight is performed in order to get the best output
[41].
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Fig. 4 Feed-forward neural network structure

3 Experimental Set-up

The experiment used a vertical transparent acrylic pipe with
a diameter of 100 mm and a height of 680 mm. Eighteen
light-emitting diodes (LED) acting as transmitters and eigh-

teen photodiodes acting as receivers are mounted around the
pipe using a sensor jig. An infrared light with a wavelength
of 940 nanometer (nm) is chosen to increase the accuracy of
measurement in order to minimize the disturbance from the
laboratory lamp. When light is transmitted through the pipe,
it will be sensed by the receiver but the voltage amplitude
sensed by the receiver is too low to be analysed. Hence, a
signal conditioning circuit which contained an operational
amplifier is added to amplify the voltage amplitude. The Ag-
ilent U2331A data acquisition system was used to capture
the data and transfer it into the computer. The DAS has 64
single-ended/32 digital input multiplex analogue input chan-
nels, 3 MSa/s sampling rate for 1 channel and up to 1 MSa/s
sampling rate formultiple channels. The ICA andANN algo-
rithmswere programmed using the LabVIEWandMATLAB
software, and the output data are acquired and analysed. The
set-up for the measurement system is shown in Fig. 5. The
transmitters (TX) and receivers (RX) are illustrated in purple
and red colour, respectively. The experiment for estimating
the water turbidity level is done by polluting 3 litres (l) of
pure water with several volumes of green food colouring; 0
ml means the water sample is clean water. The samples
of contaminated water were prepared by adding several vol-
umes of food colouring starting from 2ml, followed by 5,
7, 11, 15, 21, 25, 30, 35, 37 and 42ml. As such 12 differ-
ent volumes of food colouring were tested. Figure 6 shows
the water sample which was contaminated by 35 ml of food
colouring. Each volume was measured 40 times in order to
obtain as much data as possible for neural network process.
Hence, we have 480 measurement data. 10 pixels are picked

1,21,1 1,3 1,4 1,5 6,1 7,1 1,8 1,9 1,10 1,121,11 1,13 1,14 1,15 1,16 1,17 1,18

2,22,1 2,3 2,4 2,5 6,2 7,2 2,8 2,9 2,10 2,122,11 2,13 2,14 2,15 2,16 2,17 2,18

1,3 2,3 α39 3,4 3,5 6,3 7,3 3,8 3,9 3,10 3,123,11 3,13 3,14 3,15 3,16 3,17 3,18

α564,1 4,3 4,4 4,5 6,4 7,4 81,471,461,451,441,431,411,4 21,401,49,48,4

5,25,1 5,3 5,4 5,5 5,75,6 5,8 5,9 5,10 31,511,5 21,5 5,14 5,15 5,16 5,17 5,18

6,26,1 6,3 6,4 6,5 6,6 7,6 6,8 6,9 6,10 6,126,11 6,13 6,14 6,15 6,16 6,17 6,18
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17,217,1 9,718,716,71 7,715,714,713,71 17,10 17,1217,11 17,13 17,14 17,15 17,16 17,17 17,18

18,218,1 18,3 18,4 18,5 6,81 7,81 18,8 18,9 18,10 18,1218,11 18,13 18,14 18,15 18,16 18,17 18,18
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Fig. 5 The experimental set-up
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Fig. 6 The sample of water contaminated by 35ml of food colouring

randomly in order to analyse the K value as shown by the
orange squares in Fig. 5. Out of 480 measurements data,
70% are selected for training (336 data). Meanwhile, 20%

are for testing (96 data) and 10% are for validation (48 data).
The data were normalized between 0 and 1 to improve the
performance of the network.

4 Result and Discussion

The number of layers and neurones for the hidden layers was
varied in order to find the best network performance. The
network performance of ANN model is assessed by observ-
ing the mean square error (MSE), sum square error (SSE)
and regression (R) for different settings of hidden layer. The
parameters are calculated as follows:

MSE = 1

N

N∑
i=1

(xi − yi )
2 (22)

SSE =
N∑
i=1

(xi − yi )
2 (23)

R =
∑N

i=1 (xi − x̄i ) (yi − ȳi )√(∑N
i=1 (xi − x̄i )2

) (∑N
i=1 (yi − ȳi )2

) (24)

Table 2 Performance of network structure

Hidden Mean square error (MSE) Sum square error (SSE) Regression (R)

Layer Neurones Training Testing Training Testing Training Testing

1 10 7.0501 × 10−6 2.4045 × 10−4 1.0396 2.2160 0.99571 0.98805

15 4.3738 × 10−7 1.0291 × 10−4 0.0645 0.9484 0.99719 0.98863

20 3.7095 × 10−7 1.1789 × 10−7 0.0547 1.0864 0.99743 0.98715

2 [10,10] 1.1144 × 10−7 5.4632 × 10−4 0.0164 5.0349 0.99672 0.98094

[15,10] 3.5213 × 10−6 3.3682 × 10−4 0.5192 3.1041 0.99747 0.98674

[20,10] 9.7147 × 10−7 8.1473 × 10−5 0.1432 0.7509 0.99911 0.98525

Bold values indicate the best performance of neural network structure

Fig. 7 Training phase
performance of the turbidity
measurement
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Fig. 8 Testing phase
performance of the turbidity
measurement
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Fig. 9 Regression plot for network structure 10-[20,10]-1

where xi is the i th measured value, yi is the predicted value,
x̄i is the mean of the measured values, ȳi is the mean of the
predicted value, and N is the number of samples. The re-
sults of the network performance are presented in Table 2.
After repeated tests, the two hidden layers with 20 neurones
in the first layer and 10 neurones in the second layer pro-
vided the best performance. It can be noted from Table 2
that the MSE value for the network structure of 10-[20,10]-1
is 9.7147 × 10−7 for training and 8.1473 × 10−5 for test-
ing. However, the SSE performance for this structure does
not give a good result with 0.1432 and 0.7509 for training
and testing, respectively. Figures 7 and 8 show the prediction
performances of the turbidity measurement for the network
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Fig. 10 Performance plot for training, validation and testing phase

structure of 10-[20,10]-1 during training and testing, respec-
tively. The turbidity level of water being investigated was
from 0ml until 42ml.

The predicted turbidity values of ANN model are in good
agreement with the real value, thus demonstrating its effec-
tiveness in predicting the turbidity level during training and
testing. The regression analysis is performed to find the cor-
relation between the network output and the corresponding
target. The best regression value is pointed out by network
structure of 10-[20,10]-1 with 0.99485 for total response as
shown in Fig. 9 indicating a very strong correlation. During
the training, R is 0.99911 which is higher compared with
the other structure and R is 0.98525 for testing. This re-
sult shows the correlation is quite strong which shows that
a reliable prediction could be achieved. Figure 10 shows the
performance plot which contained the training plot, the vali-
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dation plot and the test plot. The best validation performance
occurred at epoch 13 in which the MSE for validation is
0.003258.

5 Conclusion

The paper presented an estimation process of the water tur-
bidity level using an optical tomography measurement sys-
tembased on a feed-forward neural network. The K value ob-
tained by the ICA algorithm has been predicted and analysed
by the neural network approach. The results demonstrated
that the neural network is effective in inspecting the wa-
ter turbidity level. The various numbers of hidden layers
and neurones are evaluated in order to find the best net-
work performance. The network structure containing two
hidden layers with 20 and 10 neurones in the first and the sec-
ond layer, respectively, has shown the best network structure
by providing the training result of 9.7147 × 10−7 for mean
square error, 0.1432 for sum square error and 0.99911 for re-
gression. The testing result also gives a promising outcome
with 8.1473 × 10−5 for MSE, 0.7509 for SSE and 0.98525
for regression. Hence, the neural network model based on
the optical tomography system may function as a valuable
predicting tool for the water quality measurement.
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