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Abstract An inverse analysis of the crack identification
problem is investigated by the modified particle swarm opti-
mization (MPSO) technique. The objective of the present
analysis is to predict the unknown crack location and its
depth from the knowledge of frequency data obtained from
theoretical and experimental investigation. In this paper, the
proposed modified PSO (MPSO) mechanism employs the
strategy of squeezing the physical domain of the search space
in each iteration to accelerate the search process while main-
taining the inherent structure of PSO algorithm. Analytical
and experimental results of the cracked beam structure are
compared with those obtained by modified PSO (MPSO) to
ensure the integrity of the algorithm. To show its effective-
ness, the results of the MPSO are compared with the results
obtained by differential evolution. Simulation results reveal
the better performance of the proposed algorithm in terms of
predicting the location and depth of the crack.

Keywords Beam · Crack detection · Natural frequencies ·
Particle swarm optimization · Differential evolution

1 Introduction

The vibration-based structural damage detection problem
using non-destructive inspection techniques have been the
main thrust in the area of research for a long period. In order
to obtain accurate predictions of crack through such tech-
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niques, a prior knowledge of the damage vicinity is required.
The above limitations have made the vibration-based inspec-
tion methods very popular and important in crack detection.
The existence of damage in the form of a small crack in a
structure affects its dynamic characteristics such as natural
frequencies and mode shapes. Therefore the natural frequen-
cies and mode shapes of the structure could be used as a
source of information regarding damage location and the
extent of damage.

There are two approaches of thoughts in structural damage
identification: the forward-based approach and the inverse
approach. Normally, a forward-based approach involves the
formulation of a mathematical model for the structure to
demonstrate the structural behaviour and establish interre-
lations between the damage parameter and changes in struc-
tural dynamic characteristics such as natural frequencies and
mode shapes. Kim and Stubbs [1] studied the effect of crack
parameters on natural frequencies to decide the crack occur-
rence in thin cracked beams.Dimarogonas andPapadopoulos
[2] derived a local stiffness matrix at the crack location to
investigate the change in dynamic properties such as nat-
ural frequencies and mode shapes. Qian et al. [3] formulated
the stiffness matrix of the beam containing an open-edge
crack by integrating over stress intensity factors. Derived
from the work of Qian et al. [3], Nahvi and Jabbari [4]
identified the crack location and estimated the damage sever-
ity in a cantilever beam. Chondros et al. [5] developed a
continuous cracked beam vibration theory to analyse lateral
transverse vibration of the cracked Euler–Bernoulli beam
with single-edge or double-edge open cracks. Orhan [6] stud-
ied the free and forced vibration analysis of a single- and
two-edge cracked cantilever beam to describe the interde-
pendency of natural frequencies to crack location and crack
depth. Saavedra and Cuitino [7] used strain energy density
function as an approach to deducing a finite element stiff-
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ness matrix to study the dynamic response of different beams
containing a transverse crack. Based on their work Zheng
et al. [8] obtained natural frequencies and mode shapes of
a cracked beam using finite element method by consider-
ing the stiffness matrix of an intact beam. Rizos et al. [9]
modelled the crack using a rotational spring to predict the
damage site and its severity in a cantilever beam. Extend-
ing the work of Rizos et al. [9], Gomes and Almeida [10]
developed an analytical dynamic model for cracked beam to
predict natural frequencies variations for several damage sce-
narios along the beam with various end conditions. Behzad
et al. [11] presented a vibration-based algorithm for detec-
tion of multiple edge cracks in a cantilever beam. In this
work, the crack was modelled as massless rotational spring
in order to demonstrate a relationship between natural fre-
quencies, crack locations and stiffness of equivalent springs.
Nguyen [12] used mode shapes of a cracked beam to deter-
mine the depth and position of the crack. In this study, the
finite elementmethodwas applied to analyse themode shapes
of a cracked beam using the 3D beam element that helps to
inspect a small crack by using the projections of the mode
shapes on appropriate planes.

In the last decades, inverse approach algorithms have
gained popularity and proved to be efficient in solving crack
detection problems using vibration signatures that are dis-
cussed in the following literatures. Sahoo andMaity [13] pro-
posed a hybrid neuro-genetic algorithm to determine crack
parameters in beam and frame structures by investigating the
variations in natural frequencies and strains. Dash and Parhi
[14] designed a smart hybrid system for detecting cracks
in a cantilever beam. In this work, the calculated natural
frequencies and mode shapes are used to design and train
the hybrid genetic algorithm and fuzzy logic controller in
order to predict the crack location and the crack depth. Aydin
and Kisi [15] presented a fault diagnosis method which uses
beam properties, beam end conditions and vibration para-
meters as inputs to a neural network (NN) to predict the
location and severity of cracks. Vakil-Baghmisheh et al. [16]
implemented a genetic algorithm to estimate crack location
and depth in beam-like structures. Rong and Shun [17] suc-
cessfully implemented an adaptive real-parameter genetic
algorithm combined with simulated annealing to identify
cracks in beam-like structures for different boundary condi-
tions and damage situations. Khaji and Mehrjoo [18] imple-
mented a genetic algorithm as an inverse approach to esti-
mating depth and location of cracks in beam-like structures
from the knowledge of natural frequencies and modeshapes.
More recently, there is a growing preference for another
population-based evolutionary optimization technique
known as differential evolution (DE) [19] over genetic algo-
rithm (GA) in solving crack detection problems. Casciati
[20] applied differential evolution algorithms to detect dam-
age occurrence by comparing stiffness matrices of damaged

and undamaged cantilever beams. The drawbacks of above-
discussed algorithms are slow and premature convergence
towards globally optimal solution. The particle swarm opti-
mization (PSO), first proposed by Kennedy and Eberhart
[21], is a novel population-based global optimization tech-
nique motivated by an intelligent social system. Recently
PSO has been successfully implemented to many damage
detection problems [22–28].

In this paper, an alternative technique is proposed to the
crack detection problem using a modified PSO (MPSO).
The proposedMPSOemploys a time-dependent search space
squeezing strategy to deal with inequality constraints and to
improve the convergence speed. The proposed MPSO has
two advantages over the dynamic search space reduction
strategy [29]. The first one is that the margins by which the
reduction in the search space from both the sides of problem
variables (i.e., crack location and crack depth) takes place,
depend upon the iteration number, unlike the predetermined
step size considered in the dynamic search space reduction
strategy [29]. The second advantage is that the boundary of
the search space is determined from the relative distancemea-
sured from the global best position. To examine the potential
of the proposed MPSO, the crack identification problem was
investigated and the results obtained compared with those
obtained by using DE.

In this paper, the Cracked beam system modelling is pre-
sented in the following section, while an inverse approach for
the crack identification problem is described in Sect. 3. The
analysis of modified time-dependent computational search
space squeezing strategy is presented in Sect. 4. The exper-
imental setup and the results thereby obtained are set forth
in Sect. 5. The results obtained by means of numerical sim-
ulations are discussed in Sect. 6. The paper is concluded in
Sect. 7.

2 Cracked Beam System Modelling

A cantilever beam of length L , height T , width W , and
a transverse open-edge full-width crack of depth b1, at a
variable position Lc is shown in Fig. 1. The presence of a
transverse surface crack introduces local flexibility which
influences its dynamic performance of the structure. The
coefficients of the flexibility matrix are expressed by the
stress intensity factors. The relationship between the strain
energy release rate J and stress intensity factors, GIi , at the
crack section is expressed by Eq. (1).

J = 1

E
(GI1 + GI2)

2 (1)

where GI1 and GI2 are stress intensity factors for opening
mode I due to loads P1 and P2, respectively. These factors
are expressed by [30]:
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Fig. 1 Cantilever beam with a
crack at Lc. L is the length of
the beam; b1 is the crack depth;
T is the beam height; S1 and S2
are the longitudinal vibrations;
V1 and V2 represents the
transverse vibrations
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The local stiffness matrix can be obtained by taking the
inverse of the flexibility matrix as given by Dimarogonas
and Papadopoulos [2].

K =
[
K11 K12

K21 K22

]
=

[
C11 C12

C21 C22

]−1

2.1 System Equations for Bending Vibration

The free vibration of an Euler–Bernoulli beam with a con-
stant rectangular cross section is given by the following dif-
ferential equations as:

EI
∂4V

∂x4
+ ρA

∂2V

∂t2
= 0 (2)

(
E

ρ

)
∂2S

∂x2
= ∂2S

∂t2
(3)

Equation (2) represents for transverse vibration, and Eq. (3)
represents for longitudinal vibration. Where S and V rep-
resent the longitudinal and transverse displacements; ρ is
the density; and A is the cross-sectional area of the beam.
Equations (2) and (3) hold good for the two segments of the
cracked beam.

The normal functions for the cracked beammodel (Fig. 1)
in non-dimensional form for both longitudinal and bending
vibration in steady state can be expressed by:

V 1(x)= B1 cosh
(
Hvx

) + B2 sinh
(
Hvx

)
+ B3 cos(Hvx) + B4 sin

(
Hvx

)
(4a)

V2 (x) = B5 cosh
(
Hvx

) + B6 sinh
(
Hvx

)
+ B7 cos

(
Hvx

) + B8 sin
(
Hvx

)
(4b)

S1 (x) = B9 cos
(
Hsx

) + B10 sin
(
Hsx

)
(4c)

S2 (x) = B11 cos
(
Hsx

) + B12 sin
(
Hsx

)
(4d)

where

x = x

L
; S = S

L
; V = V

L
; α = Lc

L

Hs =
(

ωL

Ds

)1/2

; Ds =
(
E

ρ

)1/2

;

Hv =
(

ωL2

Dv

)1/2

; Dv =
(
EI

μ

)1/2

; μ = Aρ

The Bi , (i = 1, 12) are constant coefficients that can be
determined from the boundary conditions.

Geometric natural boundary conditions at both ends are:

S1(0) = 0; V1(0) = 0; V
′
1(0) = 0 (5a)

S
′
2(1) = 0; V

′′
2(1) = 0; V

′′′
2 (1) = 0 (5b)

Compatibility conditions are introduced to impose continuity
of displacement, bendingmoment and shear forces of the two
segments at the crack location, x = Lc. These conditions are
given by:

S1 (α)= S2 (α) ; V 1 (α)=V 2 (α) ; V1
′′
(α)=V2

′′
(α) ;

V1
′′′

(α)=V2
′′′

(α) (5c)

The existence of the difference in the slopes at the crack
location imposes additional equilibrium conditions of force
balance and moment balance are given by the following rela-
tions in termsof local stiffnessmatrix, K of the crackedbeam.

AES
′
1 (α) = K11

(
S2 (α) − S1 (α)

)
+ K12

(
V2

′
(α) − V1

′
(α)

)

⇒ N1N2S
′
1 (α) = N2

(
S

′
2 (α) − S

′
1 (α)

)
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+ N1

(
V

′
2 (α) − V

′
1 (α)

)
(5d)

EIV
′′
1 (α) = K21

(
S2 (α) − S1 (α)

)
+ K22

(
V

′
2 (α) − V

′
1 (α)

)

⇒ N3N4V
′′
1 (α) = N3

(
S2 (α) − S1 (α)

)
+ N4

(
V

′
2 (α) − V

′
1 (α)

)
(5e)

where

N1= AE

LK11
; N2= AE

K12
; N3= EI

LK22
and N4= EI

L2K21

The normal functions, Eq. (1), and the boundary conditions
as mentioned above, yield the characteristic equation of the
system as |�| = 0, where � is a 12 × 12 matrix whose
determinant is a function of natural circular frequency, ω;
the non-dimensional location of the crack, α; and the local
stiffness matrix, K , which in turn is a function of the non-
dimensional crack depth, β = b1

T . The above theoretical
study was used to determine the changes in natural frequen-
cies of a beam due to a crack placed at a specific location and
possessing a known depth.

3 An Inverse Approach for Crack Identification

As discussed in the previous sections, determination of the
changes in the natural frequencies of beams from a given
value of crack location and crack depth is a straightforward
task. The objective of the inverse approach is to estimate the
unknown crack location and its depth iteratively, using an
optimization algorithm that results in a negligible difference
between the actual and the estimated natural frequencies.
The solution of the present inverse problem is achieved by
minimizing the objective function expressed by:

min f (l, d) =
n∑

i=1

∣∣∣ϕi
(
f di − f ei

)∣∣∣ (6)

Subject to the constraints 0 < b1 < T and 0 < Lc < L .
In this equation, ϕi is the ith weighting factor; f di is the

i th desired natural frequency of the cracked beam; f ei refers
to the i th natural frequency estimated from the algorithm
and n is the number of natural frequencies used to evaluate
the objective function. In the present work, the first three
natural frequencies of the beam are used as inputs to the crack
detection problem to evaluate the objective function. The
value ofweighting factor is assumed to be 1/ i [20] in order to
assign greater degree of importance to the lowermodes. In the
present study, a modified PSO (MPSO) has been developed
and used for crack identification. In the following section,

a brief description about PSO and the proposed MPSO is
presented.

3.1 Methodologies

3.1.1 Particle Swarm Optimization

Particle swarm optimization (PSO) proposed by Kennedy
and Eberhart [21] is an evolutionary optimization technique,
motivated by the social interaction of animals such as bird
flocking, fish schooling and swarm theory. PSO utilizes a
population-based global search procedure, in which each
individual is treated as particles of the population to share
information among them, which improves the efficiency of
the search process to reach at the global optimum.

In the PSO with N particles, each particle explores a pos-
sible solution in a D-dimensional problem search space with
the position vector and velocity vector of particle i at the kth
iteration represented as Xi (k) = [xi1(k), xi2(k), . . ., xiD(k)]
and Vi (k) = [vi1(k), vi2(k), . . ., vi D(k)]. Each dimension in
D-dimensional search space corresponds to a problem vari-
able in a function being optimized. The updated velocity and
position of particle i at (k+1)th iteration are modified under
the following equation in the PSO algorithm:

vi j (k + 1) = w × vi j (k) + c1 × rand1

× [pbesti j (k) − xi j (k)] + c2 × rand2

× [gbest j (k) − xi j (k)] (7)

xi j (k + 1) = xi j (k) + vi j (k + 1) (8)

for i = 1, 2, . . ., N ; j = 1, 2, . . ., D, where c1 (cognitive
parameter) and c2 (social parameter) are known as accelera-
tion coefficients, that tunes the relative proportion of cogni-
tive and social interactions to drag particle towards pbest and
gbest position. In this paper, the acceleration coefficients are
updated using the following relations:

c1 = c1i − (c1i − c1 f ) ×
(

k

MAX_ITER

)
(9)

c2 = c2i + (c2 f − c2i ) ×
(

k

MAX_ITER

)
(10)

where c1i ; c1 f ; c2i ; and c2 f are initial and final values of cog-
nitive and social components of acceleration factors, respec-
tively. In the above equation, k is the current iteration and
MAX_ITER is the maximum number of allowable iterations.

In the present work, the inertia weight parameter w is
expressed as a function of the iteration number. The initial
value ofw is set towmax and reduced linearly towmin accord-
ing to:

w = wmax − (wmax − wmin) ×
(

k

MAX_ITER

)
(11)
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Vector pbesti (k) = [pbesti1(k), pbesti2(k), . . . , pbe
sti D(k)] is the best previous position achieved by the ith
particle, which is called as personal best (pbest) position,
while the position of the best particle explored by the entire
population is represented as the global best (gbest) posi-
tion, which is denoted by the vector gbest (k) = [gbest1(k),
gbest2(k), . . . , gbestD(k)]

The parameters rand1 and rand2 are two distinct random
numbers in the range [0,1].

For the present minimization optimization problem,

pbesti (k)=
{
xi (k)
pbesti (k−1)

if f [xi (k)]< f [pbesti (k−1)]
if f [xi (k)]> f [pbesti (k−1)]

4 Analysis of Modified Time-Dependent
Computational Search Space Squeezing Strategy

In the conventional PSO, the particle always covers thewhole
search area, thus increasing the computing time needed to
reach a global optimum. Therefore, intelligent selection of
the search space is desirable in order to improve convergence
speed and to ensure a better performance of the algorithm by
avoiding the solution being trapped in local optima. In the
present investigation, the search space is readjusted based on
the relative distance between gbest, lower and upper limits of
the problem variables (i.e, crack location and crack depth).
The limits of crack location and crack depth at the (k + 1)th
iteration are determined as follows:

x j,max(k + 1) = x j,max − (x j,max − gbest j (k))

× k

MAX_I T E R
(12)

x j,min(k + 1) = x j,min + (gbest j (k) − x j,min)

× k

MAX_I T E R
(13)

x j,max and x j,min are themaximumandminimum limits of the
problem variables in the computational domain of the search
space. The application ofMPSOalgorithm to the crack detec-
tion problem is described in the following section. The crack
detection procedure starts with N number of particles with
the position vector x j of each particle which is described
by the randomly generated unknown pairs of crack loca-
tion and crack depth. By utilizing the concept of squeezing
of computational search domain, the optimal pairs of crack
location and crack depth could be obtained by evaluating the
objective function, i.e., Eq. (6) until the stopping criterion is
met.

The convergence criterion is defined as the computational
error of 10−3 or a predefined number of iterations is
reached.

Yes

Start

Input parameters of MPSO 

wmax,wmin,C1i, C1f, C2i and C2f

Initialize particles of population with random values 

Initialize iteration counter k=0 

Determine pbest, gbest and initialize vi

Stopping 
criteria 

No 

Update the iteration as k=k+1 

Update velocity and position 

for each particle using (7) and 

Evaluate objective function for 

each particle using (6) 

Update pbest and gbest

Activate the search space  squeezing 
strategy using (12) and (13)

Yes 

Print the optimal values of crack 
location and depth 

 End

Fig. 2 Flow chart of the proposed MPSO algorithm

4.1 Implementation of MPSO for Crack Identification
Problem

The flow chart of proposedMPSO is illustrated in Fig. 2. The
steps followed for solving crack identification problem using
MPSO algorithm are as follows.

Step 1Crack location and crack depth, the decision variables
in the crack identification problem are represented with the
position of particles by satisfying the constraints of each
variables. Initial position of particle i is created randomly
as follows

xi j = x j,min + r × (
x j,max − x j,min

)
(14)

where r is a random number between 0 and 1.
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1. Cantilever beam specimen   

2. Accelerometer    

 3. Vibration analyzer   

 4.  Vibration indicator   

5. Distribution box  

 6.  Function generator   

7.  Power supply  

8. Power amplifier   

  9.    Vibration exciter   

10.    Concrete foundation     
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Fig. 3 Schematic block diagram of experimental setup for cantilever
beam

Step 2 Evaluate the objective function (fitness function) of
individual particle from Eq. (6) to obtain the optimal pairs
of crack location and crack depth by minimizing it.
Step 3 Evaluation of fitness values using Eq. (6) for the
initial particles of the swarmare set as the initialpbestvalues
of the particles. The best evaluation value among all the
pbest values is denoted as gbest.
Step 4 Update velocity by Eq. (7) and position by Eq. (8).
Step 5 Evaluate the fitness value of each particle according
to its updated position. Evaluation value of each particle is
compared with the previous pbest in order to update pbest.
Then find gbest position among particles.
Step 6 Activate the squeezing strategy to regulate the upper
and lower boundaries of the particles in each iteration rela-
tive to gbest position using Eqs. (12) and (13).
Step 7 The algorithm will be terminated if the stopping
criterion is reached, otherwise it is continued from Step 4.

5 Experimental Studies

Toverify the integrity of the proposed crack detectionmethod
and to figure out the unavoidable errors associated with mod-
elling andmeasurements, several experiments have been con-
ducted in the laboratory. Figure 3 shows a schematic diagram
of the experimental setup and its description. A cracked can-
tilever beam has been rigidly clamped to a concrete founda-
tion base. The free end of the beam is excited with a vibration
exciter. The vibration exciter is excited by the signal from the
function generator. The signal is amplified by a power ampli-
fier before being fed to the vibration exciter. The amplitudes
of vibration of the non-cracked and the cracked cantilever
beams are taken by using an accelerometer and are fed to the
vibration indicator for analysis.

Several tests were conducted using the experimental setup
on aluminium beam specimens (800 × 50 × 6) mm with
a transverse crack to determine the natural frequencies for

Table 1 Measured natural frequencies for six experimental cases

Crack Natural bending frequencies (Hz)

Loc. (mm) Dep. (mm) f1 f2 f3

50 1.2 7.281 45.906 127.523

50 1.8 7.234 45.465 127.263

50 2.4 7.157 45.123 127.041

300 1.2 7.304 45.765 127.857

300 1.8 7.288 45.577 127.177

300 2.4 7.255 45.239 126.627

different crack locations (i.e., 50mm, at 300mm from the
clamped end) and crack depths varying from 1.2 to 2.4mm
by a step of 0.6mm. The cracks were prepared by fine saw
cuts perpendicular to the longitudinal axis. This ensures that
the crack remains open during the vibrations. These speci-
mens are set to vibrate under the first, the second and the third
modes of vibration. Experimental results for frequencies of
transverse vibration at various locations along the length of
the beam are recorded by positioning the vibration pick-up
and tuning the vibration generator at the corresponding reso-
nant frequencies. At each step, the first three bending natural
frequencies of the cracked beams were measured. Table 1
gives the corresponding bending natural frequencies of the
cracked beams.

The accuracy of the suggested method to determine the
severity and the location of the damage was verified by com-
paring the natural frequencies of the damaged beam deter-
mined experimentally with the ones obtained through the
cracked beam model developed to evaluate the objective
function as discussed in Sect. 3.

6 Results and Discussion

6.1 Influence of the Crack on Vibration Characteristics

In this section, a method for solving the crack identifica-
tion problem by the modified particle swarm optimization
(MPSO) algorithm is discussed. The aim of this formulation
is to determine the crack location and the crack depth by
evaluating the objective function based on the natural fre-
quencies of the beam, which makes it necessary to carry out
the theoretical study prior to the optimization process in order
to estimate the natural frequencies of the beam for different
crack conditions.

In the present study, an aluminiumbeamwas used to deter-
mine the changes in natural frequencies for different crack
locations by means of an analytical method. The geometry
andmechanical properties of the beamwere the same for both
the analytical and the experimental study. These properties
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Table 2 Material properties and
geometry of
aluminium-alloy-2014-T4 beam

Young’s modulus, E Density, ρ Poisson’s ratio, μ Length, L Width, W Beam height, T

72.4GPa 2.8gm/cc 0.33 800mm 50mm 6mm

Fig. 4 Variation of relative
frequencies with location and
depth. a First mode of vibration,
b second mode of vibration,
c third mode of vibration
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are set forth inTable 2. Thefirst three relative natural frequen-
cies of a cracked beam at the relative crack locationα(Lc/L),
for a crack of constant depth β(b1/T = 0.2, 0.3, 0.4 and
0.5) are presented in Fig. 4. In this figure, it can be seen
that the relative frequency for the first mode of vibration
increases with respect to the relative position of the crack and
decreases with respect to the relative crack depth. While, for
the two other modes of vibration, minimum and maximum
relative frequencies occur at distinct crack locations. It is
also apparent from this figure, as well as from Fig. 5, that the
deeper the crack, the larger the drop in the relative natural
frequency.

The changes inmode shapes due to the presence of a crack
at a specific location are presented in Fig. 6. As it can be seen
in this figure, these changes increase with the severity of the
crack.
The natural frequencies obtained from the solution of the-
oretical study were used as input for the inverse analysis,
which is implemented by using MPSO. The computational
efficiency of this method is verified by comparing its results
with the ones obtained by using DE.

The control parameters selected for performance evalua-
tion of different strategies are described as follows:
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Fig. 5 First mode frequency variation with relative crack depth

For the MPSO, wmax = 0.9; wmin = 0.4; c1i = 2.0; c1 f
= 0.5; c2i = 0.5 c2 f = 2.0, size of population, N =
10;MAX_ITER = 100. Similarly, the control parameters for
DE are the scaling factor F = 0.5 and the crossover constant
CR = 0.8.

Two crack sizes at three different locations in the beam are
used in order to compare the performance of the proposed
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Fig. 6 Magnified view of jump in mode shape at the relative crack
location for first mode of vibration

Table 3 Theoretical crack cases and corresponding natural frequencies

Case
no.

Crack (mm) Natural bending frequencies (Hz)

Location Depth f1 f2 f3

1 No crack No depth 7.6829 48.1669 134.8128

2 200 1.8 7.6413 48.1360 134.248

3 400 1.8 7.6717 47.8427 134.812

4 600 1.8 7.6819 48.0418 133.933

5 200 2.4 7.6026 48.1259 133.726

6 400 2.4 7.6612 47.5604 134.812

7 600 2.4 7.6809 47.9422 133.115

MPSO and the DE. The natural frequencies for different
crack conditions generated from theoretical models are out-
lined in Table 3. Simulation results for four different crack
conditions are presented in this paper.

Figures 7 and 8 show the convergence trend of MPSO
and DE algorithms in solving the cracked beam model. It
is evident from the above figure that MPSO has the faster
convergence than DE in finding the optimal crack location
and crack depth.

The performance of distinct methods applied for crack
identification can be better compared by defining a rela-
tive percentage error that represents the difference between
actual and estimated values of crack parameters. This error
is defined as

%err j =
∣∣∣∣ xd, j − xe, j

xd, j

∣∣∣∣ × 100 (15)

This equation is thus used in order to compare the results
obtained by means of MPSO with those obtained by using
DE. The results obtained in such an analysis are set forth
in Table 4. It can be seen from this Table that the MPSO
performs better than DE, with the mean estimation errors
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Fig. 7 a andbConvergence characteristics ofMPSOandDEalgorithm
for crack case no. 2 and 5, respectively

for crack location and crack depth being equal to 0.053 and
0.058% forMPSOwhile reaching 0.251 and 0.418% forDE,
respectively.

The above study was based on the results obtained by
using theoretical formulations for the cracked beam. In the
following section, the results obtained by using MPSO are
compared with results obtained experimentally. These lat-
ter results were obtained by considering two distinct crack
locations with three different crack depths in the same test
specimen. The objective function was evaluated by com-
paring the experimentally measured frequencies with the
calculated ones. The results obtained in this way are set forth
in Table 5. Although the errors obtained by comparing the
theoretical results with the ones obtained experimentally are
larger than those presented in Table 4, it can be concluded
that MPSO performs better than DE.

This increase in relative errors may be put down to the
setup of the rigid support of the cantilever beam in the exper-
iment and to measurement errors. The mean errors for crack
location and crack depth obtained from the comparison with
the results obtained experimentally are equal to 8.76 and
8.78% for MPSO and 10.396 and 10.42% for DE, respec-
tively. From these results, It was evident that, for the same
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Fig. 8 a andbConvergence characteristics ofMPSOandDEalgorithm
for crack case no. 4 and 7, respectively

crack severity, the error decreases with the increase in the
distance of the crack location to beam support.

7 Conclusions

An inverse analysis of the crack identificationproblem in can-
tilever beams was examined by the application of a modified
PSO (MPSO) algorithm that maintains its original structure.
The squeezing strategy was incorporated in the PSO formu-
lation in order to reduce the search domain in each iteration,
thus accelerating the convergence speed for obtaining the
optimal solution. The vibration signatures of the cracked
beams are calculated by using the theoretical model. Rea-
sonable changes in natural frequencies due to the presence
of a crack are effectively used to identify structural dam-
age using PSO by minimizing an objective function based
on the residuals between the desired and the estimated nat-
ural frequencies. The analytical study and the experimental
investigation of a cracked cantilever beam were performed
to ensure the accuracy of the proposed MPSO. The depend-
ability of the proposed algorithm was investigated by com-
paring the results of the MPSO with the results obtained by
DE. The obtained results indicate the crack locations and
crack depths were more accurately determined by the pro-
posed algorithm than those obtained by DE. Comparisons
were carried out using both the theoretical and experimen-
tal results. Based on the present study, it can be concluded

Table 4 Error estimation for
crack location and depth
obtained from MPSO and DE

Exact value (mm) Predicted results (mm)

Loc. Dep. MPSO DE

Loc. % Error Dep. % Error Loc. % Error Dep. % Error

200 1.8 200.16 0.08 1.802 0.11 199.3 0.35 1.785 0.83

200 2.4 199.88 0.06 2.398 0.08 200.56 0.28 2.412 0.50

400 1.8 400.24 0.06 1.802 0.11 398.72 0.32 1.792 0.44

400 2.4 399.80 0.05 2.4 0 400.92 0.23 2.406 0.25

600 1.8 599.76 0.04 1.801 0.05 598.86 0.19 1.794 0.33

600 2.4 600.18 0.03 2.4 0 600.84 0.14 2.404 0.16

Table 5 Error estimation results
for crack location and depth in
experimental study

Exact value (mm) Predicted results (mm)

Loc. Dep. MPSO DE

Loc. % Error Depth % Error Loc. % Error Depth % Error

50 1.2 54.87 9.74 1.316 9.67 55.71 11.42 1.338 11.50

50 1.8 54.73 9.46 1.968 9.33 55.54 11.08 2.00 11.11

50 2.4 54.51 9.02 2.617 9.04 55.34 10.68 2.656 10.66

300 1.2 274.38 8.54 1.304 8.66 269.61 10.13 1.322 10.16

300 1.8 275.49 8.17 1.948 8.22 270.72 9.76 1.975 9.72

300 2.4 276.96 7.68 2.587 7.79 272.04 9.32 2.626 9.41
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that the proposed MPSO has the potential to be applied for
crack detection in various structures subjected to complex
loadings.

References

1. Kim, J.T.; Stubbs, N.: Crack detection in beam-type structures
using frequency data. J. Sound Vib. 259(1), 145–160 (2003)

2. Dimarogonas, A.D.; Papadopoulos, C.: Vibrations of cracked
shafts in bending. J. Sound Vib. 91, 583–593 (1983)

3. Qian, G.L.; Gu, S.N.; Jiang, J.S.: The dynamic behavior and crack
detection of a beam with a crack. J. Sound Vib. 138(2), 233–
243 (1990)

4. Nahvi, H.; Jabbari, M.: Crack detection in beams using exper-
imental modal data and finite element method. Int. J. Mech.
Sci. 47, 1477–1497 (2005)

5. Chondros, T.G.; Dimarogonas, A.D.; Yao, J.: A continuous cracked
beam vibration theory. J. Sound Vib. 215, 17–34 (1998)

6. Orhan, S.: Analysis of free and forced vibration of a cracked can-
tilever beam. NDT & E Int. 40(6), 443–450 (2007)

7. Saavedra, P.N.; Cuitino, L.A.: Crack detection and vibration behav-
ior of cracked beam. Comput. Struct. 79, 1451–1459 (2001)

8. Zheng, D.Y.; Kessissoglou, N.J.: Free vibration analysis of a
cracked beam by finite element method. J. SoundVib. 273(3), 457–
475 (2004)

9. Rizos, P.F.; Aspragathos, N.; Dimarogonas, A.D.: Identification
of crack location and magnitude in a cantilever beam from the
vibration modes. J. Sound Vib. 138(3), 381–388 (1990)

10. Gomes, H.M.; Almeida, F.J.F.: An analytical dynamic model for
single cracked beams including bending, axial stiffness, rota-
tional inertia, shear deformation and coupling effects. Appl. Math.
Model. 38, 938–948 (2014)

11. Behzad, M.; Ghadami, A.; Maghsoodi, A.; Hale, J.M.: Vibration
based algorithm for crack detection in cantilever beam containing
two different types of cracks. J. Sound Vib. 332, 6312–6320 (2013)

12. Nguyen, K.V.: Mode shapes analysis of a cracked beam and its
application for crack detection. J. Sound Vib. 333, 848–872 (2014)

13. Sahoo, B.; Maity, D.: Damage assessment of structures using
hybrid neuro-genetic algorithm. Appl. Soft Comput. 7, 89–
104 (2007)

14. Dash, A.K.; Parhi, D.R.: Analysis of an intelligent hybrid system
for fault diagnosis in cracked structure. Arab. J. Sci. Eng. 39, 1337–
1357 (2014)

15. Aydin, K.; Kisi, O.: Damage detection in Timoshenko beam
structures by multilayer perceptron and radial basis function net-
works. Neural Comput. Appl. 24, 583–597 (2014)

16. Baghmisheh, V.; Taghi, M.; Peimani, M.; Sadeghi, M.H.; Ettefagh,
M.M.: Crack detection in beam-like structures using genetic algo-
rithms. J. Appl. Soft. Comput. 8, 1150–1160 (2008)

17. Rong, H.S.; Shun, H.F.: Improving real parameter genetic algo-
rithmwith simulated annealing for engineering problem.Adv. Eng.
Softw. 37(6), 406–418 (2006)

18. Khaji, N.;Mehrjoo,M.: Crack detection in a beamwith an arbitrary
number of transverse cracks using genetic algorithms. J.Mech. Sci.
Technol. 28(3), 823–836 (2014)

19. Storn, R.; Price, K.: Differential evolution: a simple and efficient
heuristic for global optimization over continuous spaces. J. Global
Optim. 2(4), 341–359 (1997)

20. Casciati, S.: Stiffness identification and damage localization
via differential evolution algorithms. Struct. Control Health
Monit. 15, 436–449 (2008)

21. Kennedy, J.; Eberhart, R.: Particle swarm optimization. IEEE 4,
1942–1948 (1995)

22. Samanta, B.; Nataraj, C.: Use of particle swarm optimization
for machinery fault detection. Eng. Appl. Artif. Intell. 22, 308–
316 (2009)

23. Begambre, O.; Laier, J.E.: A hybrid Particle Swarm Optimization–
Simplex algorithm (PSOS) for structural damage identifica-
tion. Adv. Eng. Softw. 40, 883–891 (2009)

24. Kang, F.; Li, J.; Xu, Q.: Damage detection based on improved
particle swarm optimization using vibration data. Appl. Soft Com-
put. 12, 2329–2335 (2012)

25. Baghmisheh,V.M.T.; Peimani,M.; Sadeghi,M.H.; Ettefagh,M.M.;
Tabrizi, A.F.: A hybrid particle swarm-Nelder-Mead optimization
method for crack detection in cantilever beams. J. Appl. Soft Com-
put. 12, 2217–2226 (2012)

26. Mohan, S.C; Maiti, D.K; Maity, D.: Structural damage assessment
using FRF employing particle swarm optimization. Appl. Math.
Comput. 219, 10387–10400 (2013)

27. Vosoughi, A.R.; Gerist, S.: New hybrid FE-PSO-CGAs sensitiv-
ity base technique for damage detection of laminated composite
beams. Compos. Struct. 118, 68–73 (2014)

28. Perera, R.; Fang, S.E.; Ruiz, A.: Application of particle swarm
optimization and genetic algorithms to multiobjective damage
identification inverse problems with modeling errors. Mecca-
nica 45, 723–734 (2010)

29. Park, J.B.; Lee, K.S.; Shin, J.R.; Lee, K.Y.: A particle swarm
optimization for economic dispatch with non-smooth cost func-
tions. IEEE Trans. Power Syst. 20(1), 34–42 (2005)

30. Tada, H.; Paris, P.C.; Irwin, G.R.: The Stress Analysis of Cracks
Hand Book. Del Research Corp., Hellertown (1973)

123


	A Modified Particle Swarm Optimization Technique for Crack Detection in Cantilever Beams
	Abstract
	1 Introduction
	2 Cracked Beam System Modelling
	2.1 System Equations for Bending Vibration

	3 An Inverse Approach for Crack Identification
	3.1 Methodologies
	3.1.1 Particle Swarm Optimization


	4 Analysis of Modified Time-Dependent Computational Search Space Squeezing Strategy
	4.1 Implementation of MPSO for Crack Identification Problem

	5 Experimental Studies
	6 Results and Discussion
	6.1 Influence of the Crack on Vibration Characteristics

	7 Conclusions
	References




