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Abstract In this paper, an efficient adaptive neuro-fuzzy
inference system (ANFIS)-based PI controller for maxi-
mum power point tracking (MPPT) of photovoltaic (PV)
systems is proposed. The proposedANFIS-basedMPPTcon-
troller has the capacity to track the optimum point under the
rapidly changing irradiation conditions with less fluctuations
in steady state. The training data of the proposed controller
are extracted from a precise PV model developed. The per-
formance of the proposed controller is compared with the
conventional incremental conductance method. Finally, the
proposed ANFIS-based MPPT controller has been imple-
mented experimentally using real-time digital simulator
(RTDS) to simulate a PV system in real time, while the pro-
posed ANFIS-based controller is implemented on dSPACE
1104 controller. Simulation and experimental results show
that the proposedANFIS-basedMPPT controller has fast and
accurate dynamic response with less fluctuations in steady
state. In addition, its performance is superior as compared to
the conventional methods.

Keywords Photovoltaic (PV) · Maximum power point
tracking (MPPT) · Adaptive network-based fuzzy inference
system (ANFIS) · Real-time digital simulator (RTDS) ·
dSPACE controller

1 Introduction

Among the renewable energy sources, solar energy is the
most promising source that can be directly converted to elec-
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trical energy using photovoltaic (PV) systems. In 2011, more
than 69GW of PV power is installed worldwide that can
generate 85TWh of electricity per year [1]. The output char-
acteristics of PVarray are highly nonlinear and have one peak
point called maximum power point (MPP). This optimum
point is extremely vulnerable to irradiation and temperature
which is always varyingwith time. Therefore, theMPP track-
ing (MPPT) controllers are used to trail the optimum point
to harvest the maximum possible power from the PV array.

Many MPPT methods have been presented in the liter-
ature, and comprehensive comparison of these methods is
shown in [2–4]. These techniques have been categorized
as online methods and offline methods [3]. Online methods
are also called model free methods, as they do not rely on
the PV model. This approach includes perturb and observe
(P&O) [5], hill climbing (HC) [6] and incremental conduc-
tance (InCond) [7,8] techniques. P&O and HC methods are
based on the same principle of perturbing the PV system
and observing its effect on the PV panel output power. The
authors in [9] proved that P&O, HC and InCond methods
are actually equivalent, but these techniques suffer from
serious drawbacks such as slow tracking of MPP, fluctua-
tion around the MPP in the steady state and failure to track
MPP in the rapidly changing atmospheric conditions [10].
All these factors cause considerable amount of power loss.
The tracking speed of these techniques can be improved by
increasing the perturbation step size, but this in turn causes
largefluctuations in the steady state. Trade-off between track-
ing speed and fluctuations is required that depreciates the
performance of these techniques. The problem of tracking in
the rapidly changing condition has been resolved by InCond
whichworks on the principle of incrementally comparing the
ratio of instantaneous conductancewith the derivative of con-
ductance [11]. However, it suffers from the trade-off problem
similar to P&O and HC. Many modifications have been car-
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ried out on these techniques, especially by optimizing the
perturbation step size or considering adaptive one [10,12–
15]. An adaptive perturbation step size for InCond and P&O
has been utilized in [14] and [15], respectively. Theoretical
and experimental comparison of P&O and InCond has been
investigated in [16] and concluded that both methods have
similar performance.

On the other hand, the offline methods comprise of open-
circuit voltage (OCV), short-circuit current (SCC) methods
[17] and the artificial intelligence (AI)-based methods [18].
OCV and SCC are the most simple and approximate meth-
ods. However, these methods are unable to provide the true
MPP because of the approximation employed. The AI-based
methods are observed to be the most efficient methods since
AI has the ability to deal with nonlinear systems [18]. Par-
ticle swarm optimization (PSO) as an intelligent technique
has been employed to find theMPP and to reduce the fluctua-
tions in the steady state [19]. Fuzzy inference system (FIS) is
used to fuzzify the rules of HC method, and artificial neural
network (ANN) is employed in [20,21]. Although these tech-
niques show a substantial improvement in tracking the MPP,
they are not able to eliminate the fluctuation problem com-
pletely.

Adaptive neuro-fuzzy inference system (ANFIS) is pro-
posed to combine the strong features and exhibit the attributes
of FIS and ANN [22]. FIS has two major advantages: First,
it allows setting the fuzzy rules quite close to the real-world
processes, and second, it is interpretable as it can explain the
reason of a particular output occurrence. On the other hand,
it has some inadequacies such as expert knowledge require-
ments to define the fuzzy rule base and the computational
time to tune the membership function parameters. To build
ANFIS-based MPPT controller, the major challenge lies in
gathering a large amount of training data. Actual field data
for training of ANFIS-based MPPT have been used in [23].
However, several problems are associated with the practical
data such as its limited dynamic range. In addition, the col-
lected data are only appropriate for a particular geographical
location, and the data collection time should be long enough
for better performance of ANFIS.

On the other hand, easy and better way of getting train-
ing data is by simulation of PV model as utilized in [24] in
which ANFIS-based MPPT is implemented in single-stage
topology of power converter (with the inverter only). Open-
circuit voltage and short-circuit current as input to theANFIS
MPPT controller are reported in [25], but this technique
does not provide the true MPP because of the approxima-
tion employed. PV output current and voltage as input to the
ANFIS are used in [26–28], whereas irradiation and tempera-
ture are used to train the ANFISMPPT controller in [29,30].
However, the size of the training data used is relatively small
that leads to a relatively high training error as reported in

[26,27]. In addition, no experimental verification has been
reported.

In this paper, a novel MPPT controller is proposed and
developed based on ANFISwhose training data are extracted
from a precise PV model developed. The proposed con-
troller hybridizes the principles of two efficient intelligent
techniques of FIS and ANN. Two-stage topology of power
converter is used that provides the flexibility in designing the
control architecture. The scheme also offers further advan-
tage by providing the constantDC-link voltage to the inverter,
which is beneficial, especially in the case of temperature vari-
ations. Results and comparison showed that the proposed
ANFIS-based MPPT controller can overcome the shortcom-
ings of the conventional methods and can track the MPP
in shorter time with less fluctuations. Competence of the
proposed ANFIS-based MPPT controller is verified exper-
imentally where RTDS is used to simulate the PV system
in real time and proposed ANFIS-based MPPT controller is
developed in dSPACE 1104 controller.

The rest of the paper is organized as follows: Sect. 2
describes the electrical modeling of PV panel and PV array
based on the five-parameter model. Proposed ANFIS-based
MPPT controller is described in Sect. 3. In Sect. 4, the exper-
imental setup is presented. The Results and discussions are
shown in Sect. 5. Finally, Sect. 6 concludes the work.

2 PV Modeling

2.1 PV Panel Modeling

In this study, an efficient five-parameter PV model shown in
Fig. 1 is used. The five-parameter model is the most com-
monly used PV model that produces a close output to that of
the practical PV array [31]. This model requires the values
of five unknown parameters. These parameters are defined
as: -

IL is the light generated current
I0 is the reverse saturation current

RS

RSH
V 

IL
ID

I 

ISH

Fig. 1 Equivalent electric circuit of PV device
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RS is the series resistance
RSH is the shunt resistances
“a” is the diode-modified ideality factor

Using simple Kirchhoff’s current law, following relationship
can be found;

I = IL − ID − ISH (1)

I = IL − I0

{
exp

[
(V + I×RS)

a

]
− 1

}
− V + I×RS

RSH

(2)

where I and V represent the current and voltage generated
from the PV panel. I–V characteristics of PV are governed
by five parameters (IL , I0, RS, RSH and “a”). If the values of
these parameters are known, Eq. (2) can be solved using effi-
cient numerical technique, like Newton–Raphson method.
With different atmospheric conditions, these parameters have
different values that can be calculated at any ambient condi-
tion using the following model translational equations where
the series resistance Rs is assumed constant while the shunt
resistance RSH varies with irradiation [31].

a = aref

(
Tc

Tc,ref

)
(3)

IL =
(

S

Sref

) [
IL ,ref + µI,sc

(
Tc − Tc,ref

)]
(4)

RSH = RSH,ref
Sref
S

(5)

RS = RS,ref (6)

I0
I0,ref

=
(

TC
Tc,ref

)3

exp

((
Ns×Tref
aref

)
×

(
Eg,ref

Tref
− Eg

T

))

(7)
Eg

Eg,ref
= 1 − C (T − Tref) (8)

where S and Tc represent the solar radiation and temper-
ature of the PV panel, respectively. µI,sc and NS are the
coefficient of short-circuit current and number of cells in
the panel, respectively (both of these quantities are provided
by the manufacturer). Eg is the band-gap energy of the PV
cell material and C = 0.0003174 [17]. Quantities with the
subscript “ref” represent their values at the standard test con-
ditions (STC).

2.2 PV Array Modeling

LargePVpower stations are composedof series- andparallel-
connectedPVpanels to increasePVpower output. Theoutput
current relationship of PV array having NSS series and NPP

parallel-connected PV panels can be given by [32];

Table 1 Array parameter value in relation to panel parameters [32]

Panel
parameter

Modified array
parameters

Model
parameter

Modified array
parameters

VOC VOC × NSS IL IL × NPP

ISC ISC × NPP I0 I0 × NPP

VMP VMP × NSS RS RS × (NSS/NPP)

IMP IMP × NPP RSH RSH × (NSS/NPP)

n n × NSS a a × NSS

I = NPP×IL − NPP×I0

{
exp

[
(V + I RS×N)

NSS×a

]
− 1

}

−
(
V + I RS×N

RSH×N

)
(9)

N = NSS

NPP
(10)

where IL , I0, RS, RSH and “a” are parameters of single PV
panel. The relationship of PV array parameters with the PV
panel parameters is given in Table 1.

3 Proposed ANFIS-Based MPPT Controller

3.1 ANFIS Structure

ANFIS is based on Takagi–Sugeno-type FIS hypothesis
and possesses the learning capabilities of neural network to
improve the performance of intelligent system by means of a
priori information. ANFIS creates a Fuzzy system and tunes
the parameters of the membership function utilizing a certain
input–output datasets. Like neural network, ANFIS also has
network-type structure and maps the input–output dataset
using the parameters of fuzzy membership functions. Fig-
ure 2 demonstrates the simple ANFIS architecture based on
the two-rule Takagi-Sugeno system with two inputs (x and
y) and single output (F). Here A1, A2 and B1, B2 are fuzzy
input memberships for input x and y, respectively.

A two-rule Takagi-Sugeno ANFIS has rules of the form:

If x is A1 and y is B1 THEN f1 = p1x + q1y + r1 (11)

If x is A2 and y is B2 THEN f2 = p2x + q2y + r2 (12)

where pi , qi and ri are the consequent parameters. Generally,
ANFIS architecture has five layers as shown in Fig. 2. Each
layer is explained as follows:
Layer 1

In layer 1, every node is adaptive node and their number
depends on the number of input membership functions. Their
output is given by:
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Fig. 2 ANFIS structure

O1,i = µAi (x) for i = 1, 2 (13)

O1,i = µBi−2 (y) for i = 3, 4 (14)

whereµ is the membership function and O1,i is the member-
ship value for the crisp inputs X and Y . The subscripted 1 and
i represent the layer number and node number, respectively.

Membership functions “µ” can be any shaped function
like trapezoidal, triangle, and Gaussian. Themost commonly
usedmembership function is generalized bell and is given by:

µA (x) = 1

1 +
∣∣∣ x−ci

ai

∣∣∣2bi
(15)

where ai , bi and ci are parameters of the membership func-
tion (called premise parameter) and need to be optimized in
the training process.
Layer 2

Every node in this layer is fixed node and accepts the
output (membership values) from layer 1 where t-norm is
utilized to “AND” these values, given by;

O2,i = wi = µAi (x)µB(y) i = 1, 2 (16)

Output of each node corresponds to the firing strength of a
rule.

Layer 3
Everynode in this layer is fixednode andused to normalize

the firing strength by dividing the rule’s firing strength by the
sum of all rules’ firing strengths, given by;

O3,i = w̄i = wi

w1 + w2
(17)

Output of each node represents the normalized firing strength
of a rule.
Layer 4

Every node in this layer is adaptive node and given by the
function;

O4,i = w̄i fi = w̄i (pi x + qi y + ri ) (18)

where pi , qi and ri are the consequent parameters and need
to be optimized in the training process.
Layer 5

It has only one fixed node and sums up all the input signals
to get the final output and is given by;

O5,i =
∑

i
w̄i fi =

∑
iwi fi∑
iwi

(19)

3.2 ANFIS Learning Process

In the learning algorithm, ANFIS optimizes and adapts its
parameters using the training datasets to predict the output
data with high accuracy. The Takagi–Sugeno-type model has
two types of parameters.

• Nonlinear parameters or membership function parame-
ters (premise parameters).

• Linear parameters or rule parameters (consequent para-
meters).

The learning method used in this study is based on the
hybrid learning algorithm that employs the combination of
back-propagation (BP) and least square estimation (LSE) to
optimize the premise and consequent parameters [20,33]. In
this method, two-pass learning algorithms (forward pass and
backward pass) are used:

• In forward pass, consequent (linear) parameters are cal-
culated using aLSEalgorithm,while premise (nonlinear)
parameters are kept unmodified.

• In backward pass, premise (nonlinear) parameters are
calculated using a back-propagation algorithm, while
consequent (linear) parameters are kept unmodified.

LSE learning algorithm calculates the square error between
training data output and predicted output that is obtained
from the Sugeno-type model. This error is utilized to adapt
the consequence parameters. The back-propagation gradient
descent method uses the error between output training data
and predicted output in backward pass to calculate the error
in different nodes.

3.3 Application of ANFIS for MPPT

Since the output characteristics of PV system are highly non-
linear, the AI techniques are widely used to improve the
efficiency of the MPPT controller. The role of the ANFIS
controller proposed in our work is to locate the maximum
operating voltage which corresponds to the maximum power
of the PV array. It uses the ambient parameters of irradiation
and temperature as an input together with the PV array para-
meters. To designMPPT controller using ANFIS, first task is
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Start
N=1

Initialization
PV panel data from data sheet

Array size, NSS, NPP

Parameter estimation at STC

Modify parameters of PV array using Table I

Initialize Training parameters 

Generate random operating condition:
Temperature:
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Solve Eqn (2) using numerical method
(Newton-Raphson)

Store value of Vmp against given 
ambient condition

Calculate parameters value at given operating 
condition using translational eqn (3-8)
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N=N+1

Training data 
generation

Fig. 3 Proposed method to generate input–output dataset for ANFIS
training

to gather the input–output dataset for training purpose. The
training data is generated using the efficient PVmodel devel-
oped in [34,35]. A step-by-step process of data generation is
illustrated in the flowchart shown in Fig. 3.

As a first step, values of the five unknown parameters for
the considered PV panel are estimated and then these values
will be transformed for PV array using the parameters given
in Table 1. Then, the training parameters are initialized that
include;

NMAX: Number of training data points.

TMIN: Minimum temperature
TMAX: Maximum temperature
SMIN: Minimum irradiation
SMAX: Maximum irradiation

where TMIN, TMAX and SMIN, SMAX represent the ranges
of temperature and irradiation, respectively. These ranges
depend on the geographical location where PV array is
installed.

Random operating conditions are generated within the
specified ranges and the five parameters at the generated
operating conditions are modified using the model transla-
tional equations. Then the transcendental nonlinear equation
(Eq. 2) is solved using proficient numerical technique of
Newton–Raphson method, and the voltage corresponding
to the maximum power point is stored against the speci-
fied operating condition. This process is executed for NMAX

times to generate the training dataset. The ANFIS-based
MPPT is designed using the hybrid learning algorithm
described above. In the learning algorithm, parameters of
the membership functions are adapted such that they track
the input–output data accurately.

The arrangement of the developed ANFIS-based MPPT
controller is shown in Fig. 4. Once this voltage is located,
the PI regulator forces the PV array to work at that voltage
by comparing the actual voltage of the PV array and the
reference voltage obtained from the ANFIS controller by
controlling the duty ratio of the DC–DC converter. The duty
cycle of the DC–DC converter is controlled to force the PV
array to generate the maximum power. The duty cycle is
generated by the PI regulator based on the error between the
reference voltage Vref from the ANFIS and the measured PV
voltage, VPV.

4 Experimental Setup

Experimentally, the proposed MPPT controller is imple-
mentedusingdSPACE1104,which consists ofTMS320F240
Digital Signal Processor (DSP) microcontroller. It is based
on a 603 PowerPC floating-point processor usually utilized
for the designing of digital controllers and real-time simula-
tion purposes [36]. PV system is simulated in real time using
real-time digital simulator (RTDS). RTDS is extraordinary
computer devised to analyze phenomena of electromagnetic
transients in real time.

The process of MPP tracking mainly consists of DC-
DC converter switching which is implemented using RTDS.
Hardware of the RTDS is based on RISC (reduced instruc-
tion set computer) and digital signal processors (DSP) and
employs themethods of parallel processing to accomplish the
continuous real-time operation [37]. It offers real-time sim-
ulation of any number of series and parallel-connected PV

123



2646 Arab J Sci Eng (2015) 40:2641–2651

C1

ANFIS 

Irradia�on 

Temperature

DC 
Link 

Buck Converter PV Array 

VDC

e 
+

-
VPV, norm

VREF, norm

VREF

VPV

PI 
controller 

Duty 

VDCC2

RS

RSH
VPV

IL ID

IPV

ISH

SW 

Diode 
VPV

L IPV

  A1

 A2

  B1

  B2

X

Y

W1
1

W2

F 

Layer1 Layer2 Layer3 Layer5 

1 1

2 2

1 xy 

xy 
Layer4 

Load/ 
Inverter 

Fig. 4 PV system equipped with the proposed ANFIS-based controller
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Fig. 5 A schematic diagram of the closed loop control system

panels under different operating conditions. The 16-bit GT
Analogue Output (GTAO) and GT Analogue Input (GTAI)
cards are installed on the RTDS and used to interface the
RTDSwith dSPACE1104.A schematic diagramof the closed
loop control system is shown in Fig. 5, and complete exper-
imental setup is shown in Fig. 6.

The proposed ANFIS-based MPPT controller is imple-
mented in dSPACE DS1104, while the PV array and the
buck converter are implemented in RTDS. The input irra-
diation and temperature to the PV array are taken from the
RTDS GTAO port and are sent to the dSPACE as input sig-
nals. These signals are converted to digital signals using the
ADC. The dSPACE controller generates the reference volt-
age Vref (which is the maximum operating voltage), and the
DAC converts this signal to analog signal that is given to
the RTDS using the GTAI. The PI regulator implemented
in RTDS generates the duty cycle as the input to the buck
converter.

5 Results and Discussions

5.1 PV System Specification

Specification of the PV array used is shown in Table 2. An
array of 50 × 20 (NSS = 50 and NPP = 20) panels is used
to show the operation of the proposed ANFIS-based MPPT
controller with a large PV power station. Buck converter is
designed to work in a continuous conduction mode (CCM)
and has the following specifications: C1 = 100µF, L =
5mH, switching frequency 5kHz and DC-link capacitor
C2 = 500µF.

5.2 ANFIS Design

Training parameters used to generate the set of input–
output data are: NMAX = 1000, TMAX = 80 ◦C, TMIN =
0 ◦C, SMAX = 2000W/m2, SMIN = 0W/m2. These para-
meters show wide and dynamic range for temperature and
irradiation that allows the designedMPPT towork efficiently
under uncertain operating conditions.

The ANFIS-based MPPT is developed in MATLAB/
Simulink using three generalized bell (g-bell) membership
functions. The membership functions are selected by com-
paring training root-mean-square error for different number
ofmembership function shapes. Hybrid learning algorithm is
utilized in thiswork that uses the LSE to adapt the consequent
parameters and back-propagation method to optimize the
premise parameters of the membership functions. The root-
mean-square error versus epochs during the training process
is shown in Fig. 7. It is clear that the proposed approach
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Fig. 6 Experimental setup

Interfacing of 
dSPACE and RTDS Host PC  

RTDS 

Table 2 Specification of PV array parameter at STC

Parameter Values

Rated power at MPP (PMP) 53.07kW

Voltage at MPP (VMP) 870V

Current at MPP (IMP) 61A

Open-circuit voltage (VOC) 1085V

Short-circuit current (ISC) 67A

No. of panels connected in series (NSS) 50

No. of panels connected in parallel (NPP) 20

No. of cells in each panel (NS) 36

0 50 100 150 200 250 300
0

5

10

15

20

Epochs

R
M

S
E

Fig. 7 Training error versus epochs for the ANFIS

for training process is quite efficient as the root-mean-square
error is reduced substantially to <4% within 200 epochs
which is by far better than that reported in [27,28,30] that is
more than 6%.

5.3 Validation

To validate the effectiveness of the proposed ANFIS-based
MPPT, a comparison with conventional incremental con-
ductance (InCond) method is carried out. Simulation and
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P-V curve

Voltage (V)

P
ow

er
 (k

W
)

Low irradiation
Normal irradiation Y

X

Fig. 8 PV curve under normal and low irradiation conditions

experimental tests are conducted under step-up change in
irradiation level. The irradiation is kept constant with a value
of 500 W/m2 up to 0.25 s, and then it increases drastically
to 1000 W/m2. The P-V curves for the selected PV array
under low (500 W/m2 and 25 ◦C) and normal (1000 W/m2

and 25 ◦C) irradiation level are shown in Fig. 8. It can be seen
that themaximumpower that can be generated by PV array at
low irradiation level of 500 W/m2 is 24.669kW and labeled
as point X on the graph. After a step-up change in irradiation,
the operating point shifts to pointY having themaximumpos-
sible power, PMP, of 53.07kW (VMP × IMP × NSS × NPP =
53.07 kW).

5.4 Simulation Results

A nonlinear time domain simulation is carried out with the
proposed ANFIS- and InCond-based MPPT controllers. For
InCond method, fixed perturbation step size of 0.01 s and an
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update frequency of 20kHz are chosen based on a trade-off
between fluctuations in the steady state and tracking speed.
Figure 9 depicts a comparison of PV array power output
(PPV) for both controllers. It can be seen that the proposed
ANFIS-based MPPT controller is much faster than the con-
ventional InCond at both levels of irradiation. Specifically,
the tracking time is 0.04 s with the proposed ANFIS-based
MPPT controller, while the InCond controller takes 0.1s with
the first level of irradiation.

To demonstrate the efficiency of a proposed ANFIS-based
MPPT controller in steady state, portion of the response
from 0.3 to 0.34 s is enlarged with the irradiation level of
1000 W/m2 as presented inFig. 9. It is seen from the enlarged
portion that the proposed ANFIS-based MPPT has smoother
response as compared to InCond, which shows a consider-
able amount of fluctuations in the steady state. Although,
it is possible to diminish these fluctuations by reducing the
perturbation step size, but this will result in even more slow
tracking response.

The competence of the proposed ANFIS-based MPPT at
different operating conditions is illustrated by comparing the
maximum power, PMP, extracted by ANFIS-based MPPT
with the conventional InCond method. Percentage error is
calculated using the reference power from the PVmodel and
is shown in Figs. 10 and 11. Figure 10 presents the percentage
error at different irradiation levels with constant temperature
of 25 ◦C, while Fig. 11 shows the error at different temper-
ature with constant irradiation level of 1000W/m2. It can
be seen that the value of error is negligible for the ANFIS-
based MPPT for a wide range of operating conditions. This
demonstrates that the proposed controller is able to extract
the maximum possible power from the PV array at the con-
sidered weather conditions. The simulation results for duty
cycle, PV array voltage, VPV, and current, IPV, are shown
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Fig. 12 Duty ratio under step-up irradiation change

in Figs. 12 and 13. The results verify the effectiveness of
the proposed ANFIS-based MPPT controller as the fluctua-
tions are almost eliminated compared to InCond controller.
From the simulation results discussed, it can be inferred that
the response of the proposedANFIS controller is much faster
than that of InCond controller in transitional state and dimin-
ishes the oscillations in the steady state.
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Fig. 13 Characteristics of PV voltage, VPV, and current, IPV

Fig. 14 Experimental waveform for PV power output

5.5 Experimental Results

The experimental setup described in Sect. 4 is utilized to
verify the effectiveness of the proposed controller. Step-up
change disturbance in irradiation, as used in the simulation,
is applied. The responses of PPV, VPV, IPV and duty ratio
with the proposed ANFIS controller and InCond controller
are shown in Figs. 14 and 15. It can be seen that the proposed
controller has better performancewith less fluctuations.Also,
it can reach the steady state faster than the conventional
InCondmethod. This verifies the competence of the proposed
ANFIS-based MPPT over conventional method experimen-
tally.

5.6 Comparison of Simulation and Experimental
Results

The results from MATLAB/Simulink simulations are com-
pared with the experimental results to explore the validity of

Fig. 15 Experimental waveform for PV voltage, PV current and duty
ratio
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Fig. 16 Comparison of PV power (PPV)

the proposed ANFIS-based MPPT controller. A comparison
of the system response and performance for the disturbance
under discussion is shown in Figs. 16, 17 and 18. Figure 16
depicts the PV power output (PPV) and shows how the pro-
posed controller tracks the MPP in MATLAB/Simulink and
experimental simulations under the step-up change in irra-
diation level. Comparison of VPV and IPV is illustrated in
Figs. 17 and 18, respectively. It can be seen that the experi-
mental results are very much close to the simulation results.
Both the experimental and MATLAB/Simulink results vali-
date the accuracy of the proposed controllermodel. However,
it is observed that there is some delay in the system response
with the experimental results as compared to the simulation
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results. This can be attributed to the filter implemented in
dSPACE to remove the measurement noise and clean the
input measurements to the proposed ANFIS controller.

6 Conclusion

In this paper, a proficient ANFIS-based MPPT controller
is proposed and developed for PV systems. An efficient
and simple approach of training data collection is utilized
to improve the tracking efficiency of the proposed MPPT
controller. The proposed controller is implemented experi-
mentally and integrated with PV array simulated on RTDS.
The simulation results as well as the experimental results
show that the proposed ANFIS-based MPPT controller has
the fast and accurate response and overcomes the short-
comings of the conventional controllers in terms of the
steady-state oscillations. The comparison between simula-
tion and experimental results validates the efficiency of the
proposed ANFIS-based MPPT controller.
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