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Abstract The advent and significant improvement in com-
puting technology in the last decades has led to immense
popularity of traffic microscopic simulation models in
addressing different transportation engineering issues. This
paper focuses on the challenges of calibration of micro-
scopic model incorporating the driving behavior for the local
traffic conditions in the Kingdom of Saudi Arabia (KSA).
One of the state-of-the-art microscopic simulation models,
PARAMICS was used for the calibration study. This study
proposes machine learning model-based calibration method-
ology for the PARAMICS model. The developed artificial
neural network (ANN) model performs adequately in mod-
eling the queue length as a function of mean target headway
and mean reaction time. The selected values of the cali-
bration parameters were finally obtained using the genetic
algorithm, which ensures minimum difference with the mea-
sured values of queue lengths and theANNoutput (i.e., queue
lengths). The queue lengths obtained through the ANN- and
GA-based approachwere used as the input parameters for the
PARAMICS model. The conformance of the PARAMICS
and the ANNmodel outputs indicates the validity of the pro-
posed calibration methodology.
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1 Introduction

Simulation has gained an increasing popularity and is being
used as an efficient tool for studying transportation problems.
It is a powerful tool for analyzing complex systems of a large
number of sequential calculations and provides the user with
statistical measures of effectiveness which are essential to
solve traffic engineering problems. Recent advancements in
computation have augmented microscopic simulation mod-
els that allows user to get visualized demonstration of target
traffic scenarios. Examples of state-of-the-art microscopic
traffic simulation models are VISSIM, MITSIM, AIMSUN,
and PARAMICS.

Microscopic simulation traces individual vehicles right
from entry into the network until it departs. In addition,
appropriatemicroscopic simulationmodel can be used to rep-
resent the lateral and longitudinal movement of an individual
vehicle. Suchmodels relymainly on the use of car-following,
lane-changing, and gap-acceptance rules to better describe
longitudinal and lateral movements of individual vehicle.
However, because of the diverse driving behavior in real
traffic, these models incorporate many necessary parameters
which make it difficult to calibrate. The model parameters
may also be exceedingly sensitive, and there is a higher
chance of obtaining misleading results. Therefore, proper
calibration is required when using microscopic simulation
models for local traffic conditions [1,2].

Saudi Arabia has one of the highest fatality risk levels in
the world in terms of traffic crash fatalities with around 29
deaths per 100,000 people. In numbers, more than 6450 peo-
ple get killed, and more than 36,400 get injured due to traffic
crashes in Saudi Arabia annually [3]. These rates are consid-
erably high when compared to many other countries. Many
researchers have already investigated on these issues and
found that driving behavior is the primary cause of crashes at
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signalized urban intersections [4]. The time headway and
reaction time are two important characteristics of driving
behavior. Al-Ghamdi [5] studied driving behavior at signal-
ized intersections in Saudi Arabia and found that the mean
of discharge headways is shorter in Riyadh (capital of Saudi
Arabia) than in other cities.

This study used PARAMICS microscopic simulation
model to analyze an urban arterial road network of the city
of Al-Khobar. PARAMICS, a microscopic urban and free-
way traffic simulation software, is used to model the vehicle
movement and individual driving behavior on road networks.
Modeler is the core of PARAMICS software that is a stochas-
tic, microscopic, time step, and behavior-based simulation
module. A stochastic model results in unique statistical out-
put each time they are run using a set of input data in contrast
to deterministic models that produce identical results in each
run. Generally, in PARAMICS, three interacting traffic flow
models control themovement of each vehicle, which are: car-
following model, gap-acceptance model, and lane-changing
model. Now, the challenge lies in selecting the appropri-
ate parameters and their values to calibrate the PARAMICS
model.

The driver reaction time and mean target headway are
two main user-specified parameters in the car-following and
lane-changingmodels that commonly affect the overall driver
behavior in the simulation environment. Network character-
istics, traffic demand, overall simulation configuration, and
driver behavior factors are considered by Grades et al. [6]
as the four key elements while using PARAMICS to evalu-
ate freeway improvement strategies on Interstate 680 in San
Franscisco Bay area. Lee and Ozbay [7] simulated a one-
mile segment of Interstate 5 in Orange County, California,
in PARAMICS and found differences between California
drivers’ behavior and the default values in PARAMICS.
Pinna [8] used generic algorithm for selecting the input
parameters while calibrating and validating the PARAMICS
model for a highway traffic network between the sites of Vee-
nendaal and Maarsbergen in the province of Ulrecht. Zhe et
al. [9] developed a procedure for the calibration and valida-
tion of PARAMICS for freeway modeling. They have identi-
fied the parameters of PARAMICS that need to be calibrated
using 2k−p fractional factorial design by toll data. Prusty et
al. [10] calibrated and validated PARAMICS for a heteroge-

neous traffic interacting with high pedestrian flow in the city
ofMangalore, India. This study concluded that PARAMICS’
car-following algorithm is effective in reproducing vehicle
andpedestrianflow in complex andheterogeneous traffic. In a
recent study, traffic flow and queues have been used as amea-
sure of effectiveness to calibrate and validate the PARAMICS
model [11].

The analyses of different studies on previous literature
revealed that mean target headway (MTH) and mean reac-
tion time (MRT) are the main key factors in calibrating the
PARAMICS model (Table 1). The calibrated values of MTH
and MRT vary from 0.50 to 1.65, and 0.42 to 1.00, respec-
tively, for a number of studies (Table 1).

Currently, the artificial neural network (ANN) and genetic
algorithm (GA) are used to calibrate microscopic simulation
models and other relevant fields.Ma et al. [13] used combina-
torial parametric optimization to automate the tedious job of
trial and error basedmicroscopic calibrationmodel. They had
integrated the GA with microsimulation model PARAMICS
tomodify the control parameters of PARAMICS, whichmin-
imized the discrepancy between simulated output and real
field data. Otković et al. [16] used ANN model to calibrate
VISSIM, a microscopic traffic simulation model. A database
consisting of 1379 examples were used to develop and vali-
date theANNmodel. TheANNmodel performed adequately
in modeling the travel time compared to the output of VIS-
SIM with respect to correlation coefficient, mean absolute
error, and maximum absolute error. ANN models are also
adopted for modeling car-following drivers’ behavior which
can be used for calibrating microscopic traffic simulation
model [17]. Zhou et al. [18] integrated PARAMICS with
Comprehensive Modal Emissions Model (CMEM) and GA
to develop traffic signal timings at an intersection which
reduce vehicle emissions, fuel consumption, and vehicle
delay simultaneously. Zhang et al. [19] developed a traf-
fic pattern recognition model of intersections based on the
fuzzy neural network through combining fuzzy inference
systemand artificial network. Theirmodelwas validatedwith
respect to free flow, unstable flow, and compulsory flowusing
the VISSIM microsimulation software. Ghanim et al. [20]
combined GA and ANN to develop a real-time traffic sig-
nal controller integrating traffic signal timing optimization
and transit signal priority control. The control system was

Table 1 Calibrated parameters
of PARAMICS for different
traffic conditions

Author(s) Location of the study MTH (S) MRT (S)

Ozbay and Bartin [12] South Jersey, New Jersey, USA 0.70 0.50

Ma and Abdulhai [13] Toronto, Canada 0.86 0.71

Gardes et al. [6] San Francisco Bay, USA 1.65 0.42

Zhe et al. [9] Guangdong Province, China 0.45 0.43

Jobanputra and Vanderschuren [14] Cape Town, South Africa 0.50 1.00

Chu et al. [15] Irvine, Orange County, California 0.78 0.66
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successful in reducing transit vehicle delay and improving
schedule adherence in VISSIM environment.

This study proposes machine learning model-based cal-
ibration methodology for the PARAMICS model. The two
main parameters identified for this calibration study were
mean target headway and mean reaction time in accordance
with the previous literature. In order to develop the ANN
model, a set of values of MTH and MRT were used for
the given network to produce the queue length. The val-
ues of MTH and MRT and queue length were considered
as inputs and output, respectively, for the proposed ANN
model. Queue length was selected from several measures of
effectiveness (MOEs) produced by the model because it is
relatively easy to measure such MOEs in the real study net-
work and signalized intersections.

2 Study Area and Calibration Process

2.1 Study Site

The study network is a moderately congested corridor net-
work in the city of Al-Khobar, Kingdom of Saudi Arabia
(KSA), as shown in Fig. 1. The network consists of a five-
kilometer section of an urban arterial that includes three
major signalized intersections.

2.2 Basic Input Data and Coding the Network

Input data needed to run PARAMICS include network
geometric features, traffic control system, vehicular char-
acteristics, traffic composition and driver behavior (e.g.,
reaction time, saturation flow, start-up lost time), analysis
zones, and travel demands.

The data collection time for the selected weekday was
between 8:30 AM and 09:30 AM with an interval of 15 min.
The collected volume data were slightly below the saturation
flow.Automatic traffic counterwas used to collect the volume

data in the selected intersections. The other collected data
include turning counts, queue length, and signal timing plan
for each intersection.

The simulation was run for one hour in the AM peak of a
typical weekday. An ANOVA test was conducted to ensure
that the one-hour AM peak traffic represents AM peak of
any weekday. Randomly selected seven different weekday
mean flow data were compared. The F-value for the ANOVA
test for mean flow was 1.16. This value is lower than the F-
critical value of 2.12 at 95% confidence level, which means
that the mean of the AM peak traffic flow of these days is
not statistically different at 95% confidence level. In this
study, the queue length from the first intersection (Fig. 1) to
the downstream intersections for eastbound and westbound
traffic was taken as the measures of effectiveness (MOEs).

In PARAMICS, driver data expressed as a single driver
unit (SDU) [15] are represented by driver aggressiveness
and awareness factor. These factors were kept to the default
value of the model. Another factor called driver familiar-
ity is by default assumed to be 85 % as most of the drivers
are familiar with the network, and there are no alternative
routes to travel from one zone to another. The coded network
in PARAMICS using the modeler module consists of eight
zones and 32 nodes. The time step used for the simulation
is 3 as recommended by the model developer help guidance
[21].

The PARAMICS model uses an origin–destination (OD)
matrix to define the travel demand and vehicle paths in the
study area. From the perspective of traffic demand input data,
the PARAMICS model is categorized into path-based sim-
ulation models where the simulation models concentrate on
reproducing network trip-making behavior. Since this infor-
mation was not readily available, it was obtained from the
observed traffic volumes and turning movements using the
Estimator module of PARAMICS. The model utilizes the
GEH statistic (a specialized Chi-square statistic) to compare
the observed andmodeled flows. Starting with a user-defined

Fig. 1 Study network for calibration in PARAMICS at the urban arterial of Al-Khobar City, KSA (Drawn on Google Map)
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initial pattern matrix, flows are recalculated iteratively until
a targeted GEH value is reached.

GEH =
√

(M − O)2

(M + O) /2
(1)

where M is the modeled flow and O is the observed flow
[22]. In this study, the iterative process was continued until
at least 85 % of the link volume with turning volumes has a
GEH (named after the inventor Geoffrey E. Havers) values
of 5 or below as suggested in the UK Highways Agency’s
Design Manual for Roads and Bridges [22].

2.3 Calibration Methodology

Model calibration is the process by which the network ele-
ments, model parameters, and trip patterns are adjusted in
order to obtain a model capable of reproducing observed
traffic characteristics such as queuing, travel time, traffic vol-
umes, routing, turn proportions, driving behavior, and vehicle
characteristics. This study proposes a GA- and ANN-based
approach for searching the values of the main parameters,
which minimize the relative error between observed data
and the PARAMICS output. Similar to the manual calibra-
tion, mean target headway (MTH) and mean reaction time
(MRT) are the two key parameters selected for this calibra-
tion attempt. In order to develop the ANN model, a set of
values of MTH and MRT were used for the given network to
produce the queue lengths of the eastbound and westbound
traffic of the middle intersection and the inbound approaches
of the terminal intersection in the network (Fig. 1). The val-
ues of MTH and MRT were the input, while queue lengths
were considered as output for the proposed ANNmodel. The
developed ANN model can be used extensively for a wide
range of inputs of MTH and MRT to produce the desired
queue lengths which will meet the field data. The methodol-
ogy of this research contains the following steps in the same
order as given below:

Step 1 Develop the PARAMICS model using basic input
data such as network geometric features, traffic
control system, vehicular characteristics and pro-
portions and driver behavior (e.g., reaction time,
saturation flow, start-up lost time), analysis zones,
travel demands.

Step 2 Balance between observed and modeled flows using
appropriate performance measures such as GEH sta-
tistic.

Step 3 Determine the appropriate calibration parameters
such asmean target headway andmean reaction time.

Step 4 Generate PARAMICS output for a set of values of
calibration parameters (MTH and MRT).

Step 5 Develop the ANN model considering the calibration
parameters as input and the measure of effectiveness
such as queue length as output. If needed, multiple-
input and multiple-output-based ANNmodel may be
considered.

Step 6 Validate the developed ANN model with the help of
testing dataset considering appropriate performance
measures.

Step 7 Use an optimization tool such as GA model to deter-
mine the appropriate values of MTH and MRT for
the given network. The model determines the desired
MTH and MRT, which ensure minimum difference
with the measured values of queue lengths and the
ANN output (i.e., queue lengths).

Step 8 Select the appropriate calibration parameters based
on the ANN output and determine the corresponding
PARAMICS output.

Step 9 Compare the PARAMICS output with the observed
measures of effectiveness for validation.

2.4 Fundamentals of ANN Modeling Approach

This subsection describes the fundamentals of ANN based
on the literature. ANNs have been introduced during 1940s
following the concept of learning mechanisms of the brain
[23] and have got a great development during 1980s because
of the advanced training algorithms suitable for large sets of
data [24]. They are robust estimators of nonlinear, stochastic
and noisy phenomena, such as driving behavior. They con-
sist of inter-connected processing nodes that are structured
in layers and added together with weighted connections. The
learning algorithm in response to training data provides a
given network with the ability of adjusting its connections
weights and bias levels. Theoretically, conventional ANNs
can approximate any continuous function to any desired
degree of accuracy, if sufficient numbers of hidden units (neu-
rons) are available [25].

Generally, the topology of ANNs is described in terms
of the order, interconnections, and organization of the nodes
within layers of a given network [26]. The appropriate selec-
tion of the desired topology is determined depending on the
problems. The nodes of a feed-forward neural network are
arranged in layers beginning with the input layer and ending
with the output layer. In addition, a number of hidden lay-
ers in between input and output layers provide most of the
network computational power [26].

A feed-forward neural network for a simple problem may
consist of three layers: (1) the first layer with two inputs, (2)
the second hidden layer with two neurons, and (3) the third
layer with one output in Fig. 2. The input layer does not pro-
vide any computational ability rather it directs the input to the
first hidden layer and the remaining connections carry real-
valued weights, which modify the signal strength received
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Fig. 2 Typical architecture of a simple feed-forward neural network
with two inputs, one output, and one single hidden layer

from other neurons. The node of other layers, i.e., the hidden
layer and output layer receive the summation of weighted
inputs from the previous layers and bias. The received input
and bias are processed by the activation function of the corre-
sponding neuron and directed to the neuron of the next layer
or to the environment as output. The output of a neuron of
the hidden layer is obtained by:

Output of node j th hidden node, z j = f

(∑
i

wi j xi +woj

)

= f (p)= 1

1 + e−p
(2)

where wi j is the connection weight from the i th input node
to j th hidden node, and woj is the bias of the j th hidden
node. In the above example, a logistic sigmoid function is
considered as the activation function of the hidden node.

3 Fundamentals of Genetic Algorithm

This section provides insights into the proposed ANNmodel
obtained through experimental datasets. This evolutionary
computation is developed loosely based on the concepts of
biological evolutionary theory [27]. The GA is an evolution-
ary computationmethod,which has been successfully used in
many applications. Holland [28] introduced the GA, which
is based on the concept of survival of the fittest strategy.
Therefore, the stronger individuals in the population have a
higher opportunity of producing offspring. Each individual
in the population is considered as a possible solution, made
up of a set of individual genes. The GA adopts a stochastic
global search technique within the solution space for deter-
mining the individual with a maximum fitness value. The
steps involving a standard GA are as follows [27]:

Step 1 Generation of an initial population of chromosomes
adopting a random method.

Step 2 Computation of the fitness values of each individual
of the current population.

Step 3 Preparation of a transitional population by selecting
individuals from the current population with the help
of the reproduction operator.

Step 4 Generation of the new population by using genetic
operators including crossover and mutation to the
transitional population, and

Step 5 Completion of the search whenever an individual
of the present population meets the current problem
requirement in terms of error measures or time, then
stop, otherwise go to step 2.

4 ANN Model Development

Themodeling exercise considered 210 sets ofMTHandMRT
values to predict the eastbound andwestbound queue lengths.
The training dataset consists of randomly selected 70%of the
dataset. The remaining data were used to test the developed
model. Generally, the topology of ANN affects the perfor-
mance of the model significantly. In this study, different
numbers of hidden layers and neurons in each layer, trans-
fer functions, numbers of iterations, and training algorithms
were systematically evaluated for selecting the appropriate
topology. Depending on error measures, the best performing
model based on both training and testing dataset is selected.
The selected model ensures sufficient learning of the training
dataset without compromising the generalization capability
of the model.

The transfer function for the hidden layerwas tan-sigmoid,
which scales down the input into−1 to 1. Theweight and bias
of the ANNwere obtained using Levenberg–Marquardt opti-
mization algorithm [29,30]. The optimization method used
mean-squared error (MSE) of the network as error measure.
The method was implemented considering the learning rate
and goal of the model as 0.0002 and 0.00001, respectively.
The number of hidden layer was only one, and the number
of neurons in the hidden layer was fourteen. The model was
built in MATLAB environment.

5 Results and Discussion

The results of the developed ANN model for the testing
dataset were analyzed. The output of PARAMICS and that
of ANN model are quite comparable (Figs. 3, 4, 5, 6). The
performance of the proposed ANN model is evaluated by
considering a number of error measures including mean
absolute error (MAE), mean-squared error (MSE), root-
mean-square error (RMSE), mean absolute percentage error
(MAPE), and coefficient of correlation (CC). The CC varies
between 0 and 1, which indicates the degree of statistical cor-
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Fig. 3 Output of PARAMICS
and ANN model outputs for
WB1
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Fig. 4 Output of PARAMICS
and ANN model outputs for
EB2
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relation between the predicted outputs ofANNmodel and the
PARAMICS output. The scatter plot of the PARAMICS and
ANN model outputs shows the visual relationship. An iden-
tity line passing through the origin and making an angle of
45◦ with the X -axis is often drawn as the reference. Themore
the two datasets agree, the more the data points tend to con-
centrate near the identity line. The data points fall exactly

on the identity line when both datasets are numerically iden-
tical. The scatter plots of the PARAMICS and ANN model
outputs are shown in Fig. 7. The considered error measures
indicate that theANNmodel is capable of realizing the under-
lying relationship among the MTH and MRT, and the queue
length established in the PARAMICS simulation model
(Table 2).
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Fig. 5 Output of PARAMICS
and ANN model outputs for
WB2

20

22

24

26

28

30

32

34

36

38

40

Q
ue

ue
 L

en
gt

h 
(N

um
be

r o
f V

eh
ic

le
s)

 

Observations (Testing Dataset) 

WB2-PARAMICS Output
WB2-ANN Output

Fig. 6 Output of PARAMICS
and ANN model outputs for
EB3
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In order to find out the appropriate values of MTH and
MRT for the given network, GA was used. The developed
GA model determined the desired MTH and MRT, which
ensure minimum difference with the measured values of
queue lengths and the ANN output (i.e., queue lengths). The
selected parameters of the GA such as population and gen-

eration size and crossover ratio were 1000, 50, and 0.65,
respectively. The optimum values of MTH and MRT were
0.683 and 0.789, respectively. These values were used in the
developed PARAMICS and ANN model. The queue lengths
obtained through GA-based ANN appeared to be adequate
for reproducing the local traffic conditions (Fig. 8).
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Fig. 7 Scatter plots of
PARAMICS and ANN model
outputs (i.e., queue length) R² = 0.9022 
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Table 2 Error measures of the developed ANN model

WB1 EB2 WB2 EB3

MAE 1.98 1.10 1.49 1.17

MSE 7.83 1.83 3.40 2.45

RMSE 2.80 1.35 1.84 1.57

MAPE (%) 5.34 3.84 4.43 3.54

CC 0.95 0.99 0.89 0.97

6 Conclusions

This study proposes machine learning model-based calibra-
tion methodology for the PARAMICS model considering
an urban arterial network of the Kingdom of Saudi Arabia.
The developed ANN model performs adequately in mod-
eling the queue length as output using mean target headway
(MTH) andmean reaction time (MRT) as inputs. The consid-
ered error measures of the ANN model are quite reasonable.
Finally, a GA model was developed to obtain the optimum
values of MTH andMRT, which will ensure minimum errors
among the observed queue lengths and the ANN model
outputs (i.e., queue lengths). The selected values of the cal-

ibration parameters obtained through the GA-based ANN
modeling approachwere also used as the input parameters for
the PARAMICSmodel. The conformance of the PARAMICS
output and the measured queue length ensures the validity of
the proposed calibration methodology. Therefore, this study
attempted to provide a systematic calibration methodology
for the PARAMICSmodel, which requires minimum subjec-
tive intervention from the users. This study proposed a novel
calibration methodology for PARAMICS and other micro-
scopic simulation models. The proposed approach can be
incorporated with the advanced traffic management system
very easily. The developed road network specificANNmodel
can be integrated with advanced traffic management system,
and real-time traffic performance measures can be obtained
without running the PARAMICS model. Therefore, it will
be very suitable for real-life applications. The future research
may explore the use of other variables (i.e., driver aggression,
familiarity) for the PARAMICS simulation model as input to
the machine learning model and different measures of effec-
tiveness (i.e., network delay, travel time, fuel consumption)
as output. The proposed methodology may work with vary-
ing geometry and traffic volume if the model is appropriately
built.
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Fig. 8 Measured queue lengths
and ANN model outputs and
PARAMICS simulation model
output using calibrated
parameters as inputs
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