
Arab J Sci Eng (2015) 40:1409–1425
DOI 10.1007/s13369-015-1626-9

RESEARCH ARTICLE - COMPUTER ENGINEERING AND COMPUTER SCIENCE

Development and Analysis of a New Cloudlet Allocation Strategy
for QoS Improvement in Cloud

Sourav Banerjee · Mainak Adhikari ·
Sukhendu Kar · Utpal Biswas

Received: 15 July 2014 / Accepted: 1 March 2015 / Published online: 13 March 2015
© King Fahd University of Petroleum and Minerals 2015

Abstract Cloud computing has emerged as a dominant
and transformational paradigm in Information technology
domain over the last few years. It begins to affect a multitude
of industries such as government, finance, telecommunica-
tions, and education. The Quality of Service (QoS) of a cloud
service provider is an important research field which encom-
passes different critical issues such as efficient load balanc-
ing, response time optimization, completion time improve-
ment, makespan improvement, and reduction in wastage of
bandwidth, accountability of the overall system. This paper
highlights a new cloudlet allocation policy with suitable load
balancing technique that helps in distributing the cloudlets
to the virtual machines (VMs) equally likely to their capac-
ity which makes the system more active, alive, and bal-
anced. This reduces the completion time of the cloudlet(s) as
well as reduces the makespan of the VM(s) and the host(s)
of a data center. Eventually, this proposed work improves
the QoS. The experimental results obtained using CloudSim

S. Banerjee (B)
Department of Computer Science and Engineering,
Kalyani Government Engineering College, Kalyani,
Nadia, India
e-mail: souravacademia@gmail.com

M. Adhikari · S. Kar
Department of Computer Science and Engineering,
IMPS College of Engineering and Technology,
Chandipur, Malda, India
e-mail: onlinemainak@yahoo.com

S. Kar
e-mail: haldia.sukh@gmail.com

U. Biswas
Department of Computer Science and Engineering,
University of Kalyani, Kalyani, Nadia, India
e-mail: utpal01in@yahoo.com

3.0.3 toolkit extending few base classes are compared and
analyzed with several existing allocation policies.

Keywords Cloud computing · Quality of Service (QoS) ·
Cloud service provider (CSP) · Virtual machine (VM) ·
Makespan · Data center (DC) · CloudSim 3.0.3 toolkit

1 Introduction

Nowadays, distributed environments have evolved from
shared community platform to utility-based models. The
latest among these is cloud computing [1–3]. It enables
the delivery of IT resources over the internet and follows
an On demand service model where the users are charged
based on their consumption. There are various types of
cloud service available such as [4]—Software as a Ser-
vice (SaaS), Platform as a Service (PaaS), Infrastructure
as a Service (IaaS), Database as a Service (DaaS), and
Identity as a Service (IdaaS). Moreover, they offer the
flexibility, elasticity, and scalability to acquire or release
resources varying configuration to the best suit of require-
ments of an application. This empowers the cloud users
(CUs) [5] and gives the registered users more control over
the resources. It also develops the innovative scheduling
techniques so that the distributed resources are efficiently
utilized.

Cloud computing [6,7] is a type of parallel and distrib-
uted system. It consists of collection of large-scale het-
erogeneous interconnected and virtualized [8,9] comput-
ers that are dynamically provisioned and presented as one
or more unified computing resources established through
negotiation between the service providers and customers.
It really brings the concept of physical location indepen-
dence to its true meaning. It provides the user with high end

123



1410 Arab J Sci Eng (2015) 40:1409–1425

infrastructure even when the user is at a location where such
infrastructure is impossible to setup. Although cloud com-
puting promises to eliminate obstacles due to management
of various computing resources and reduce the infrastructure
cost; however, the realization of cloud computing based on
mobile devices, namely mobile cloud is still in its early years
[10].

Cloud computing is thus a business package where com-
panies provide computation power, huge storage, and various
other software services to users through a common interface
without requiring the knowledge of location of the resources.
The background activities in this domain such as virtual
machine (VM) [9,11] allocation, load sharing, load balanc-
ing [12], process migration, and distributed shared memory
access are completely abstracted from theuser’s purview.The
end users or the customers can only access the cloud-based
applications [3,4] as well as infrastructure through logging in
to a cloud interface. The cloud service providers strive to give
the same or better service and performance than the software
programswhichwere installed locally on end-usermachines.
Binding or allocating cloudlet to VM in a heterogeneous
cloud environment is a challenging issue. To make the envi-
ronment more proficient, it requires an efficient allocation
policy. There are many cloudlet allocation policies [11] in
cloud computing which are available to allocate the cloudlets
to the different resources or VMs in an optimal way. The
cloudlet allocation policy plays a vital role to improve the
overall system performance minimizing the completion time
andmakespan [13,14] ofVMs aswell as the host(s). Not only
this, a proper allocation policymay lead to a good assignment
of cloudlets to the suitable resources or VMs that may even-
tually lead to improve the Quality of Service of the overall
system.

1.1 Our Contribution

In this paper, a new cloudlet allocation policy with a suitable
load balancing technique has been proposed that will allocate
a cloudlet from the sorted cloudlet_list [11] to a VM whose
load capacity is maximum among all the VMs present in the
vm_list [11]. Before allocating the next cloudlet to that VM,
the remaining load capacity (RLC) of the VM will be calcu-
lated and compared with the maximum load capacity (MLC)
of the other VMs in the vm_list. If the comparison returns
greater RLC value than the MLC of other VMs, then that
VM may continue with further cloudlet allocation until its
RLC value becomes lesser than the MLC value of the other
VMs. This process will continue until all the cloudlets in
cloudlet_list will get assigned into the VMs. This proposed
policy improves the makespan of the VMs as well as the
host present in a data center (DC). Hence, the system utiliza-
tion has been improved also. Various researches have been
undertaken, based on scheduling techniqueswith various net-

work scenarios and combinations of service classes [15]. The
CloudSim 3.0.3 simulation toolkit [5,16] has been used in
this work. The proposed policy has been simulated in this
environment and comparedwith two other existing allocation
policies. The first one is Round Robin Allocation (RRA) [11]
Policy which has already been implemented primarily, and
the second allocation policy was published in our previous
paper [17] named conductance algorithm (CA). The major
drawback of RRA and CA is larger makespan [14] of the
VMs as well as the host present in the DC. The proposed
cloudlet allocation policy provides better results than the
aforementioned policies. A detail description is presented in
Sect. 4.

1.2 Organization

The rest of the paper is organized as follows—Sect. 2
describes the Load Balancing in Cloud Environment. Sect. 3
describes different related works regarding allocation poli-
cies. The proposedwork has been emphasizedwith algorithm
and flow chart in Sect. 4. The experimental result of the pro-
posed algorithm described in Sects. 5 and 6 presents the
comparison result and analysis to illustrate the prominence of
this proposed policy over some existing algorithms. Section 7
describes the threats to validity of the proposedwork. Finally,
Sect. 8 concludes and discusses future scope of the proposed
work.

2 Load Balancing in Cloud Environment

The typical cloud computing environment involves a large
number of geographically distributed data centers (DCs) [11]
which can be interconnected and effectively utilized in order
to achieve better performance not ordinarily attainable on a
single DC. Each DC consists of number of hosts, and the
resources of each host are accessed and utilized by one or
more VMs allotted to that host according to their capac-
ity. Each VM possesses an initial load which represents an
amount of work to be performed and may have a different
processing capacity.

To minimize the overall completion time of the system,
the workload has to be distributed. This is why load balanc-
ing [18] is required.

The load balancing problem [18,19] is closely related to
cloudlet allocation and scheduling techniques in cloud envi-
ronment. It is concerned with all techniques, allowing an
even distribution of workloads among the available VMs
in the system. The main objective [20] of load balancing
is to optimize the response time, completion time, network
bandwidth, memory provisioning, makespan of the system
etc.

123



Arab J Sci Eng (2015) 40:1409–1425 1411

The goals of the Load Balancing algorithms are [21] as
follows:

i) To improve the performance substantially.
ii) To have a backup plan in case the system/ VM(s) failure.
iii) To maintain the system stability.
iv) To accommodate future modification in the system.
v) To improve the makespan of the system.

Types of load balancing algorithms [21,22] are:

a) Depending on the initiation of the process:

• Sender initiated The load balancing algorithm is ini-
tiated by sender.

• Receiver initiated The load balancing algorithm is
initiated by receiver.

• Symmetric It is combination of both sender initiated
and receiver initiated.

b) Depending on the current state of the system:

• Static It does not depend on the current state of the
system. Prior knowledge of the system is required.

• Dynamic Decision on load balancing is based on the
current state of the system. No prior knowledge is
required. So, it is better than the static approach.

Load balancer can work in two ways [21,22]:

• Co-operative The nodes work simultaneously in
order to achieve the common goal of optimizing the
overall response time.

• Non co-operative The jobs run independently in
order to improve the response time of local jobs.

2.1 Load Calculation

The load is mainly related to the number of requesting
cloudlets and the bandwidth [19,23,24]. Load of the host
in DC is calculated using a coefficient vector to indicate the
final proportion of various impact parameters in the overall
load. Parameters are defined as below [18,19]:

Load (CPU): CPU utilization
Load (MEM): Memory Usage
Load (PCR): Number of connection
Load (DIO): The size of disk occupation
Loadi = Host load of a DC occupied by application

(cloudlet) is calculated according to the overall index. Then,

Loadi =
∣
∣ r1 r2 r3 r4

∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

Load (CPU)
Load (MEM)
Load (PCR)
Load (DIO)

∣
∣
∣
∣
∣
∣
∣
∣

Coefficient S = |r1 r2 r3 r4| represents the impor-
tance of all indicator to load.

3 Related Work

3.1 CloudSim Toolkit

Several Grid simulators [25,26] such as GridSim, Sim-
Grid, and GangSim are capable of modeling and simulat-
ing the grid application in a distributed environment but fails
to support the infrastructure and application-level require-
ments arising from cloud computing paradigm [27]. The
grid simulators are unable to isolate the multi-layer service
(Software as a Service, Platform as a Service, Infrastruc-
ture as a Service) discrimination clearly as required by
cloud computing paradigm. In particular, there is negligi-
ble support on existing grid simulation toolkits for modeling
of virtualization-enabled resource and application manage-
ment environment [28]. Cloud computing domain promises
to deliver services on subscription basis in a pay-per-use
model to Software as a Service providers. Therefore, cloud
environment modeling and simulation toolkits must pro-
vide support for economic entities for enabling real-time
trading of services between cloud users and cloud service
providers. Cloudsim [8] is a cloud infrastructure modeling
and simulation toolkit that supports real-time trading of ser-
vices between customers and providers. An open source
CloudSim framework [5] shown in Fig. 1 developed on Grid-
Sim toolkit [11] offers support for economic-driven resource
management and cloudlet scheduling, bandwidth manage-
ment, cost management etc. One of the prime aspects that
makes cloud computing infrastructure [29] different from
grid computing infrastructure is the massive deployment of
virtualized infrastructure. The Cloudsim toolkit is customiz-
able. So, it is advantageous for the researchers to imple-
ment their own policies in the domain of cloud by extend-
ing relevant classes of Cloudsim toolkit. Clouds contain an
extra layer (the virtualization layer) that acts as an execu-
tion, management and hosting environment for application
services which is not possible for grids. It provides users
a series of extended entities and methods. In addition, it
helps users to implement and analyze their own scheduling
and allocation strategy at different levels including modifica-
tion of module deployment techniques and conduct-related
performance testing by expanding few interfaces. Present
study aims at expanding CloudSim by utilizing the broker
policy. The data center Broker policy is a decision making
procedure through which an individual can make the best
link between cloudlets and VMs. Few modules of CloudSim
toolkit mentioned in Fig. 1 are relevant to our research as
follows.

123



1412 Arab J Sci Eng (2015) 40:1409–1425

Fig. 1 Cloudsim Work Style

• Cloud User (CU) The CU is an end user of cloud envi-
ronment. They avail the service provided by cloud data
center.

• Data center (DC) Data center is composed of a set of
hosts or physical nodes. It behaves like an IaaS provider.

• Cloudlet It is a bag of tasks. A cloudlet is a request sent
fromCUfor processing [28] to theDC. It includes several
properties such as cloudlet ID, cloudlet length, output file
size, and number of PE (Processing Element) required.
The parameters length and output file sizes of cloudlets
should be greater than or equal to one [30].

• Virtual machine (VM) A virtual machine is a multi-user
shared resource that provides heterogeneous service to
all computer or network resources.

• Host Host is a physical node, located inside every data
center which may run on various virtual machine(s). The
host contains Processing Element(s) or Core(s). It can be
considered as a bare metal also.

InCloudsim3.0.3 [23], there is a class nameddata centerBro-
ker which contains several policies associated with different
research issues like resource management, cloudlet schedul-
ing, cost calculation and optimization etc. The researchers

may apply their own logic and policies by extending few base
classes. Some of the relevant policies are described below:

• VM Scheduler This schedules the VM(s) to the Process-
ing element or Core of a Host. It is required for allo-
cating processing power to VMs [12,31]. VM scheduler
is an abstract class implemented by a host component.
Few policies (space-shared, time-shared) are in-built in
Cloudsim 3.0.3. Researchers may apply their own poli-
cies by extending the base class.

• VM Allocation Policy VM Allocation Policy [12,31] is
used to select available host in a data center which meets
the memory, storage, and availability requirement for a
VM deployment. Few policies (such as, vmallocation-
simple) are in-built in Cloudsim 3.0.3. Researchers may
apply their own policies by extending the base class.

• Cloudlet Allocation PolicyCloudlet allocation policy [8]
is used to select available VM(s) in a system. It includes
cloudlet scheduling mechanism which schedules the
cloudlet(s) to theVM(s). Fewpolicies [8] (Space-Shared,
Time-Shared, etc) are in-built in Cloudsim 3.0.3 [23].
Researchers may apply their own policies by extending
the base class.

3.2 Cloudlet Allocation Policy

The cloudlet allocation policy helps binding a cloudlet with a
virtual machine (VM) and reduces the completion time of the
cloudlets as well as reduces themakespan of the VMs and the
host in the DC. Designing a good allocation policy is a dis-
tinguishable challenge in the cloud computing domain. The
two basic existing cloudlet allocation policies are describe
below:

• Round Robin Allocation (RRA) Policy [11] Round
Robin Allocation Policy [31] allocates the cloudlet to
first available VM. For example, consider there are
four cloudlets (CL1,CL2,CL3,CL4) and two VMs
(VM1,VM2) present in the system. Table 1 emphasizes
the allocation fashion. According to this policy, cloudlet

Table 1 Cloudlet binding with VM

Cloudlet Virtual machine (VM)

CL1 VM1

CL2 VM2

CL3 VM1

CL4 VM2

123



Arab J Sci Eng (2015) 40:1409–1425 1413

CL1 allocated to VM1,CL2 allocated to VM2 and CL3

and CL4 allocated to the VM1 and VM2, respectively.

• Conductance algorithm (CA) [17] It considers each VM
as a pipe. It calculates the Conductance (processing
power) as per Eq. (1) of eachVMas the ratio of its capac-
ity to the sum of the capacity of all the VMs present in a
System.

Conductance j = MIPS j/
∑n

j=1
MIPS j (1)

After the calculation of conductance,multiply the conduc-
tance of that particularVMwith the length of the cloudlet list.
To determine the strip length, Eq. (2) is used. It determines
the number of cloudlets the VM can process.

Striplength j = Conductance j

× (Length of the cloudlet list) (2)

The existing policies do not consider the procedure for
finding out the minimum makespan of the VM(s) as well as
the host(s) in DC. To overcome this problem, we propose a
new cloudlet allocation policy which improves themakespan
of the VMs as well as the host which will be discussed in
Sect. 4.

4 Proposed Work

This work highlights a new cloudlet allocation strategy with
a suitable load balancing technique that will eventually
improve the completion time of the cloudlets as well as the
makespan [13,32] of the VMs and the host(s) present in the
data center (DC) [38]. The prime objective is to improve the
QoS of a cloud in association with two basic parameters i.e.,
completion time and makespan.

4.1 Cloud Allocation Policy

In the proposed cloudlet allocation policy, all the VMs are
sorted in descending order according to their MIPS (Mil-
lion Instruction per Second) and stored in vm_list [11] array
which is shown in Table 4. Then, calculate the maximum
load capacity (MLC) of each VM by using the Eq. (3).

MLC j (%) = (

MIPS j/Total MIPS of all VMs
) × 100

(3)

The batches of cloudlets are stored in cloudlet_list [11] array.
Every cloudlet has its own cloudlet ID. The size of each
cloudlet (cl_size) is calculated in term of percentage using
Eq. (4).

cl_sizei (%) = (MIi/ Total MI of all cloudlets) × 100

(4)

The cloudlets are sorted into descending order according
to their Million Instruction (MI) value and placed them in
cloudlet_list. This is shown in Table 7. Then, the cloudlets
are assigned to the VMs guided by the First Come First Serve
(FCFS) policy following the process in which the highest
capacity VM will be allocated first, and after allocation, the
remaining load capacity (RLC) of that VMwill be compared
with the MLC of the other VMs in the vm_list. If the com-
parison returns greater RLC value than the MLC value of
other VMs, then that VMmay continue with further cloudlet
allocation until RLC value becomes lesser than the MLC
value of the other VMs. This process will continue until
all the cloudlets in cloudlet_list will get assigned into the
VMs.

RLC j (%) = MLC j − cl_sizei (5)

The proposed work is explained with a suitable example in
Sect. 5.

This work is completely simulated in Cloudsim 3.0.3
extending and modifying few required base classes.

4.2 Parameters of Proposed Algorithm

(1.) Execution time (Exec) Execution time is defined as the
ratio of MI (Million Instruction) of the cloudlet to the
MIPS (Million Instruction Per Second) of the allotted
VM. The calculation of the execution time of a cloudlet
is mentioned in the Eq. (6).

Execi = MI of Cloudleti/ MIPS of VM j (6)

(2.) Starting time (ST) Starting time is defined as the com-
pletion time of the previous cloudlets in the same VM.
Whenever a cloudlet is assigned to a VM for the first time
then its starting time is assumed to be zero. When the
other cloudlets are assigned to that VM the completion
time of the previous cloudlet on thatVMwill be treated as

123



1414 Arab J Sci Eng (2015) 40:1409–1425

the starting time of next assigned cloudlet. This is known
as the updated starting time for the assigned cloudlet. The
calculation of the starting time of a cloudlet is mentioned
in the Eq. (7).

Starti = 0; if (VMi is in no_load condition)

Starti > 0; Completion time of the present

Cloudlet will be treated as start time of

next Cloudlet; if (VMi is executing) (7)

3. Completion time (CT) It is defined as the sum of the
execution time and the completion time of the previous
cloudlet allocated in the sameVM. The calculation of the
completion time of a cloudlet is mentioned in the Eq. (8).

Completion time (CTi ) = Execution time (Execi ) +
Completion time of the previous allotted cloudlet in

the same VM (CTi−1) (8)

4. Makespan (MS) In this paper the makespan is used to
measure the efficiency of both the VM (MSVM) as well
as host (MSH) in a DC.

4.2.1 Makespan of VM (MSVM)

The makespan [32] is the time to complete a batch of
cloudlets in a VM. For instance, consider ‘m’ virtual
machines for scheduling, indexedby the setM = {1, . . . ,m}.
There are furthermore given n cloudlets, indexed by the set
J = {1, . . . , n}, where cloudlet j takes pi, j units of time if
scheduled on virtual machine i. Let Ji be the set of cloudlets
scheduled on virtual machine i. Then, li = ∑

jε J Pi, j is the
load of virtual machine i. The maximum load lmax = cmax =
maxiεMli is called the makespan of the schedule. Here, the
makespan of aVMis calculated as the completion time (CT j )

of the last assigned cld_idi to the corresponding VM j . The
calculation of the makespan of a VM is mentioned in the
Eq. (9).

MSVM j = Completion time of last Allotted cloudlet into

VM j (9)

4.2.2 Makespan of Host (MSH)

The makespan of a host is calculated as the maximum
makespan of the VM from the allotted VMs in that host.
The calculation of the makespan of a VM is mentioned in
the Eq. (10).

MSH j = max
(

MSVM j
)

(10)

4.3 Algorithm of Proposed Work

Input: ‘n’ be the number of VMs present in the vm_list.

‘m’ be the number of cloudlets present in the 

cloudlet_list.

Output: Allocate the ‘m’ number of cloudlets to ‘n’ number 

of VMs following proper load balancing method.

1) Initially allocate the VMs into the Host in the DC and sort 

them into ascending order according to their MIPS value. 

Store the sorted VMs in vm_list. 

2) Calculate Maximum Load Capacity (MLC) of each VM 

present in vm_list. 

3) The batch of cloudlets is stored in cloudlet_list.

4) Calculate the size of each cloudlet (cl_size).

5) Sort the cloudlets in descending order according to the size 

of cloudlets.

6) Allocate the cloudlets to the VMs according to the 

following steps-

For (i = 0; i < m; i++)

For (j = 0; j < n; j++)

6.1) Find the maximum MLC valued VM from vm_list.   

6.2) Allocate the cloudlet to the corresponding VM which has 

maximum MLC value.

6.3) Decreasing MLC value of the VM by the size of the 

assigned cloudlet (cl_size) into the particular VM and 

assigned the decreased MLC value to RLC.

6.4) Update the MLC value of allotted VM using the value of 

RLC of that VM.

6.5) Continue the process until all the cloudlets are assigned to 

the VMs.

End for

End for

123



Arab J Sci Eng (2015) 40:1409–1425 1415

7) Calculate the Starting Time, Execution Time and 

Completion Time for each of the cloudlet according to the 

following steps-

For (i = 0; i < m; i++)  

7.1)     Execution Time = MI of cloudlet / MIPS of the allotted 

VM; 

For (j = o; j < n; j++)

7.2)      If VM is in no load condition, then-

Starting Time = 0;

Completion Time = Execution time of allotted 

cloudlet;

End if.

7.3)      else

Starting Time = Completion Time of the previously 

allotted cloudlet to the VM;

Completion Time = Execution time of allotted 

cloudlet + Completion Time of the previously allotted cloudlet

to the VM;

End else

End for

End for

8. Find the makespan of the VMs present in the vm_list.

9. Find the makespan of the Host present in the DC.

10. End

4.4 Pseudo Code of Proposed Algorithm

1)  Initially allocate the VMs into the host in the Data Centre 

and sort them in ascending order according to their MIPS 

value and store them in vm_list.

2)  Calculate the Maximum Load Capacity (MLC) of each 

VM.

3) The batch of requested cloudlets is stored in cloudlet_list.

4)  Calculate the size of each cloudlet (cl_size).

5) Sort the cloudlets in descending order according to their 

size (cl_size). 

6)  Place the cloudlets to the stored VMs according to the 

following steps:-

6.1)  For m number of cloudlet and n number of VMs-

6.2)   for i:= 0 to m

{

for j : = 0 to n

{

6.3)   /* Find the Maximum Load Capacity (MLC) VM from 

the VMs present in the vm_list. */

MLCj  = (MIPSj / total MIPS of all VMs) * 100%;

max ( MLCj); /* Find the maximum MLC valued 

VM.*/

}

6.4) /* Allocate the cloudlet to the corresponding VMj which 

has maximum MLC value. */

VMj<- CUi;

6.5) /* Decreased the MLC value of the VMj by the size of the 

assigned cloudlet (cl_sizei) into the particular VMj */

RLCj  = MLCj - cl_sizei; // Update the RLC 

value

123



1416 Arab J Sci Eng (2015) 40:1409–1425

6.6) /* Update the MLC value of the VM according to the 

value of RLC */

MLCj = RLCj; // Update the MLC Value

}

6.7)  Return the step 6.1 until all the cloudlets present in 

cloudlet_list are allocated to their corresponding VM.

}

7) Calculate Starting Time, Execution Time and Completion 

Time for each cloudlet according to the following step-

7.1)   for i:= 0 to m

{

for j := 0 to n

{

if (VMi is in no_load condition)

{ 

7.1)          STij = 0; /* if the cloudlet is firstly allocated to the 

VMj, then the Starting Time of the cloudlet is equal to zero */

7.2)              Execij = MIi / MIPSj; /* Calculate the Execution 

time of each cloudlet */

7.3)    CTij = Execij; /* if the cloudlet is firstly allocated 

to the VMj, then the completion time of the cloudlet is same as 

the Execution Time of that cloudlet*/

}

7.4)    else

{

7.5)              STij  = CTi-1j; /* Starting Time of a cloudlet is the 

same as the completion time of the previously allocated 

cloudlet in the same VMj */

7.6)                     Execij  = MIi / MIPSj;

7.7)                     CTij = Execij + CTi-1j ; /* Completion Time of 

a cloudlet is the same as the summation of the Execution Time 

of the present allotted cloudlet to the VM and the Completion 

Time of the previous cloudlet assigned into the same VM. */

}

}

7.8) Return step 7.1 until completing the calculation of the 

Completion Time of the cloudlets to the allotted VM.

}

8) Find the makespan of n number of VMs

for j := 0 to n

{

MSVMj =  Completion time of last allocated cloudlet in the jth

VM; // makespan of the VMs

}

9) Find the makespan of the Host with n number of VMs

for j := 0 to n

{

MSHj  = max (MSVMj); // makespan of the Host

}

10) Exit.

4.5 Flow Chart of Proposed Algorithm

Figure 2 shows the flow chart of the proposed cloudlet allo-
cation policy.

4.6 Advantages of Proposed Algorithm

(a) The proposed algorithm has improved the makespan of
the VM(s) as well as the host(s) in DC.

(b) The algorithm distributes the loads to each VM almost
equally according to their capacity and here, the
makespan of each VM is almost about same.

123



Arab J Sci Eng (2015) 40:1409–1425 1417

                          No 

                      Yes 

START 

Initially allocates the sorted VMs in vm_list 

Calculate the load capacity of each VM 

i=0, Load the batch of cloudlets in clouslet_list 

Calculate the size of each cloudlet 

cloudlet will assigned to the VM, which load 
capacity is Maximum among the VMs 

Updating the load capacity of each VM 

Calculate the execution time for each cloudlet 

i=i+1 

i<n 

Calculate makespan according to completion time 
of the final assign cloudlet id to their 

corresponding VM. 

End 

Calculate the start time for each cloudlet 

Calculate the completion time for each cloudlet 

Calculate the makespan of the host in a DC 

Arrange the cloudlets in descending order 
according to their MI (Multiple Instruction) value 

Fig. 2 Flow chart of proposed algorithm

5 Experimental Result

The proposed algorithm has been described and analyzed
with the help of a suitable example. Due to space constraint,
ten cloudlets and three VMs in a host have been considered
in these experiments.

Table 2 represents ten cloudlets with their sizes (MI) men-
tioned.

Table 3 shows three VMs with their MIPS that represents
the processing capability of each VM.

Table 4 shows the VMs are sorted and stored in decreasing
order according to their MIPS.

Table 2 Properties of cloudlets

cld_id MI (million of instruction)

0 9000

1 16,000

2 11,000

3 6000

4 15,000

5 8000

6 12,000

7 17,000

8 10,000

9 7000

Table 3 Processing capability of VMs

vm_id MIPS (million of instruction per second)

0 300

1 600

2 400

Table 4 Properties of arranged VMs

vm_id MIPS (million of instruction per second)

1 600

2 400

0 300

Table 5 Maximum load capacity of each VM

vm_id MIPS Capacity of VM
[(MIPS/total MIPS
of all VMs) × 100] (%)

1 600 46

2 400 31

0 300 23

Table 5 represents the maximum load capacity of each
VM, calculated in percentage.

Table 6 shows the size of each cloudlet, calculated in per-
centage.

Table 7 shows the size of each sorted cloudlet, calculated
in percentage.

The cloudlets are allocated into the VMs in FCFS manner
and follow this proposed policy. Each of the cloudlet will be
assigned to the VM whose MLC is maximum. After alloca-
tion, the remaining load capacity (RLC) will be calculated
using Eq. (3), and the RLC will be compared with MLC of
the other VMs in the vm_list before assigning next cloudlet to
the VM from vm_list. If the comparison returns greater RLC

123



1418 Arab J Sci Eng (2015) 40:1409–1425

Table 6 Size (%) of each cloudlet

cld_id MI Capacity of cloudlet
[(MI/total MI of all
VMs) × 100] (%)

0 9000 8

1 16,000 14

2 11,000 10

3 6000 5

4 15,000 14

5 8000 7

6 12,000 11

7 17,000 15

8 10,000 9

9 7000 6

Table 7 Size (%) of each sorted cloudlet

cld_id MI Capacity of cloudlet
[(MI/total MI of all
VMs) × 100] (%)

7 17,000 15

1 16,000 14

4 15,000 14

6 12,000 11

2 11,000 10

8 10,000 9

0 9000 8

5 8000 7

9 7000 6

3 6000 5

value than the MLC value of other VMs that VM may be
allowed to continue with further cloudlet allocation till RLC
of that VM gets lesser value than the MLC of the other VMs.
This process continues till all the cloudlets in cloudlet_list
are assigned to the VMs which is illustrated in Table 8.

Table 9 represents the list of finally allotted cloudlets to
their respective VMs.

Table 10 shows the allotted cloudlets to their respective
VMs with their execution time, start time, and completion
time.

Table 11 depicts the makespan of three VMs of a host.
Table 12 represents the makespan of the host present in

the DC.

6 Comparison Result and Analysis

This section deals with analyzing the improvement of the
QoS in association with two parameters, such as comple-

Table 8 Cloudlet allocated to VM

cld_ id cl_size (%) vm_id MLC (%) RLC (%)

7 15 0 23 8

7 15 1 46 31

7 15 2 31 16

1 14 0 23 9

1 14 1 31 17

1 14 2 31 17

4 14 0 23 9

4 14 1 17 3

4 14 2 31 17

6 11 0 23 12

6 11 1 17 6

6 11 2 17 6

2 10 0 12 2

2 10 1 17 7

2 10 2 17 7

8 9 0 12 3

8 9 1 7 −2

8 9 2 17 8

0 8 0 12 4

0 8 1 7 −1

0 8 2 8 0

5 7 0 4 −3

5 7 1 7 0

5 7 2 8 1

9 6 0 4 −2

9 6 1 7 1

9 6 2 1 −5

3 5 0 4 −1

3 5 1 1 −4

3 5 2 1 −4

Bold values represent the cloudlet allocated to that VM

Table 9 Final cloudlet allocation to VM

cld_id cl_size (%) vm_id MLC (%) RLC (%)

7 15 1 46 31

1 14 1 31 17

4 14 2 31 17

6 11 0 23 12

2 10 1 17 7

8 9 2 17 8

0 8 0 12 4

5 7 2 8 1

9 6 1 7 1

3 5 0 4 −1

tion time and makespan. The performance of the proposed
algorithm is compared and analyzed by two existing algo-
rithms such as RRA [17] and CA [20]. The simulated results

123



Arab J Sci Eng (2015) 40:1409–1425 1419

Table 10 Execution time, completion time and start time of all cloudlet
allocated into their corresponding VMs

cld_id MI vm_id MIPS Exec ST CT

0 9000 0 300 30 0 30

1 16,000 1 600 27 0 27

2 11,000 1 600 18 27 45

3 6000 0 300 20 30 50

4 15,000 2 400 38 0 38

5 8000 2 400 20 38 58

6 12,000 0 300 40 50 90

7 17,000 1 600 28 45 73

8 10,000 2 400 25 58 83

9 7000 1 600 12 73 85

Table 11 Makespan of VMs

vm_id MSVM

0 90

1 85

2 83

Table 12 Makespan of host

host_id MSH

0 90

are evaluated and analyzed in several aspects. The perfor-
mance was measured by setting up different simulation envi-
ronments with varying number of cloudlets and VMs. The
improvement of completion time and makespan is explained
with interpretation of the graphs in tabular form.Due to space
constraint, only three sets of cloudlets andVMs are taken into
account, and few cloudlets are mentioned in the interpreta-
tion table. The improvement in the result of the proposed
work indicates the enhancement of the QoS of a cloud. Few
abbreviations are mentioned in this section that will be used
in rest of this paper. Those are fig: Figure, algo: Algorithm,
cld_id: cloudlet ID, vm_id:VirtualMachine ID, host_id:Host
ID, Avg_CT: Average Completion Time, Roi_CT: Rate of
Improvement in Completion Time.

6.1 Completion Time

In Figs. 3 and 4, the improvement of completion time is
presented when the system is loaded with 25 cloudlets and 2
VMs. The interpretations of these twofigures are presented in
Tables 13 and 14with few cloudlets. The rate of improvement
in completion time is 29.95% using the proposed over RRA
and 24.8% using the proposed over CA.

Fig. 3 Comparison graph of completion time for 25 cloudlets among
Round Robin Policy versus proposed algorithm

Fig. 4 Comparison graph of completion time for 25 cloudlets among
Conductance algorithm versus proposed algorithm

The reflection of improvement of completion time with
50 cloudlets and 3 VMs is represented in Figs. 5 and 6 with
RRA versus proposed and CA versus proposed, respectively.
In Tables 15 and 16, the interpretation of the graphs are men-
tioned with few cloudlets. The rate of improvement of the

123



1420 Arab J Sci Eng (2015) 40:1409–1425

Table 13 Rate of improvement of proposed algorithm over RRA

Figure algo cld_id CT Avg_CT Roi_ CT (%)

RRA Proposed

3 RRA 4 117 214.75 165.25 29.95

Proposed 103

RRA 15 171

Proposed 97

RRA 16 370

Proposed 307

RRA 17 201

Proposed 154

Table 14 Rate of improvement of proposed algorithm over CA

Figure algo cld_id CT Avg_CT Roi_CT (%)

RRA Proposed

4 CA 7 188 305.75 245 24.8

Proposed 270

CA 50 470

Proposed 267

CA 68 826

Proposed 632

CA 40 497

Proposed 364

completion time is 14.85% using the proposed over RRA
and 29.25% using the proposed over CA.

The improvement of completion time using 100 cloudlets
and 4VMs is alsomentioned in the sameway in Figs. 7 and 8.
They are interpreted in Tables 17 and 18.

6.2 Makespan

In Figs. 9 and 10 the improvement of makespan for the VMs
and the host is reflected and interpreted in Tables 19 and 20,
respectively, when the system is loaded with 25 cloudlets
and 2 VMs. The rate of improvement in makespan for VM0

is 71% and VM1 is 17%.
The rate of improvement of makespan for the host using

the proposed algorithm over RRA Policy is 62%. The rate
of improvement in makespan for the host using the proposed
algorithm over CA is 17%.

The Figs. 11 and 12 represent the improvement in
makespan for theVMs and the hostwhen the system is loaded
with 50 cloudlets and 3 VMs. The figures are interpreted

Fig. 5 Comparison graph of completion time for 50 cloudlets among
Round Robin Policy versus proposed algorithm

Fig. 6 Comparison graph of completion time for 50 cloudlets among
Conductance algorithm versus proposed algorithm

123



Arab J Sci Eng (2015) 40:1409–1425 1421

Table 15 Rate of improvement of proposed algorithm over RRA

Figure algo cld_id CT Avg_CT Roi_CT(%)

RRA Proposed

7 RRA 13 140 313.25 272.75 14.85

Proposed 110

RRA 15 206

Proposed 197

RRA 44 520

Proposed 489

RRA 49 387

Proposed 295

Table 16 Rate of improvement of proposed algorithm over CA

Figure algo cld_id CT Avg_CT Roi_ CT (%)

RRA Proposed

8 CA 31 459 383.25 296.75 29.25

Proposed 413

CA 42 321

Proposed 259

CA 48 261

Proposed 229

Fig. 7 Comparison graph of completion time for 100 cloudlets among
Round Robin Policy versus proposed algorithm

Fig. 8 Comparison graph of completion time for 100 cloudlets among
Conductance algorithm versus proposed algorithm

Table 17 Rate of improvement of proposed algorithm over RRA

Figure algo cld_id CT Avg_CT Roi_CT (%)

RRA Proposed

11 RRA 42 399 548 383.25 43

Proposed 270

RRA 50 470

Proposed 267

RRA 68 826

Proposed 632

RRA 40 497

Proposed 364

Table 18 Rate of improvement of proposed algorithm over CA

Figure algo cld_id CT Avg_CT Roi_CT (%)

RRA Proposed

12 CA 11 650 559.5 362.75 54.24

Proposed 410

CA 14 676

Proposed 487

CA 15 329

Proposed 230

CA 17 583

Proposed 324

123



1422 Arab J Sci Eng (2015) 40:1409–1425

Fig. 9 Comparison graph of makespan of VMs among Round Robin
Policy versus Conductance algorithm versus proposed algorithm

Fig. 10 Makespan of a host in a data center of 25 cloudlets

Table 19 Makespan of VMs

vm_id Round Robin Conductance algorithm Proposed algorithm

0 563 206 329

1 261 439 375

Table 20 Makespan of the host of a data center

host_id Round Robin Conductance algorithm Proposed algorithm

0 563 439 375

Fig. 11 Comparison graph of makespan of VMs among Round Robin
Policy versus Conductance algorithm versus proposed algorithm

Fig. 12 Makespan of a host of a data center of 50 cloudlets

in Tables 21 and 22, respectively. The rate of improvement
in makespan for VM0,VM1 and VM2 are 47, 39 and 2%,
respectively.

The rate of improvement of makespan for the host using
proposed algorithm over RRA policy is 40%. The rate of
improvement of makespan for the host using the proposed
algorithm over CA is 36%.

In the same way, the improvement of makespan of VMs
and the host is represented in Figs. 13 and 14when the system
is loaded with 100 cloudlets and 4 VMs. The graphs are
interpreted in Tables 23 and 24, respectively. The rates of

123



Arab J Sci Eng (2015) 40:1409–1425 1423

Table 21 Makespan of VMs

vm_id Round Robin Conductance Proposed algorithm

0 747 306 509

1 387 721 517

2 545 459 532

Table 22 Makespan of a host

host_id Round Robin Conductance Proposed algorithm

0 747 721 532

Fig. 13 Comparison graph of makespan of VMs present in the host
among Round Robin Policy versus Conductance algorithm versus pro-
posed algorithm

improvements for the VMs are 59% for VM0, 33% for VM1,
19% for VM2, 3% for VM3.

The rate of improvement of makespan for the host using
the proposed algorithm in comparison with RRA is 52 and
28% with CA.

From Fig. 15 it is clear that as the number of cloudlets
increase in the host in a DC, the proposed algorithm gives
better result. It is a nature of realistic approach.

7 Threats to Validity

This is a great challenge for the researchers to defend the
threats to validity [33–35] in the area of cloud computing.
The validity is determined in different ways; internal, exter-
nal, structural, etc. We justify the validity of the results by

Fig. 14 Makespan of the host of a data center of 100 cloudlets

Table 23 Makespan of VMs

vm_id Round Robin Conductance Proposed algorithm

0 1190 413 750

1 544 1007 760

2 886 600 747

3 685 806 784

Table 24 Makespan of host

host_id Round Robin Conductance Proposed algorithm

0 1190 1007 784

discussing the possible threats to our result and the counter-
measures that we have taken to minimize them.

7.1 Internal Validity

It is the extent to which an outcome of a study can be inter-
preted accurately. It refers to the extent to which the design
and execution of the policy are likely to prevent methodical
fallacy. The analysis of this work is a subjective measure-
ment which may affect the result in various perspectives.
This study involves of four researchers in the identification
and evaluation process that minimizes the threats to internal
validity. More than one batch of data sets are considered in
this work to mitigate the internal validity. It provides a realis-
tic impact of this study. This step also reduces the possibility
of bias. During a script development phase, many errors may
occur. So, each and every step is validated with the help of
simulation environment and the output is verified. The proce-

123



1424 Arab J Sci Eng (2015) 40:1409–1425

Fig. 15 Makespan of the host of a data center in different number of
cloudlets

dure followed, is discussed with our guide.We have repeated
the experiment more than one time, and the average has been
calculated on each of the batches.

7.2 External Validity

It refers to the degree to which the results of a factual analy-
sis can be generalized to and across several aspects. The
scope of this work is purely based on the academic domain
and peer-reviewed research papers. We are aware of the fact
that QoS improvement approaches originate in industry and
may not have been reported upon academically. Due to fea-
sibility issues and to maintain the quality of the research,
such industry-based QoS improvement approaches are not
included in this paper.

7.3 Structural Validity

In this paper, related work section has been undertaken for
cloudlet allocation to find the suitable method for develop-
ing a QoS improvement strategy. Those strategies continue
allocation without considering the load capacity of VM(s).
This has been considered as a threat. So, to minimize this
threat, a new method has been proposed in this paper, and
the results were analyzed meticulously before making a final
conclusion.

8 Conclusion and Future Work

Thiswork highlights a newcloudlet allocation policywith the
help of a suitable load balancing technique which provides

better completion time for the cloudlets and also improves
the makespan of the VMs and the host in the DC. Hence, the
QoS and the resource utilization of the overall system have
been improved in comparisonwith the other existing cloudlet
allocation policies.

In our future study, we shall focus on development of a
new cloudlet allocation policy using soft computing tools
to identify loads intelligently for the entire available VMs
inside a system and keep all the VMs busy as much as pos-
sible so that makespan of the whole system will improve.
The capacity of the VMs will be indexed in a hash table so
that information regarding the execution load of all VMswill
be updated dynamically. We shall also investigate live VM
migration to the other host inside a data center with the help
of the ‘Vmotion’Distributed Service [9] in the cloud environ-
ment. Another future work is to defend various threats which
is a challenging issue in the area of cloud security [20].

Acknowledgments This project is partially and financially supported
by UGC DST-Purse Programme in University of Kalyani. The work is
enriched by valuable recommendations from the reviewers and editors.

References

1. Xiong, K.; Perros, H.: Service performance and analysis in cloud
computing. 978-0-7695- 3708-5/09 $25.00 © 2009 IEEE pp. 693–
700

2. Sotomayor, B.; Montero, R.S.; Llorente, I.M.; Foster, I.: Virtual
infrastructure management in private and hybrid clouds. 1089-
7801/09/$26.00 © 2009 IEEE

3. Adhikari, M.; Banerjee, S.; Biswas, U.: “Smart task assignment
model for cloud service provider” Special Issue of International
Journal of Computer Applications (0975–8887) on Advanced
Computing and Communication Technologies for HPC Applica-
tions - ACCTHPCA, (June 2012)

4. Lei, X.; Zhe, X.; Shaowu,M.; Xiongyan, T.: Cloud Computing and
Services Platform Construction of Telecom Operator. In: Broad-
band Network & Multimedia Technology, 2009. IC-BNMT ’09.
2nd IEEE International Conference on Digital Object Identifier,
pp. 864 – 867

5. Calheiros, R.N.; Ranjan, R.; De Rose, C.A.F.; Buyya, R.:
CloudSim: a novel framework for modelling and simulation of
cloud computing infrastructures and services (2009)

6. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.; Katz, R.; Kon-
winski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; Zaharia,
M.: A Berkeley view of cloud computing. Technical Report No.
UCB/EECS-2009-28, University of California at Berkley, USA,
Feb. 10, 2009

7. Aymerich, F.M.; Fenu1, G.; Surcis, S.: An approach to a cloud
computing network. 978-1-4244-2624- 9/08/$25.00 ©2008 IEEE
113 pp. 113-118

8. Buyya, R.; Ranjan, R.; Calheiros, R.N.: Modeling and simula-
tion of scalable cloud computing environments and the CloudSim
toolkit: challenges and opportunities. In: Proceedings of the 7th
High Performance Computing and Simulation Conference (HPCS
2009, ISBN: 978-1-4244-4907-1, IEEE Press, New York, USA),
Leipzig, Germany, June 21–24, 2009

9. White Paper-VMware Infrastructure Architecture Overview,
VMware

123



Arab J Sci Eng (2015) 40:1409–1425 1425

10. Ravimaran, S.; MalukMohamed, M.A.: Integrated Obj_FedRep:
evaluation of surrogate object based mobile cloud system for Fed-
eration,Replica andDataManagement.Arab. J. Sci. Eng.39, 4577–
4592 (2014). doi:10.1007/s13369-014-1001-2

11. Bhatia, W.; Buyy, R.; Ranjan, R.: CloudAnalyst: a CloudSim
based visualmodeller for analysing cloud computing environments
and applications. In: 2010 24th IEEE International Conference on
Advanced Information Networking andApplications, pp. 446-452,
(2010)

12. El-kenawy, E.S.T.; El-Desoky, A.I.; Al-rahamawy, M.F.: Extended
max–min scheduling using petri net and load balancing. Int. J. Soft
Comput. Eng. (IJSCE) 2(4), 198–203 (2012)

13. Amalarethinam, D.I.G.; MalaiSelvi, F.K.: A minimum makespan
grid workflow scheduling algorithm. 978-1-4577-1583-9/ 12/
$26.00 © 2012 IEEE

14. Syed Abudhagir, U.; Shanmugavel, S.: A novel dynamic reliabil-
ity optimized resource scheduling algorithm for grid computing
system. Arab. J. Sci. Eng. 39, 7087–7096 (2014). doi:10.1007/
s13369-014-1305-2

15. Wee, K.; Mardeni, R.; Tan, S.W.; Lee, S.W.: QoS prominent band-
width control design for real-time traffic in IEEE 802.16e broad-
band wireless access. Arab. J. Sci. Eng. 39, 2831–2842 (2014).
doi:10.1007/s13369-013-0931-4

16. Brucker, P.: Scheduling algorithms, Fifth Edition. Springer
Press, New York (2007)

17. Chatterjee, T.; Ojha, V.K.; Adhikari, M.; Banerjee, S.; Biswas, U.;
Snasel, V.: Design and Implementation of a new Datacenter Bro-
ker policy to improve the QoS of a Cloud. In: © Springer Interna-
tional Publishing Switzerland 2014, Proceedings of ICBIA 2014,
Advances in Intelligent Systems and Computing, vol. 303, pp 281-
290 (2014). doi: 10.1007/978-3-319-08156-4_28

18. Ren, X.; Lin, R.; Zua, H.: A dynamic load balancing strategy
for cloud computing platform based on exponential smoothing
forecast. In: Proceeding of IEEE CCIS2011, 978-1-61284-204-
2/11/$26.00 ©2011 IEEE

19. A practice of dynamic network load balancingcluster [EB/OL].
http://www.linuxaid.com.cn/articles/1/4/14251644.shtml

20. Chou, T.-S.: Security threats on cloud computing vulnerabilities.
Int. J. Comput. Sci. Inf. Technol. (IJCSIT) (2013). doi:10.5121/
ijcsit.2013.5306

21. Ajith Singh, N.; Hemalatha, M.: An approach on semi distributed
load balancing algorithm for cloud computing system. Int. J. Com-
put. Appl. 56(12), 5–10 (2012)

22. Alakeel, A.M.: A guide to dynamic load balancing in distributed
computer system. Int. J. Comput. Sci. Netw. Secur. 10(6), 153–160
(2010)

23. Quansheng, G.; Jiwu, S.; Xiping, M.: Design and implementa-
tion of dynamic balance load based on LVS system. Comput. Res.
Develop. 41(16), 923–929 (2004)

24. Adbelzaher, T.F., Bhatti, N.:Web serverQoSmanagement by adap-
tive content delivery[C]. InternationalWorkshop onQuality of Ser-
vice, London, UK (1999)

25. George Amalarethinam, D.I.; Muthulakshmi, P.: An overview of
the scheduling policies and algorithms in Grid Computing. Int. J.
Res. Rev. Comput. Sci. 2(2), 280–294 (2011)

26. MohammadKhanli, L.; Analoui, M.: Resource scheduling in desk-
top grid by grid-JQA. In: The 3rd International Conference on Grid
and Pervasive Computing, IEEE, 2008

27. Ghalem, B.; Fatima Zohra, T.; Wieme, Z.: Approaches to
improve the resources management in the simulator CloudSim.
In: ICICA 2010, LNCS 6377, pp. 189–196, (2010). doi:10.1007/
978-3-642-16167-4_25

28. Calheiros, R.N.; Ranjan, R.; Beloglazov, A.; De Rose, C.A.F.;
Buyya, R.: CloudSim: a toolkit for modelling and simulation of
cloud computing environments and evaluation of resource pro-
visioning algorithms. Published online 24 August 2010 in Wiley
Online Library (wileyonlinelibrary.com). doi:10.1002/spe.995

29. Rawat, P.S.; Saroha, G.P.; Barthwal, V.: Quality of service evalua-
tion ofSaaSmodeler (Cloudlet) runningonvirtual cloud computing
environment using CloudSim. Int. J. Comput. Appl. 53(13), 35–38
(2012)

30. Gulati, A.; Chopra, R.K.: Dynamic round robin for load balancing
in a cloud computing. IJCSMC, 2(6), 274–278 (2013). ISSN 2320–
088X

31. Parsa, S.; Entezari-Maleki, R.: RASA: a new grid task scheduling
algorithm. Int. J. Digit. Content Technol. Appl. 3, 91–99 (2009)

32. Makespan: http://www2.informatik.huberlin.de/alcox/lehre/
lvws1011/coalg/makespan_scheduling.pdf

33. Campbell, D.T.; Stanley, J.C.: Experimental and quasi-
experimental designs for research, Handbook of Research
on Teaching, Copyright © 1963 by Houghton Mifflin Company,
ISBN: 0-395-30787-2 Y-BBS-IO 09 08

34. Khadka, Ravi.; Saeidi, Amir.; Idu, Andrei.; Hage, Jurrian.; Jansen,
Slinger.: Legacy to SOA evolution: a systematic literature review.
Technical Report UU-CS-2012-006, March 2012, Department of
Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands, ISSN: 0924-3275

35. Mattamadugu, L.N.S.; Pathan, A.A.K.: Supercomputing over
Cloud using Quicksort algorithm.Master’s Thesis, Electrical Engi-
neering,June 2012, School of Computing Blekinge Institute of
Technology, SE—371 79. Karlskrona,Sweden

36. Calheiros, R.N.; Ranjan, R.; De Rose, C.A.F.; Buyya, R.:
CloudSim: a novel framework formodeling and simulation of cloud
computing infrastructures and services. Technical Report, GRIDS-
TR-2009-1, Grid Computing and Distributed Systems Laboratory,
The University of Melbourne, Australia, 2009

37. Mahajan, K.; Makroo, A.; Dahiya, D.: Round Robin with server
affinity: a VM load balancing algorithm for cloud based infrastruc-
ture. J. Inf. Process. Syst. 9(3) (2013). doi:10.3745/JIPS.2013.9.3.
379. pISSN 1976-913X

38. Elgedawy, I.: NASEEB: an Escrow-based approach for ensur-
ing data correctness over global clouds. Arab. J. Sci.
Eng. 39(12), 8743–8764 (2014). doi:10.1007/s13369-014-1427-6

123

http://dx.doi.org/10.1007/s13369-014-1001-2
http://dx.doi.org/10.1007/s13369-014-1305-2
http://dx.doi.org/10.1007/s13369-014-1305-2
http://dx.doi.org/10.1007/s13369-013-0931-4
http://dx.doi.org/10.1007/978-3-319-08156-4_28
http://www.linuxaid.com.cn/articles/1/4/14251644.shtml
http://dx.doi.org/10.5121/ijcsit.2013.5306
http://dx.doi.org/10.5121/ijcsit.2013.5306
http://dx.doi.org/10.1007/978-3-642-16167-4_25
http://dx.doi.org/10.1007/978-3-642-16167-4_25
http://dx.doi.org/10.1002/spe.995
http://www2.informatik.huberlin.de/alcox/lehre/lvws1011/coalg/makespan_scheduling.pdf
http://www2.informatik.huberlin.de/alcox/lehre/lvws1011/coalg/makespan_scheduling.pdf
http://dx.doi.org/10.3745/JIPS.2013.9.3.379
http://dx.doi.org/10.3745/JIPS.2013.9.3.379
http://dx.doi.org/10.1007/s13369-014-1427-6

	Development and Analysis of a New Cloudlet Allocation Strategy for QoS Improvement in Cloud
	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Organization

	2 Load Balancing in Cloud Environment
	2.1 Load Calculation

	3 Related Work
	3.1 CloudSim Toolkit
	3.2 Cloudlet Allocation Policy

	4 Proposed Work
	4.1 Cloud Allocation Policy
	4.2 Parameters of Proposed Algorithm
	4.2.1 Makespan of VM (MSVM)
	4.2.2 Makespan of Host (MSH)

	4.3 Algorithm of Proposed Work
	4.4 Pseudo Code of Proposed Algorithm
	4.5 Flow Chart of Proposed Algorithm
	4.6 Advantages of Proposed Algorithm

	5 Experimental Result
	6 Comparison Result and Analysis
	6.1 Completion Time
	6.2 Makespan

	7 Threats to Validity
	7.1 Internal Validity
	7.2 External Validity
	7.3 Structural Validity

	8 Conclusion and Future Work
	Acknowledgments
	References




