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Abstract Cardiovascular disease is a serious threat to
human life, especially when a sudden attack occurs, so
real-time patient monitoring is crucial. Recent advances in
health care and technology have led to equipment such
as mobile micro-electro-mechanical systems, which can be
used for more accessible public healthcare services. Electro-
cardiogram (ECG) data are traditionally used to investigate
and monitor heart activities. However, the necessary elec-
tronic logic tags and (wireless) signal transmissions in a
mobile healthcare device are susceptible to noise, which
can result in false interpretations. Consequently, this study
proposed a novel, low-complexity method for generating
an optimized ECG wave suitable for mobile architecture.
We first apply a bi-quad, high-pass filter to adjust base-
line drifts. Then, a Savitzky–Golay filter smoothes the raw
ECG, andmovingvariance and integral filterswith thresholds
are used to determine the QRS complex. We compared the
results of the proposed technique to those from the moving
average, Savitzky–Golay, PRASMMA, and Pan–Tompkins
algorithms, using the well-known QT and MIT-BIH data-
bases, and human subjects. The method was implemented
on a mobile device integrating an open ECG platform as a
prototype for real-time ECG monitoring systems.
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1 Introduction

Approximately 17 million people suffer from cardiovascu-
lar disease every year. This includes heart attack and stroke
patients, but excludes patients requiring periodic treatments
[1]. Most severe cases (including those that result in death)
are due to a sudden attack, where the patient did not receive
aid on time.

Recent advances in computing and electronic devices have
been integrated into healthcare environments and play an
important role in real-time health monitoring, prevention,
and treatment [2,3]. In particular, micro-electro-mechanical
systems have resulted in accessible and affordable medical
equipment that performs well and is portable. Examples of
such equipment include body sensors [4].

Advances in mobile networking technologies have led to
an increase in mobile (smart) phones at ever-shrinking costs.
These technologies can providemore functionality, including
open systems such as Android [5]. This means that mobile
phones can be integrated with healthcare sensors [6–9].

Electrocardiogram (ECG) signals generated from the
human heart are frequently used for investigations and
monitoring. They can be used to monitor abnormal heart
functions [10–12]. Several medical and research companies
have focused on improving sensing equipment such as ECG
sensor tags and ECG recognition processors [13–15].

Although the sensing capabilities of ECG sensor tags and
acquisition models have improved, electronic, thermal, and
transmission noises can be introduced when the data are
transmitted wirelessly (e.g. from a portable device). Like-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13369-015-1658-1&domain=pdf


2504 Arab J Sci Eng (2015) 40:2503–2514

Fig. 1 Example of an ECG waveform (Q, R, S, and T waves)

wise, the waveform can be affected by human behaviours
and activities that can electrically interfere with the ECG.
These issues may lead to medical misinterpretations.

Electrocardiogram waves are generally represented by
their QRS complex. This is the name for the three graphical
deflections (excluding the P and T waves) that are the most
visually obvious portions of the heartbeat. The QRS com-
plex corresponds to the depolarization of the right and left
ventricles of the heart. An example ECG waveform is shown
in Fig. 1. Typically, there are five deflections in an ECG,
referred to as waves P to T . The Q, R, and S waves occur in
rapid succession. The Q wave is a downward deflection after
a P wave. Next, the R wave is an upward deflection, and
the S wave follows as a downward deflection. The T wave
follows the S wave [11,13,16].

ECG-based systems have several components including
design optimization [17,18], ECG pre-processing [19], and
ECG analysis and classification [12,13,20]. However, we
focused on two issues: detecting the ECG QRS complex and
reducing the noise in real-time applications.

To achieve these goals, we considered three facets:
(1) improving the noise reduction techniques, i.e. using a
Savitzky–Golay filter [21,22] instead of the traditional mov-
ing average [23]; (2) detecting the QRS complex period for
medical diagnoses using the moving variance and integral
with thresholds; and (3) a low-complexity implementation
on mobile ECG platforms, i.e. Android OS.

The remainder of this paper is organized as follows. In
Sect. 2, we present an overview of ECG noise types. We
provide a brief survey of recent proposals regarding QRS
complex detection with noise reduction in Sect. 3. In Sect. 4,
we present our low-complexity, real-time noise reduction

Fig. 2 Example of muscle and motion noise [24]

method for detecting QRS complexes. Then, we discuss
the detailed mobile architecture implementation in Sect. 5
and the performance of our method in Sect. 6. Finally, our
conclusions and suggestions for future work are given in
Sect. 7.

2 Overview of ECG Noise Types

To conduct a non-invasive ECG recording, several electrodes
are attached to different parts of the body. The recording is
typically exposed to various noises or artefacts, depending
on the frequency ranges. The noise can be divided into two
classes: persistent and burst [19].

Persistent noise is correlatedwith the signals coming from
the electrodes and has a similar temporal distribution but
different intensity levels. These noises reside in a variety
of frequency bands (low-frequency, medium-frequency, and
high-frequency signals [26]). In this research, we considered
three types of noise by selecting intervals that contained pre-
dominantly baseline wander, muscle artefacts, and electrode
motion artefacts [24,27]. Examples of these noise types are
shown in Fig. 2.

Power-line noise is another type of persistent noise. It
typically originates from utility company equipment and is
caused by sparking or arcing across power-line-related hard-
ware or by alternating currents between 50 and 60 Hz [25].
An example of power-line noise is shown in Fig. 3. Power
lines can generate undesirable signals that sometimes over-
ride or competewith radio signals and can potentially directly
impact mobile ECG communications.

Burst noise is white Gaussian noise (WGN) that appears
on a subset of electrodes for a very short duration. This type
includes electrode pop noise, electrode motion artefacts, or
electro-surgical noise [28]. The frequency of this type of
noise is generally not well defined, although an example is
shown in Fig. 4 [19].
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Fig. 3 Example of power-line noise [25]

Fig. 4 Example of burst noise [19]

3 Related Work

Several different approaches have been proposed to miti-
gate the effects of noise and improve the QRS complex. The
aim of these methods is to identifying the individual terms
of the ECG signals, i.e. Q, R, S, T , and P . For example,
Pan and Tompkins [29] proposed a QRS complex detection
method called the Pan–Tompkins algorithm. The algorithm
includes a pre-processing step and can be divided into six
main steps: band-pass filter (low- and high-pass), deriva-
tion, squaring function, moving window integration, fiducial
mark, and thresholds. It is used as a standard for other QRS
complex detection methods.

In 2010, Zeraatkar et al. [30] proposed a hybrid technique
for QRS complex detection to reduce artefacts from vari-
ous sources. They incorporated baseline drift removal and
notch filtering techniques. Akshay et al. [17] applied an un-
decimated wavelet transform to remove ECG noise, resulting
in a higher accuracy than traditional discrete wavelet trans-
form methods. Lina and Xinhua [31] used a compressed
wavelet variant coefficientwithwavelet threshold de-noising.

In 2012, Lewandowski et al. [32] introduced a robust, real-
time, QRS complex detection method for noisy applications.

They used the modified curve length with adaptive threshold
derived from themean, standard deviation, and average peak-
to-peak intervals.

Similarly, Changmok et al. [33] implemented a QRS com-
plex detection algorithm for wearable ECG equipment, using
proportional derivative control to eliminate small fluctuations
of the QRS complex and avoid falsely detecting noise. Addi-
tionally, Arafat et al. [34] applied a smoothing ECG signal
technique with a Gaussian function waveform to eliminate
signal wrinkles and smooth ECG waves.

Recently, Perlman et al. [35] proposed an algorithm for
enhancing foetal ECG signals using a modified linear com-
bination algorithm.

Although several methods have been proposed, most
approaches lack implementation details, are not appropri-
ate for mobile computing, and/or do not consider the effects
of noise on the accuracy of the QRS complex. Additionally,
previous publications have not investigated the complexities
of the algorithms so that they can be used practically.

Advances in mobile networking technologies have led
to increased portability and universal access to real-time
communications. Some researchers have considered integrat-
ing these technologies into ECG monitoring techniques. For
example, Gradl et al. [36] developed a mobile application
for monitoring ECG waves in real-time, using SHIMMER
sensors as a prototype. Chan et al. [37] also proposed a diag-
nostic model for mobile ECG monitoring combining mobile
phone and cloud services.

Recently, So-In et al. [8] developed architecture formobile
ECG recognition systems using a mobile phone integrated
with externalECGsensors. They alsoproposedback-end sys-
tems for further analysis that used a hybrid wavelet transform
to extract features. However, most of these developments do
not address noise reduction for wirelessly transmitted ECG
data.

4 Real-time ECG Noise Reduction for QRS
Complex Detection Systems

A measured ECG signal, particularly one that is transmitted
wirelessly, can be skewed or fluctuate because of various
noises. So we must reduce the noise in ECG signals to make
accurate interpretations.

To illustrate the proposed method, Fig. 5 shows an actual
ECGwave that is contaminatedbynoise (blue line). To aid the
medical diagnosis, moving average techniques are typically
applied to generate a readablewaveform. Figure 5 also shows
the result of applying a simple moving average (red line). In
this research, we applied the Savitzky–Golay filter [21,22]
(green line), which results in a waveform that is close to the
raw ECG.
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Fig. 5 ECG waveform with smoothing

Fig. 6 Proposed noise reduction method

However, this smoothing technique can eliminate QRS
complex information, especially the R-peak. This can then
lead to a misinterpretation during the medical analysis. The
peak rejection adaptive sampling modified moving average
(PRASMMA) [23] is a promising technique for dealing with
this issue. First, it estimates the inter-beat (RR) interval
within a given window. Next, the local maximum is deter-
mined to estimate the R-peak based on three sections (before,
during, and after the QRS complex). However, PRASMMA
has a limited accuracy. It estimates the subsequent ECG beat
using five RR intervals. This means that it can misinterpret
the beat if it does not have a consistent rate.

Thus, we also propose a method for deriving a read-
able ECG signal in the presence of various noise types. The
proposed method is illustrated in Fig. 6 and is called real-
time ECG noise reduction with a QRS complex detection
system (RT-ECG). It consists of five main submethods: high-
pass baseline drift removal, Savitzky–Golayfilter smoothing,
moving window variance, moving window integral, and
adaptive threshold decision.

Note that the traditional Pan–Tompkins method has six
main stages. Additionally, it does not include noise reduc-
tion procedures to avoid extra-computational complexity. To
achieve a low-complexity detection system that combines the
smoothing factor with the RT-ECG, we have combined the
second and third stages into amoving variance parameterized
for a moving window stage. We added the Savitzky–Golay

filter to smooth the noise, but only used a modified adaptive
threshold. These combinations result in an algorithm com-
plexity of O(5n).

• High-pass baseline drift removal. To support real-time
processing, we first apply a high-pass, bi-quad filter [38]
to remove the baseline drift from the ECG waveform. We
selected a cut-off frequency of 0.5 Hz for noise removal
purposes [39]. In the following equations, xn is the input,
yn is the output, f s is the sample frequency, and Q is the
cut-off frequency.

yn = a1xn + a2xn−1 + a3xn−2 − b1yn−1 − b2yn−2.

K = tan( fsπ)

a1 = 1

1 + K
Q + K 2

a2 = −2 × a1 (1)

a3 = a1

b1 = 2a1(K 2 − 1)

b2 = a1

(
1 − K

Q
+ K 2

)

• Savitzky–Golay filter smoothing. We used the Savitzky–
Golay smoothing filter. Equation (2) shows the smoothing
derivative for sample i in convolution form (S). That is,

S(i) =
k= m−1

2∑
k=− m−1

2

CkECGi+k |m + 1

2
≤ i

≤ n − m − 1

2
. (2)

Here, ECG is the signal in the time domain, C is a coef-
ficient, m is a quadratic polynomial constant, and n is the
sample size.

• Moving window variance. We calculated a variance (V )

over the window size (w) of sample i derived from the
Savitzky–Golay filter, as a key feature to determine the
QRS complex boundary. That is,

S̄ =
∑w−1

j=0
S(i − j)/w, (3)

V (i) =
∑

(S(i) − S̄)2/w. (4)

• Moving window integral. Given a variance, we applied a
moving window (M), a multiple of 0.06 by the sampling
rate, as a post-processing step to retrieve integral factor
(K ). That is,

K (i) = 1

M
[V (i − (M − 1))

+ V (i − (M − 2)) + · · · + V (i)]. (5)

123



Arab J Sci Eng (2015) 40:2503–2514 2507

• Adaptive threshold decision. To ultimately determine the
QRS complex, we applied an adaptive threshold (T ) over
the integral factor as follows.

Y (i) =
{

S(i), K (i) < T (i)

ECG(i), K (i) ≥ T (i)
(6)

A(0) = MAX{K ( j) × C1}, j = {1, . . . ,WS}, (7)

A(i) = MAX{K (i − j) × C1}, j = {0, . . . ,WS},
T (1) = A(0), (8)

T (i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (i − 1) + (|A(i) − A(i − 1)| × C2)

|A(i) > A(i − 1)

T (i − 1) − (|A(i) − A(i − 1)| × C2)

|A(i) < A(i − 1)

T (i − 1)

|A(i) = A(i − 1).

Here, C1 is derived from the relationship between the noise
and maximum value of the variance (0.04 in this case). C2
is a constant derived from the training sampling frequency
(e.g. 0.05). WS denotes a predefined window sampling size.

Figure 7 shows an example ECG waveform transforma-
tion for each step, i.e. from baseline removal to applying
the smoothing and filter techniques. This figure illustrates
the noise reduction and QRS complex preservation methods.
Note that the proposed method achieves three goals. First, it
presents real-time detection with a limited number of sam-
ples. Second, it preserves the principal component of theQRS
complex. Finally, it is highly accurate with a low complexity.

5 Mobile System Architecture

The proposed method has six main modules when imple-
mented on an Android mobile phone [5], as shown in Fig. 8.

• Bluetooth thread: Thismodule receives the signal from the
ECG sensor tag and stores the raw ECG data into a buffer
based on a standard Bluetooth Android OS API [40]. The
data are then sent to the second module for fast signal
transmission to mitigate packet losses.

• Device control protocol (DCP) thread: With a streaming
ECG packet, this module is used to disaggregate the con-
trol signals from the data signal. In other words, the raw
ECG data are extracted into a suitable waveform format
for further interpretation, along with the control data.

• ECG noise reduction thread: This is a key module that
reduces the ECG noise. It applies QRS complex detection
functions to the raw ECG data from the DCP.

• GUI controller thread: After eliminating the noise, this
module interacts with the patient using external commu-
nications such as sounds or a display on the Android OS

mobile device. In the prototype, we used a canvas library
[40] to plot the ECG wave on a mobile phone screen.

• GPS and map processing thread: Thismodule functions as
a tracking and tracing device, recording a global position
(GPS if outdoors, or an embedded location from service
providers if indoors).
This information is used to display the current location of
the patient (using the built-in GPS on Android OS phones)
on a map (e.g. Google Maps). It notifies other parties (e.g.
an emergency unit) of the patient’s current location so that
help can be sent if necessary.

• Network streaming controller thread: This component is
the main interaction module (data transmitter) between
each component. Note that direct communication between
mobile devices is another possible solution [8,9].

The focus of this research was not the ECG sensor tag and its
transmission. However, as a practical prototype, these com-
ponents are generally based on e-health sensors using an
ATmega328 Arduino (16 MHz) board [41] optimized for
integration with mobile phone architectures. Figure 9 shows
a schematic of the controller. The platform is an embed-
ded INA321EA amplifier with a 10-bit ADC [41]. The ECG
sampling frequency was 250Hz (±2 ms data latency and
Bluetooth class 2 transmission for 4dBm power). Figure 10
shows an actual prototype of an ECG sensor tag and ECG
controller.

Figures 11 and 12 show an actual ECG signal illustration
on the screen of a Samsung Galaxy Nexus [5], before and
after applying the noise reduction technique.

Algorithm 1 shows the noise reduction algorithm for
detecting the QRS complex, starting with the current sample
reading from the Bluetooth buffer for the predefined sam-
pling and cut-off frequencies ( fs and Q). Next, we apply
the baseline removal process using a bi-quad filter (Line 1),
which causes a delay before computing the convolution form
of the sample using the Savitzky–Golay method (Lines 2–4).

Then, we calculate the variance and integral factors (Lines
5–13) before obtaining the threshold for making a final deci-
sion (Lines 14–21) and retrieving a shaped signal (Lines
22–24). Here,m = 15,w = 15, M = 20, and f s = 250. The
complexity of the algorithmwas O(5n). To support real-time
computation, the actual implementationwaswritten in native
C to produce a fast analysis (less than 1 ms per sample). As
shown in the algorithm, only 33 samples were required.

6 Performance Evaluation

In this section, we present the results of our evaluation to
show that the method performs well.
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Fig. 7 ECG waveform
transformation stages. a
Original ECG wave with noise.
b Step 1: ECG wave after
baseline drift removal. c Step 2:
ECG wave after smoothing
filter. d Step 3: ECG wave after
moving variance. e Step 4: ECG
wave after moving integral. f
Step 5: ECG wave after adaptive
threshold. g Output ECG wave
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Fig. 8 Mobile ECG architecture

6.1 Experimental Set-up

For comparison purposes, the test bed was a standard con-
figuration on a personal computer running the Windows 8
Ultimate operating system (64 bits): CPU Intel(R) Core(TM)
i7-3632QM CPU @ 2.20GHz, 8192 MB DDR3-SDRAM,
and 1 TB 7200 RPM Disk with MATLAB Toolbox [42]. We
selected a Samsung Galaxy Nexus [5] as the mobile phone
implementation platform because of its multi-functional
features, which include Bluetooth interfaces with e-health
sensor modules [41].

We were interested in evaluating two aspects of the
method: noise reduction and QRS complex precision. For
noise reduction, we intensively analysed the first sensor
(lead) of theMIT-BIHarrhythmia database [43] over 109,809
beats. Three techniques were compared with the proposed
system: simplemoving average (SMA) [23], Savitzky–Golay
[21], and PRASMMA [23]. Note that the Pan–Tompkins
algorithm [29,44] does not include a noise reduction step.

Fig. 10 Mobile ECG controller (prototype)

Two metrics are typically used to evaluate the accuracy in
the presence of noise, the signal-to-noise ratio (SNR), and
root-mean-square deviation (RMSD). These are defined as
[23]

SSNR =
(

Afilter

Anoise

)2

, (9)

RMSD =
√∑n

i=1

(
ECGcapture(i) − ECGfilter(i)

)2
n

. (10)

As discussed in [23], it is hard to determine the valid-
ity of a raw ECG without a doctor’s opinion. Thus, we
added various types of noise [19] to a raw ECG wave
(ECG + ECGnoise = ECGcapture) and then measured the
effectiveness of the algorithm by calculating the signal noise
with smoothing (ECGfilter) and ECGcapture. When ECGfilter

Fig. 9 e-Health sensor platform: schematic diagram [41]
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Fig. 11 Mobile phone screen
interface: original waveform

Fig. 12 Mobile phone screen
interface: waveform after noise
reduction

is close to ECG, the noise values should be close to the added
noise, which leads to a similar RMSD.

The five noise types (power line [25], baseline wander,
muscle (EMG) artefact, electrode motion artefact [24,27],
and burst [19])were combined (using nstdbgen tools [24,27])
and then varied by factors of 1 to 100. The SNR was used to
measure the signal over the noise in terms of the amplitude
(A).

We also acquired a rawECG from a human subject to eval-
uate the real-time performance of the prototype.We recorded
2500 beats in two postures (sitting and standing), similar to
[23]. Then, we used the peak SNR for our evaluations and
comparisons. There is an assumption that the noise is already
added in the ECG, and so this noise is approximately the
remaining signal after applying the filter.

To investigate the accuracy of the detected QRS complex,
we used a similar method to [45] for comparison purposes.

We used a standard database for evaluating algorithms that
measure QT and other waveform intervals in the ECG (the
QTDB data set) [46] derived from records 100, 102, 103,
104, 116, 117, 123, 221, 223, 230, 231, 232, and 233 of the
MIT-BIH arrhythmia database [43]. Therewere 1,100QTDB
beats in these records. Note that these records were verified
by experts to determine the correct QRS complexes. We also
added various noises, in the same way as the noise removal
investigation.

We used three metrics to evaluate the feature extraction
performance, QRSon, QRSoff , and Rpeak. We determined
mean values and standard deviations. Values closer to zero
represent a better precision than the database. Note that it
is difficult to determine the exact QRS, or even its inter-
val, as stated in [23]. So we only evaluated the PRASMMA,
Pan–Tompkins, and RT-ECG methods using 1,100 samples
from the QTDB database [24,43]. We selected the data set
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Algorithm 1: Noise reduction with QRS complex detection 
Input: current ECG samples (ecg_raw) from Bluetooth_buffer 
(i), fs, and Q (sampling and cut-off frequencies) 
Output: ECG_signal Y(i) 
1.  ecg_base(i)=a1×ecg_raw(i)+a2×ecg_raw (i-1)+a3×ecg_raw(i 
     -2)-b1×ecg_base(i-1)-b2 × ecg_base(i-2) //Step 1 
2.  for k=-(m-1)/2 to (m-1)/2  //Step 2 
3.  S(i) := C(k) × ecg_base(i); 
4.  end for 
5.  for j=0 to w      //Step 3 
6. Sbar(i) :=  Sbar(i) + S(i-j)/w; 
7.  end for 
8.  for j=0 to w     
9.  V(i) = V(i) + (S(j) - Sbar(i))^2/w   
10. end for 
11. for j=0 to M-1    //Step 4 
12. K(i) = K(i) + V(i-j)/M; 
13. end for 
14. A(i) = max(K(i-fs) × C1);   //Step 5 
15. if A(i) > A(i-1)  then 
16.  T(i) = T(i-1) + (abs(A(i) - A(i-1)) × C2); 
17. else if A(i) < A(i-1)  then 
18.  T(i) = T(i-1) - (abs(A(i) - A(i-1)) × C2); 
19. end if 
20. else T(i) = T(i-1); 
21. end if 
22. if K(i) < T(i)  then Y(i) = S(i); 
23. else Y(i) = ecg_base(i); 
24. end if

from Table 2.A: records from MIT-BIH arrhythmia data-
base, and Table 2.C: records fromMIT-BIH supraventricular
arrhythmia database excluding the first and final beat. The
public baseline Pan–Tompkins implementationwas provided
by Sedghamiz [44].

We also recorded a number of R beats using the three
algorithms, for 109,809 beats from the first MIT-BIH sensor
with various added noise. At this stage, we used five metrics
to evaluate the algorithms, that is, the total number of beats,
false positive (FP), false negative (FN), failed detection, and
accuracy [29], so that we could compare the performance to
the results of Pan andTompkins [29].Moreover,we evaluated
the same three algorithms against manually counted beats
from the rawECG from the human subject, for 2500 samples.

6.2 Experimental Results and Discussion

Figure 13 shows the SNR for various combined noises. The
SNR generally reduced exponentially as the noise increased.
The smallest difference between the signal after applying
the filter and the typical wave (capture) represented the best
performance (least error). Here, RT-ECG’s SNRwas the best,
followed by Savitzky–Golay, PRASMMA, and SMA.

Figure 14 shows the RMSD for various noise levels. In
general, the RMSD tended to increase with the noise. Similar
to figure 13, RT-ECG’ RMSDs are close to the typical wave
which represented the best performance because RT-ECG
preserved the QRS complex for the doctors’ investigations,
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followed by Savitzky-Golay, PRASMMA, and especially
SMA which smoothes the QRS period.

Table 1 shows the noise reduction results for the raw
human ECG during the two actions. RT-ECG had the small-
est RMSDs (0.31 and 0.15) and the highest SNRs (19.97 and
25.72) and PSNRs (29.82 and 35.15). PRASMMA’s SNR
and PSNR are lower but higher for RMSD. The performance
of Savitzky-Golay and SMA produced very similar results.

Table 2 shows the precision of the detected QRS com-
plexes based on the QTDB data set with noise. RT-ECG
generally outperformed PRASMMA (i.e. the means were
closer to zero).

Table 3 compares the calculated number of R beats from
theMIT-BIHdata for various noise levels. RT-ECGgenerally
performed best in terms of the FP, failed detection, and accu-
racy (99.98%), compared with Pan–Tompkins (99.96%),
followed by PRASMMA (99.79%). As stated in [29], poten-
tially misleading results are associated with abnormal beats
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Table 1 Noise reduction
performance (raw human ECG)
during two actions (sitting and
standing), in terms of the
RMSD, SNR, and PSNR

Algorithm ECG test 1 (sit) ECG test 2 (stand)

RMSD SNR PSNR RMSD SNR PSNR

SMA 0.37 17.97 23.45 0.26 23.20 28.20

Savitzky–Golay 0.36 17.24 22.77 0.27 22.99 27.97

PRASMMA 0.36 19.12 24.65 0.18 27.51 32.58

RT-ECG 0.31 19.97 25.72 0.15 29.82 35.15

Table 2 Feature extraction
results for the QTDB data set
(RT-ECG, PRASMMA, and
Pan–Tompkins)

Algorithm QRSon Rpeak QRSoff

RT-ECG # ann. beats 1100 1100 1100

μ ± σ (ms) 14.538± 13.98 −11.076±24.387 12.547±29.108

σ (samples) 3 6 7

PRASMMA # ann. beats 1100 1100 1100

μ ± σ (ms) 32.628±35.728 −11.946±44.411 −41.417±62.306

σ (samples) 9 11 16

Pan–Tompkins # ann. beats 1100 1100 1100

μ ± σ(ms) 28.135±15.454 −14.206±21.735 −39.848±40.029

σ (samples) 4 5 10

Table 3 Performance
measurement (number of beats)
for the MIT-BIH data (RT-ECG,
PRASMMA, and
Pan–Tompkins)

FP (beat) FN (beat) Failed
detection (beat)

Failed
detection (%)

Accuracy
(%)

RT-ECG 1986 370 2356 0.021455 99.97854

PRASMMA 12,737 10,775 23,512 0.214117 99.78588

Pan–Tompkins 2757 1956 4713 0.042920 99.95708

Table 4 Performance
measurement (number of beats)
for the raw human ECG
(RT-ECG, PRASMMA,
Pan–Tompkins, and manual beat
count)

Algorithm ECG test 1 (sitting) (beat) ECG test 2 (standing) (beat)

RT-ECG 2780 2657

PRASMMA 2650 2546

Pan–Tompkins 2780 (2 beat skewed) 2657 (4 beat skewed)

Manual beat count 2780 2657

or different human behaviours. This can lead to faster or
slower heart beat rhythms, if we only consider the static RR
interval.

To illustrate the practical performance of this method,
Table 4 shows the number of R beats based on the raw human
ECG. The results are similar to those from MIT-BIH. The
Pan–Tompkins and RT-ECG produced similar results and
were superior to PRASMMA. However, the Pan–Tompkins
prediction misinterpreted 2 and 4 beats (and PRASMMA
misinterpreted 100 beats).

7 Conclusions and Future Work

We developed a novel, real-time, low-complexity ECG
detection method with noise reduction. Our QRS complex
detection procedure is called the RT-ECG. To adjust the base-

line drift, we applied a bi-quad high-pass filter. Then,we used
the moving window variance and integral with thresholds to
detect the boundary of the QRS complex and applied the
Savitzky–Golay smoothing filter. These steps are necessary
for accurate medical diagnoses.

We compared the proposed method to other noise reduc-
tion and QRS complex detection techniques (SMA,
Savitzky–Golay, PRASMMA, andPan–Tompkins). RT-ECG
performed the bestwhen applied to the standardQTandMIT-
BIH databases with added noise and to a raw ECG acquired
from a human subject. RT-ECG generally outperformed the
other techniques, producing more accurate results and pre-
serving the QRS complex.

We implemented our method on a Samsung Galaxy
Nexus Android OS mobile phone for practicality. How-
ever, although the proposed technique has significantly
improved the performance, more investigations and analy-
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ses are required. For example, we should examine various
ECG patterns and abnormal behaviours.

Moreover, it may be possible to reduce noise caused by
electronic parts such as ECG sensor tags. Finally, to illustrate
the technique’s practical medical use, equipment with certi-
fied biosafety standards should be investigated and compared
with open-platform medical devices. This method shows
great promise, although there are aspects that need further
research.
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