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Abstract This paper discusses the use of multivariate adap-
tive regression splines (MARS) and functional networks
(FN) for prediction of the lateral load capacity of piles in clay.
The results obtained from MARS and FN have been com-
pared with different empirical models and artificial neural
network in terms of statistical parameters such as correla-
tion coefficient (R), Nash–Sutcliff coefficient of efficiency
(E), absolute average error, maximum average error and
root mean square error. Based on the statistical parameters,
MARS and FN were found to have a better predictive capac-
ity. Predictive equations are provided based on the MARS
and FN model. A sensitivity analysis is also presented to
determine the importance of inputs in prediction of the lat-
eral load capacity of piles.

Keywords Load capacity of piles · Artificial intelligence ·
Multivariate adaptive regression splines · Functional
networks

1 Introduction

Pile foundations are frequently subjected to lateral loads due
to earth pressure, earthquake,wave orwind forces in different
structures along with axial load. Thus, the design of pile
foundations has found the attention of researchers more than
any other foundation structure. The axially loaded piles are
more frequently used. The earliest attempts at prediction of
laterally loaded piles was by Hansen [1] and Broms [2,3]
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based on earth pressure theories. Poulos and Davis [4] used
dynamic equations based on Winkler’s soil model.

However, design of laterally loaded piles is complex
and requires solving nonlinear differential equations. Elastic
analysis as adopted by Poulos andDavis [4] is not suitable for
nonlinear behaviour of soil. Matlock and Reese [5] used non-
linear p−y curves to predict the lateral load capacity of pile.
Portugal and Seco e Pinto [6] used nonlinear p−y curves
and the finite element method for prediction of the behav-
iour of laterally loaded piles. Muthukkumaran et al. [7] pro-
posed a modified method to draw the p−y curves for piles in
horizontal ground under surcharge load. The effect of slope
on these p−y curves was also studied. But these methods
were found to have uncertainty in predictions owing to the
variations in soil properties. Hence, some empirical methods
such as Hansen [1] and Broms [2,3] are in use. Begum and
Muthukkumaran [8] studied the behaviour and proposed cor-
rection factors to calculate the lateral load capacity and max-
imum bending moment of piles on sloping ground under lat-
eral loads. Muthukkumaran [9] performed laboratory model
tests to study the effect of slope and loading direction on
laterally loaded piles in cohesion less soil. He observed that
the lateral load capacity of piles in sloping ground is less
than that in horizontal ground for both forward and reverse
loading.

Artificial intelligence (AI) techniques are considered as
an alternate statistical method by many researchers and is
found to be better in prediction as compared to the empiri-
cal methods [10–14]. Goh [12] used back propagation neural
networks (BPNN) to predict the skin friction in piles. Fur-
ther, Goh [15,16] observed that the ultimate load capacity of
piles predicted by artificial neural network (ANN) had better
performance than the Engineering News formula, Hiley for-
mula and Janbu formula. Other later attempts at predicting
the pile load capacity in both cohesionless soil and clayey
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soil using ANN showed a better prediction capability of
ANNcompared to traditional empiricalmethods [10,17–20].
Das and Basudhar [10] found ANN to be better than Broms
and Hansen. Samui [21] found a better prediction than ANN
using another AI technique, support vector machine (SVM).
Pal and Deswal [22] developed Gaussian process regression
(GPR) and SVMmodels using the data set of Das and Basud-
har [10] and observed a better prediction for GPR. How-
ever, their observation was based upon correlation coeffi-
cient (R) and root mean square error (RMSE) only. Alkroosh
and Nikraz [23] developed a gene expression programming
model (GEP) using the same data and found that GEP is good
at predicting the lateral load capacity of piles embedded in
clay.

ANN assures better performance by iteration of learning
algorithms. This process runs the risk of termination of the
learning step if local minima is attained and hence leads to
poor generalization in ANN. On the other hand, SVM is
found to show a better generalization, but the user needs to
set the parameters C (margin parameter) and ε (insensitive
loss function) for a better result. The user is not able to get a
comprehensive mathematical model of ANN and SVM, and
hence these techniques are categorized as ‘black box’ sys-
tems. Giustolisi et al. [24] divided mathematical models into
three types, black box, grey box and white box in order of
the ease of explanation of the functional form of the rela-
tionships between the variables. The white box models are
based on physical laws where model variables and parame-
ters are known and the underlying physical relationship can
be easily explained. On the other hand, the functional rela-
tionships between model variables is unknown for a black
box system and needs to be determined. Black box models
are data driven, and the relationship between input and out-
put is based on data. Grey box systems are conceptual, and
a mathematical model can be derived for them.

A modified statistical technique called multivariate adap-
tive regression spline (MARS) has been popularized by
Friedman [25] for solving regression-type problems. MARS
is also called a ‘white box’ system of predictive model, as it
is based on physical laws and underlying physical relation-
ships of the system can be explained. The MARS technique
is very popular in the area of data mining because it does not
assume or impose any particular type or class of relationship
(e.g. linear and logistic) between the predictor variables and
the dependent (outcome) variables of interest. This makes
MARS particularly suitable for problemswith a greater num-
ber of variables. It has an increasing number of applications
inmany areas of economy, science and technology. However,
its use in geotechnical engineering is very limited [26].

In the recent past, a new prediction tool, functional net-
work (FN), which is based upon the structure of the phys-
ical world has found its use in many fields of science and
engineering including petroleum engineering [27], signal

processing, pattern recognition, function’s approximations
[28], real-time flood forecasting, science, bioinformatics,
medicine [29], mining, structural engineering [30] and trans-
portation engineering [31]. FNs were introduced by Castillo
[32], Gomez [33] and Castillo et al. [34–36]. Though FN is
similar to ANN, it has added advantages, making it a power-
ful alternative to ANN.

The present paper is an attempt to develop predictionmod-
els for lateral load capacity of piles in clay using MARS
and FN. Different statistical criteria such as correlation
coefficient (R), Nash–Sutcliff coefficient of efficiency (E)
[37], absolute average error (AAE), maximum absolute error
(MAE) and RMSE are used to compare the MARS and FN
models with ANN, Broms [2] and Hansen [1] methods. A
ranking system [38] using rank index (RI) has also been fol-
lowed to compare the different models based on four crite-
ria: (i) R and E for predicted lateral load capacity (Qp) and
measured lateral load capacity (Qm), (ii) mean and standard
deviation of the ratio, Qp/Qm (iii) 50 and 90% cumulative
probabilities (P50 and P90) of the ratio, Qp/Qm and (iv) the
probability of pile load capacity within 20% accuracy level
in percentage using histogram and lognormal probability dis-
tribution of Qp/Qm.

2 Methodology

In the present paper, MARS and FN have been used to train
models used to predict the lateral load capacity of piles. Since
the use of MARS is limited in geotechnical engineering and
FN has not been used in geotechnical engineering, the fol-
lowing section briefly describes the underlying principles of
MARS and FN with examples.

2.1 Multivariate Adaptive Regression Splines

Multivariate adaptive regression splines, as the name sug-
gests, is an adaptive regression technique used to fit the rela-
tionship between a set of input variables and an independent
variable. MARS uses a nonparametric regression technique
for prediction of the dependent variable, i.e. no prior assump-
tion is made about the relationship between the dependent
and independent variables. This relation is constructed from
a set of coefficients and basis functions (BFs) determined
entirely from the data in hand. Thus, MARS is advantageous
over other statistical techniques for problems with a greater
amount of input data.

MARS uses a divide and conquer strategy to determine
the relation between the dependent and independent vari-
ables. This includes the division of the training data set into
a number of piecewise linear segments called splines of dif-
ferent gradients. The endpoints of splines are knownas knots,
and the piece-wise linear functions or piece-wise cubic func-
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tions between two knots are known as a BF. For simplicity,
only piece-wise linear functions have been discussed here
and used for the prediction model of lateral load capacity of
piles.

An algorithm forMARSwas developed by Friedman [25]
based on the above strategy. MARS fits data through a two-
step process:

i. Forward stepwise algorithm: this is the step where the
BFs are added. Initially, a model is constructed only with
the intercept, β0. In each subsequent step, the BF that will
produce the largest decrease in the training error is added.
This process continues till a predetermined maximum
number of BFs is reached. This leads to an overfitted
model. An adaptive regression algorithm is used to search
for knot locations among all the variables.

ii. Backward pruning algorithm: this step is applied to elimi-
nate the overfitting of the data. In this process, the terms in
the model are pruned by removing terms one by one. The
least effective term is removed in each pass to achieve at
the best possible submodel. Model subsets are compared
using the generalized cross-validation (GCV) technique.
For a data with N samples, GCV is calculated using the
equation:

GCV =
1
N

∑N
i=1[Yi − f (Xi )]2

[
1 − M+d(M−1)/2

N

]2 (1)

where M is the number of BFs, d is the penalizing parame-
ter, N is the number of data sets and f (Xi ) denotes the pre-
dicted values of theMARSmodel. The denominator of GCV
is responsible for increasing variance in case of increasing
model complexity. The term (M − 1)/2 in the denominator
represents the number of knots. Thus, GCV penalizes BFs as
well as knots.

To understand MARS better, we consider a data set with
y as an output and X = {X1, X2, X3, . . . , X p} as an input
matrix containing p variables. A model generated byMARS
would be of the form,

y = f
(
X1, X2, X3, . . . , X p

) + e = f (X) + e (2)

where e is the distribution of error. The function f (x) is
approximated using BFs which may be piece-wise linear or
piece-wise cubic functions. For simplicity, only piece-wise
linear functions are discussed here. A piece-wise linear func-
tion is of the form max(0, x − t) where t is the location of a
knot. It is defined as,

max (0, x − t) = {x − t, if x > t or, 0 otherwise} (3)

Finally, f (x)is defined as a linear combination of BFs and
their interactions and is expressed as

f (X) = β0 +
∑M

i=1
βmλm(X) (4)

where each λm is a BF, which can be a spline or a product
of two or more splines. The coefficients β are constants esti-
mated using the least squares method.

Figure 1 gives an example of howMARS uses piece-wise
linear splines to fit a data set. We took an example of 22 data
sets one input and one output. The input {X} consisted of
random numbers between 1 and 12, and the output {Y } was
calculated using the equation

Yi = sin (Xi ) + cos(Xi ) (5)

Further, the data were normalized between 0 and 1 and were
analysed with MARS. The model developed by MARS for
this data set was found to be

Ŷ = 1.91 − 3.22 × BF1 − 10.69 × BF2 − 7.87 × BF3 (6)

where Ŷ denotes predicted values and,

BF1 = max (0, Xi − 0.40) (7)

BF2 = max (0, 0.40 − Xi ) (8)

BF2 = max (0, 0.65 − Xi ) (9)

The knots for this MARSmodel are thus located at x = 0.40
and x = 0.65. A correlation value of 0.983 was found
between original and predicted values of MARS. It must
be noted that we need to put normalized values of Xi in
Eqs. (7)–(9) and the denormalized value of predicted Yi can
be calculated using Eq. (10).

Ŷdenorm = Ŷnorm × (
Xi(max) − Xi(min)

) + Xi(min)

(10)

Fig. 1 Use of piece-wise linear
splines by MARS to fit a data
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Thus, MARS not only predicts the value of output with high
accuracy it also simplifies a complex equation as Eq. (5) to
a simple linear equation.

2.2 Functional Networks

Functional Networks are a recently introduced extension of
neural networks. A FN is termed as a novel generalization
of neural networks because of its ability to take into account
both data as well as properties of the function being mod-
elled (domain knowledge) to estimate the unknown neuron
functions. Once the initial topology is available, functional
equations can be used to arrive at a much simpler topol-

ogy. FNs, thus, eliminate the problem of neural networks
being ‘black boxes’ by using both the domain knowledge,
i.e. associative, commutative and distributive, and the data
knowledge to derive the topology of the problem. FNs use
domain knowledge to determine the structure of the network
and data to estimate the unknown neuron functions. In FN,
arbitrary neural functions are allowed and they are initially
assumed to be multiargument and vector-valued functions.

2.2.1 Differences Between FN and ANN

Figure 2 shows a typical neural network and its corresponding
FN.The characteristic features of theFNs and their respective

Fig. 2 A neural network and its equivalent functional network. a A neural network. b Functional network equivalent to the neural network in
Fig. 1a.
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differences from the neural networks can be enumerated as
follows:

1. In FN, the information for selection of topology can be
derived either from the data or from domain knowledge
or from combinations of the two, whereas for neural net-
works, only the data are used.

2. In FNs, the functions are learned during the structural
learning and estimated during the parametric learning,
whereas in neural networks, the neuron functions are
assumed to be fixed and known and only the weights
are learned.

3. FN can use arbitrary multiargument and vector-valued
functions, whereas in neural networks, they are fixed sig-
moidal functions.

4. Intermediate layers of units are introduced in FN archi-
tectures to allow several neuron outputs to be connected
to the same units. This is not possible in neural networks.

2.2.2 Working with Functional Networks

Figure 2b shows the main elements generally encountered in
every FN. They can be enumerated as:

1. Storing Units

• One layer eachof input storingunits andoutput storing
units for the input data and output data, respectively.
For example, in Fig. 2b, x1, x2, x3, etc. are the inputs
and f4, f5. are the outputs. In addition, there may be
one or many layers of processing units, which process
inputs from the previous layer and feed the output to
the next layer, e.g. f6 in Fig. 2b.

• Intermediate storing units that contain intermediate
information produced by neurons (X4, X5 in Fig. 2b).

2. Directed links to connect various input, output and inter-
mediate units in accordance with the advance of the algo-
rithm of FN.

Following are the steps required to work with FNs:

Step 1: the physical relationship between input and output.
Step 2: based on the data available in the problem, the ini-
tial topology of the FN is selected.Unlike neural networks,
where the topology is selected by a trial and error method,
the topology in FN is selected on the basis of properties
and leads to selection of a single network structure.
Step 3: the network achieved initially is simplified using
functional equations. For a givenFN, it is assessedwhether
there exists another simpler network that gives the same
output for the given set of inputs. If there exists such a
network, the complex and simpler networks are called as
equivalent FNs. This is known as structural learning.

Step 4: for a given topology, a unique neuron function is
arrived that produces a set of output.
Step 5: this step includes collection of data for learning of
the network.
Step 6: the neuron functions are estimated based on the
data in step 5 and combination of given functional fami-
lies. The learning may be linear or nonlinear based on the
linearity of the neuron functions obtained.
Step 7: the obtained model is checked for errors and
cross validated against a different set of data. The learn-
ing method of a FN consists of obtaining the neural
functions based on a set of data U = {Ii , Oi } , {i =
1, 2, 3, 4 . . . , n}. The learning process is based on min-
imizing the Euclidean norm of the error function, given
by

E = 1

2

∑n

i=1
(Oi − F(i))2 (11)

The approximate neural function fi (x) may be arranged
as

fi (x) =
∑m

j=1
ai j∅i j (X) (12)

where ∅ = shape functions with algebraic expressions
(1, x, x2, x3, . . . , xn), trigonometric functions such as [1,
sin (x) , cos (x) , sin (2x) , cos (2x) , sin (3x) , cos (3x)],
or exponential functions such as (1, ex , e2x , . . . , enx ). The
associative optimization function may lead to a system of
linear or nonlinear algebraic equations.

The knowledge of functional equations is essential while
dealing with FNs. A functional equation is an equation in
which the unknowns are functions, excluding differential and
integral equations. The most common example of functional
equation is the Cauchy’s functional equation:

f (x + y) = f (x) + f (y); x, y ∈ R (13)

2.2.3 Associativity Functional Network

This paper applies the use of associativity FNs. In general,
with the use of the basic theory of functional equations, any
multi-input network can be transformed to an associative net-
work [30,33]. To illustrate this, consider a property Y that
depends on three inputs {x1, x2, x3}. Consider first, the effect
of inputs x1and x2 on Y in the form of a function F1(x1, x2).
The effect of the third input x3 can be incorporated by means
of another function G1 in the form Y = G1[F1 (x1, x2) , x3].
Assuming such a relation exists for a permutation of any two
inputs, we get a series of functional equation as:

Y = G1 [F1 (x1, x2) , x3] = G2[x1, F2 (x2, x3)]
= G3 [x2, F3 (x1, x3)] (14)
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In Eq. (14), the functions F1, F2, F3,G1,G2 and G3 are
invertible with respect to both variables. The FN based on
Eq. (14) in shown in Fig. 3a. To further simplify the FN
in Fig. 3a, consider the solution of the functional equa-
tions in (6). The generalized solution of an equation of the
form G1 [F1 (x1, x2) , x3] = G2 [F2 (x2, x3) , x1] is given
by

G1 (x1, x2) = k [m (x1) + n (x2)] F1 (x1, x2)

= m−1 [p (x1) + q (x2)] (15a)

G2 (x1, x2) = k [p (x1) + l (x2)] F2 (x1, x2)

= l−1 [q (x1) + l (x2)] (15b)

Substitution of Eq. (15a, 15b) in Eq. (14) gives us,

Y = G1 [F1 (x1, x2) , x3]

= G2 [F2 (x2, x3) , x1]

= k[p (x1) + q (x2) + n(x3)] (16)

The representation of FN we get from k[p (x1) + q (x2) +
n(x3)] is given in Fig. 3b, which is equivalent to the FN in
Fig. 3a as they both give the same output Y given the inputs
{x1, x2, x3}. Figure 3b is the generalized associativity model
of the FN in Fig. 3a.

With two inputs x1 and x2 and an output x3, we can obtain
an associative FN as follows:

Fig. 3 A functional network and its associative model equivalent resulting from a three-input one-output problem. a Functional network resulting
from Eq. (14). b Equivalent generalized associative model of functional network
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fs(xs) =
m∑

i=1

asiφsi (17)

where s = number of inputs, φsi can be polynomial, trigono-
metric, exponential or any acceptable function and is called
as shape function and m is the degree of functions used. The
function f3 can be expressed as:

f3(x3) =
m∑

i=1

a3iφ3i (18)

From the input functions, it follows that,

f3 (x3) = f1 (x1) + f2(x2) (19)

Thus, the error in the j th data is given by,

e j = f1(x1) + f2(x2) − f3(x3) (20)

To estimate the coefficients, ai , i = 1, 2, 3, . . .m, the sum
of squared errors can be minimized as:

E =
n∑

j=1

(
m∑

i=1

ai [φi (x1 j ) + (φi (x2 j ) − φi (x3 j )]
)2′

(21)

Subject to, f (x0) =
m∑

i=1

aiφi (x0) = α (22)

where α is a real constant.
An auxiliary function, using the Lagrangian multiplier

technique, can be built as:

Eλ =
n∑

j=1

(
m∑

i=1

aibi j

)2

+ λ

(
m∑

i=1

aiφi (x0) − α

)

, (23)

where, bi j = φi (x1 j ) + φi (x2 j ) − φi (x3 j ) (24)

The minimum of Eq. (23) is found from Eqs. (25) and (26).

∂Eλ

∂ar
= 2

n∑

j=1

(
m∑

i=1

aibi j

)

br j + λφr (x0) = 0;

r = 1, 2 . . .m, (25)

∂Eλ

∂λ
=

m∑

i=1

aiφi (x0) − α = 0 (26)

The above system of equations has (m + 1) equations and
(m + 1) unknowns and can be solved to get the coefficients
ai , i = 1, 2, 3, . . .m.

In matrix form,

(
BBT φ0

φT
0 0

) (
aT

λ

)

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
′
′
0

⎞

⎟
⎟
⎟
⎟
⎠

(27)

where B is the matrix of coefficients bi j and a = a1, a2, a3,
. . . am . This matrix can be written in simpler form as,

[B] {u} = {v} (28)

Solving for unknowns for any given v, we get u and thus we
get the coefficients a = a1, a2, a3, . . . am . For m = 1, a can
be used to write the equation,

f3 (x3i ) = f1 (x1i ) + f2 (x2i ) = a31 + a32x31or, x31

= [ f3 (x31) − a31]

a32
(29)

2.2.4 Example of a Two-Input, One-Output Associativity
Functional Network

Figure 4 shows an associative FN with two inputs and one
output. To illustrate the use of such FN, we consider the
equation,

x3 = log10 (x1 + x2) + exp(x1·x2) (30)

We assume an associative FN as shown in Fig. 4. It has
two inputs, x1 and x2 and an output x3. A sample of 23 inputs,
of randomly generated numbers between 0 and 1, was taken,
and the output for each sample was calculated using Eq. (30).
The input and output values were normalized between 0 to
1, and then Eq. (27) was applied to them. The following
functional equations were obtained:

f1(x1) = 0.6996 − 0.4496x1 (31)

f2 (x2) = 0.7755 − 0.3855x2 (32)

f3 (x3) = 1.4248 − 1.0248x3 (33)

The value of x3 corresponding to Eqs. (31)–(33) was calcu-
lated using Eqs. (29) and was obtained as

Fig. 4 An associativity
functional network
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Table 1 Maximum and minimum values of the data used in this study

Input D (mm) L (mm) E (mm) Su (kPa) Qm (N)

Maximum 33.3 300 50 38.8 225

Minimum 6.35 130 0 3.4 29.5

Mean 17.8 278.9 44.2 9.9 72.8

Standard
deviation

6.1 52.8 14.7 10.1 36.9

x3 = 0.0490 + 0.4387x1 + 0.3761x2 (34)

The R value between the x3 values calculated from Eqs. (30)
and (34) was found to be 0.987, showing a good prediction
of the observed values by this FN. It can also be observed
that the equation for x3 obtained from FN is simpler than the
original equation.

3 Database and Preprocessing

In the present study, the database of Das and Basudhar [10]
has been considered. Das and Basudhar [10] have developed
an ANN model with these data. Each sample has four inputs
viz. diameter of pile (D), length of pile (L), eccentricity of
load (e) and undrained shear strength of soil (Su), and one
output viz. measured lateral load capacity (Qm). The varia-
tions such as maximum, minimum, mean and standard devi-
ation values of the input and output parameters are given in
Table 1.

For MARS analysis, out of the mentioned 38 data, 29
randomly selected data were selected for training and the
remaining 09 data were used for testing the developed model
as per Das and Basudhar [10]. However, for FN analysis, 30
randomly selected data were selected for training and 8 data
were selected for testing. The data were normalized in the
range [0, 1] for analysis. In this study, both MARS [39] and
FN have been implemented with MATLAB [40].

4 Results and Discussion

The results of the present study are as follows. A MARS
model with six BFs was adopted in this study. A MARS
model with more number of BFs can give better results, but
it leads to a more complex model equation. The prediction
equation for the adopted MARS model can be presented as:

Qp = 0.18 + 0.28 × BF1 + 1.34 × BF2 − 1.79 × BF3

−1.59 × BF4 + 0.50 × BF5 + 5.90 × BF6 (35)

where

BF1 = max(0, 1 − e) (36)

BF2 = max(Su − 0.11) (37)

BF3 = max(0, 0.11 − e) (38)

BF4 = BF2 ∗ max(0, 1 − L) (39)

BF5 = max(0, D − 0.43) (40)

BF6 = max (0, 0.52 − D) × max (0, D − 0.26) (41)

The value of the inputs in Eqs. (36)–(41) is the normalized
value between 0 and 1. The denormalized value of Qp is
given by:

Qpdenorm = Qpnorm (225 − 29.5) + 29.5 (42)

The FNmodel was created with 30 randomly selected data as
the training set, and the rest of the data were used for testing.
An FN model is developed by selecting an appropriate BF
and its degree. A model equation is prepared from the analy-
sis of training data, and the model is validated with testing
data. Figure 5 gives a plot of R values versus the degree for
polynomial, exponential, sin, cos and tan functions.

It can be seen that, for the set of data in this problem, R
value for all the functions reach amaximumvalue near degree
five and remain constant after that. Thus, taking a degree five
model would provide the most accurate result, but it leads
to a complex output equation. Hence, a trade-off was made
in the present study and a FN model with degree three and
polynomial BF was adopted. Figure 6 gives the associative
FN used in this study.

The equation for the prediction of the values is obtained
as follows:

y = a0 +
n∑

i=1

m∑

j=1

ai j fi (x j ) (43)

where n = no. of variables,m = degree of variable

Fig. 5 Plot of R versus degree of function for FN
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Fig. 6 Associative functional
network used in this study

Here, n = 4 and m = 3, and the above Eq. (43) can be
written in expanded form as:

a0 = −0.434 (44)

f1 (x1) = 0.920D − 1.353D2 (45)

f2 (x2) = 1.289L3 (46)

f3 (x3) = −1.033e3 (47)

f4 (x4) = 1.853Su − 1.132S2u (48)

In Eqs. (44)–(48), the values of the inputs to be used are
their normalized values between 0 and 1. The sum of values
fromEqs. (44)–(48) give the normalized value of output. The
denormalized value of Qp is given by:

Qpdenorm = Qpnorm (225 − 29.5) + 29.5 (49)

It is worth mentioning here that Eqs. (32) and (43) can be
used to predict the Q for a new set of data, provided all the
inputs for new set lie within the maximum and minimum
range of inputs used in this study.

4.1 Comparison of Models in Terms of Statistical
Parameters

Figure 7a, b shows the performance of Qpand Qm forMARS
and FN models. It can be seen that the scatter of the data
for both MARS and FN is within the 80% prediction limit.
Table 2 gives the values of different statistical parameters for
both MARS and FN models.

It is observed from Table 2 that MARS and FN have
approximately the same values of R for training (0.980
and 0.987, respectively) and testing data (0.991 and 0.994,
respectively). Both the models have high and close values
of R for training and testing data, showing a better predic-
tion and better generalization, respectively. The data set used
in this study has also been used by Pal and Deswal [22]

Fig. 7 Plot of measured and predicted values of lateral load capacity
of pile for a training and b testing data for MARS and FN models
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Table 2 Statistical parameters for MARS and FN, DENN, BRNN,
Hansen and Broms models

Models Statistical performances

R E AAE MAE RMSE

FN
Training 0.986 0.973 4.697 17.824 6.277

Testing 0.99 0.928 5.135 14.611 6.832

MARS
Training 0.98 0.96 6.199 20.899 7.594

Testing 0.991 0.968 7.239 13.626 5.091

ANN
Training 0.98 0.959 5.647 18.705 7.667

Testing 0.967 0.905 7.17 18.11 8.549

Hansen
Training 0.95 0.209 30.712 65.36 33.825

Testing 0.919 0.119 23.65 49.48 26.066

Broms
Training 0.967 0.807 12.391 48.66 16.703

Testing 0.985 0.574 12.082 46.38 18.127

to develop GPR and SVM models. The value of R for the
GPR and SVMmodel was 0.980 and 0.920, respectively, for
the testing data. Das and Basudhar [10] obtained R value
of 0.987 and 0.947 for the training and testing data, respec-
tively, using Levenberg–Marquardt (LM) algorithm, ANN.
However, as per Das et. al. [12], differential evolution algo-
rithm is better than LM neural network. So, in this study,
ANN was implemented using a differential evolution train-
ing algorithm. Thus, based on the R value, the performance
of MARS and FN is better than of ANN (0.980 for training
and 0.991 for testing), Broms (0.967 for training and 0.985
for testing) and the Hansen (0.950 for training and 0.919 for
testing) model.

It is also known that R is a biased estimate [41]; hence,
the results were also compared in terms of Nash–Sutcliff
coefficient of efficiency (E) [37]. E is defined as

E = E1 − E2

E1
(50)

where

E1 =
∑n

t=1

(
Qm − Qm

)2
(51)

E1 =
∑n

t=1

(
Qp − Qm

)2 (52)

And Qm, Qm, Qp are the measured, average and predicted
lateral load capacity of pile. The E value compares the mod-
elled and measured values of the variable and evaluates how
far the network is able to explain total variance in the data
set. Table 2 provides the E value for MARS and FN and their
comparison with other models. The E value for training in
FN (0.970) was better than the E value for MARS (0.960).
However, the E value for testing in FN (0.925) is less the than

E value forMARS (0.968). The E value forMARS and FN is
better than forANN (0.959 for training and 0.905 for testing),
Broms (0.807 for training and 0.574 for testing) and Hansen
(0.209 for training and 0.119 for testing). Only E for FN in
testing was found to have a lower value than ANN. Table 2
also compares the MAE, AAE and RMSE for training and
testing data sets for MARS, FN and other prediction models.
Based upon MAE, AAE and RMSE values, the performance
of MARS and FN is better than of ANN, Broms and Hansen
models. However, in this case also the MAE and RMSE for
FN testing data (14.581 and 7.239, respectively) were found
to be more than those for MARS testing data (13.626 and
5.091, respectively).

The mean (μ) and standard deviation (σ ) of Qp/Qm are
important indicators of the accuracy and precision of the pre-
diction method. Under ideal conditions, an accurate and pre-
cise method gives the mean value as 1.0 and the standard
deviation to be 0. A μ value >1.0 indicates over prediction
and under prediction if <1. Cumulative probability of the
Qp/Qm has also been considered for the assessment of the
model. The ratio Qp/Qm is arranged in ascending order, and
the cumulative probability is calculated from the formula:

P = i

n + 1
(53)

where i is the order number given to the Qp/Qm ratio and
n is the number of data points. If the computed value of
50% cumulative probability (P50) is less than unity, under
prediction is implied; values greater than unity means over
prediction.The ‘best’model is corresponding to the P50 value
close to unity. The 90% cumulative probability (P90) reflects
the variation in the ratio of Qp/Qm for the total observations.
The model with Qp/Qm close to 1.0 is the better model.

Figure 8 shows the variation of Qp/Qm with cumulative
probability (%) for MARS and FN models. Table 3 gives the
P50 and P90 values for training and testing data for MARS,
FN and other prediction models.

From Table 3, it can be observed that the P50 and P90 val-
ues for testing in MARS (1.016 and 1.196, respectively), FN
(0.920 and 1.009, respectively) and ANN (0.945 and 1.161,
respectively) are close to 1 indicating a good prediction. The
values for FN for P90 are marginally better than those for
MARS and ANN. In comparison with other models, the val-
ues of P50 and P90 for testing in Broms (1.140 and 1.392,
respectively) and Hansen (0.523 and 0.838, respectively) are
not close to 1 showing a better performance for MARS and
FN in terms of cumulative probability. Figure 9 gives the
log-normal distribution of Qp/Qm for MARS and FN.

Figure 9 shows that 100% of the data in both training
and testing lie within ±20% accuracy. Table 3 provides a
comparison of log-normal distribution between MARS, FN
and other prediction models. It is observed that only ANN

123



Arab J Sci Eng (2015) 40:1565–1578 1575

Fig. 8 Plot of cumulative probability of Qp/Qm forMARS, FN,ANN,
Broms and Hansen models

has a satisfactory set of data lying between ±20% accuracy
(90% for training and 84% for testing).

4.2 Ranking of Models

As discussed above, it was observed that the performance
of different prediction models was found to vary based on
different statistical parameters. Hence, a ranking system as
suggested by Abu-Farsakh and Titi [38] has been employed
to assess the overall performance of the MARS, FN, ANN,
Hansen and Broms. The RI is the sum of four individual rank
criterion, i.e.

RI = R1 + R2 + R3 + R4, (54)

where R1 is based on best fit calculations (values of R and
E), R2 is based on arithmetic calculations of Qp/Qm (aver-
age,μ and standard deviation, σ), R3 is based on cumulative
probability of Qp/Qm(P50 and P90) and R4 is based on pre-
diction of lateral load capacity within ±20% accuracy. The
ranking system for different models is presented in Table 3.
A lower value of RI indicates better performance of a model.
Thus, it can be seen from Table 3 that FN (RI = 5) has the
best performance among all models. FN is closely followed
by MARS (RI = 7) as the second best model. The other
models in the order of ranking are ANN (RI = 12), Broms
(RI = 17) and Hansen (RI = 19).

4.3 Sensitivity Analysis

The sensitivity analysis is an important aspect of a developed
model to find out important input parameters. In the present
study, the sensitivity analysis was carried according to Gan-
domi et al. [42]. According to this concept, the sensitivity Ta
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Fig. 9 Log-normal distribution of Qp/Qm for MARS, FN, ANN,
Broms and Hansen models

of output respective to each input parameter is calculated by
the use of Eqs. (55) and (56) according to which the value
of the said input is varied, while the value of all other inputs
are kept constant.

Ni = fmax (xi ) − fmin (xi ) (55)

Si = Ni

/∑n

i=1
Ni (56)

where fmax (xi ) and fmin (xi ) are the maximum and min-
imum of the predicted output over the i th input domain,
respectively, where the other variables are equal to theirmean
values. n is the number of variables. In the present study
n = 4. Table 4 shows the sensitivity analysis of inputs for
MARS and FN models.

For the MARS model, Su is identified as the most impor-
tant input followed by D, e and L . For FN model, L is iden-
tified as the most important input followed by e, Su and D.

4.4 Validation of MARS and FN Modelling

To validate the MARS and FN modelling in predicting the
lateral capacity of a pile accurately, two different models
were developed using the data set of Rao and Suresh Kumar

[43]. Out of 42 data, 34 and 8 data were used for training and
testing, respectively, for both MARS and FN modelling.

A MARS model with 7 BFs was adopted with R value
of 0.993 and 0.972 in training and testing, respectively. The
corresponding equation can be given by:

Qp = 0.22 + 0.73 ∗ MAX (0, Su − 0.22)

− 0.88 ∗ MAX (0, 0.22 − Su)

+ 0.65 ∗ MAX (0, L − 0.03)

− 8.97 ∗ MAX (0, 0.03 − L)

− 0.55 ∗ MAX (0, D − 0.02)

+ 3.44 ∗ MAX (0, 0.03 − e)

− 4.82 ∗ MAX (0, 0.01 − D) (57)

Equation (57) gives the normalized value of Qp and the actual
value can be calculated using Eq. (58).

Qpdenorm = Qpnorm (900 − 29.5) + 29.5 (58)

The FN model was developed with degree 3 and polynomial
BF. The R value of this model was found to be 0.999 and
0.986 for training and testing, respectively. The predictive
equation for the developed FN model can be given by:

Qp =
(
−0.112 + 1.853D − 21.953D2 − 25.327D3

+ 5.491L − 1.882L3 − 3.137e + 23.345e2

− 21.9e3 + 0.981Su − 3.85S3u
)

(59)

Equation (59) gives the normalized value of Qp and the actual
value can be calculated using Eq. (58).

To validate the developed model, two experimental data
that were not used for training or testing were validated to
get the efficiency of both themodels. Equations (57) and (58)
were used to calculate Qp for two new data for to validate the
MARS and FN models, respectively, as shown in Table 5.

It can be seen that for the first data the percentage errors
were 15.4 and 6.60% for the MARS and FN model, respec-
tively. For the second data, the percentage error for MARS
and FN were 12.83 and 3.80%, respectively. Thus, it can be
inferred that both MARS and FN can fairly accurately pre-
dict the value of Q for a new data set. As discussed earlier,

Table 4 Sensitivity analysis of
inputs for MARS and FN
models

Inputs FN MARS

Sensitivity (%) Ranking of input
as per sensitivity

Sensitivity (%) Ranking of input
as per sensitivity

D 33.184 2 38.724 2

L 29097.170 1 6.070 4

e −23336.400 4 192.660 1

Su 1.949 3 34.712 3
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Table 5 Validation data used to
test the efficiency of the
developed MARS and FN
Models

D (mm) L (mm) e (mm) Su (kPa) Qm (N) MARS FN

Qp (N) % Err Qp (N) % Err

13.5 300 50 5.5 50 42.28 15.43 46.70 6.60

13.5 300 50 7.2 64 55.79 12.83 61.56 3.81

in this case also, FN was found to be a better prediction tool
as compared to MARS.

However, the MARS and FN models developed in this
studywere based upon the results obtained from experiments
done on scaled models in laboratory. Appropriate dimen-
sional analysis and scaling effects have to be taken into con-
sideration to apply the results in actual field practice.

5 Conclusions

In this paper, an attempt has been made to develop pre-
diction models for the lateral load capacity of piles in clay
using two recently developed statistical modelling methods:
MARS and FN. Based on the results of MARS and FN mod-
els and the discussion that follows, the following conclusions
can be drawn:

(a) According to a comparison done on the basis of statistical
parameters (R, E, MAE, AAE, RMSE) and properties
of Qp/Qm (μ, σ , cumulative distribution, log-normal
distribution), the performance of MARS and FN is better
than other AI techniques such as ANN and empirical
methods such as Hansen and Broms.

(b) A RI technique previously presented in the literature was
used to assess the overall performance of each technique.
According to RI, FN is the best prediction technique fol-
lowed by MARS, ANN, Broms and Hansen.

(c) A sensitivity analysis was carried out to assess the rela-
tive importance of inputs in each model. For the MARS
model, Su is the most important input, whereas for FN
model, L is the most important input. The identification
of Su as the most important input for the MARS model
is in agreement with Das and Basudhar [10], whereas Su
was found to be themost important input forANNmodel.

(d) Model equations for bothMARSandFNare given,which
can be used by practicing geotechnical engineers to pre-
dict the lateral load capacity of pile in clay to a fair degree
of accuracy when the appropriate field data are available.

(e) The developed model is based on only the data set per-
taining to laboratory investigation results.

References

1. Hansen,B.: The ultimate resistance of rigid piles against transversal
force. Copenhagen,DanishGeotechnical Institute, Bulletin no. 12.,
pp. 5–9 (1961)

2. Broms, B.B.: Lateral resistance of piles in cohesive soils. J. Soil
Mech. Found Engg. ASCE 90((SM. 2), 27–63 (1964a)

3. Broms, B.B.: Lateral resistance of piles in cohesionless soils. J.
Geotech. Eng. 90, 123–156 (1964b)

4. Poulos, H.G.; Davis, E.H.: Pile foundation analysis and design.
Wiley, New York (1980)

5. Matlock,H.; Reese, L.C.:Generalized solutions for laterally loaded
piles. Trans ASCE 127, 1220–1248 (1962)

6. Portugal, J.C.; Seco e Pinto, P.S.: Analysis and design of pile under
lateral loads.In: Proceedings of the 11th international geotechnical
seminar on deep foundation on bored and auger piles, Belgium, pp.
309–313 (1993)

7. Muthukkumaran, K.; Sundaravadivelu, R.; Gandhi, S.R.: Effect of
slope on p–y curves due to surcharge load. Soils Found 48(3), 353–
361 (2008)

8. Begum, N.A.; Muthukkumaran, K.: Experimental investigation
on single model pile in sloping ground under lateral load. Int. J.
Geotech. Eng. 3(1), 133–146 (2009)

9. Muthukkumaran, K.: Effect of slope and loading direction on
laterally loaded piles in cohesionless soil. Int. J. Geomech.
ASCE 14(1), 1–7 (2014)

10. Das, S.K.; Basudhar, P.K.: Undrained lateral load capacity of piles
in clay using artificial neural network. Comput. Geotech. 33, 454–
459 (2006)

11. Hamid, M.; Reza, R.: The estimation of rock mass deformation
modulus using regression and artificial neural networks analy-
sis. Arab. J. Sci. Eng. 35(1A), 205–217 (2010)

12. Das, S.K.; Biswal, R.K.; Sivakugan, N.; Das, B.: Classification of
slopes and prediction of factor of safety using differential evolu-
tion neural networks. Environ. Earth. Sci., Springer 64, 201–210
(2011)

13. Muduli, P.K.; Das, M.R.; Samui, P.; Das, S.K.: Uplift capacity of
suction caisson in clay using artificial intelligence techniques.Mar.
Georesour. Geotechnol. 31(4), 375–390 (2013)

14. Tarawneh, B.; Imam, R.: Regression versus artificial neural net-
works: predicting pile setup from empirical data. KSCE J. Civ.
Eng. 18(4), 1018–1027 (2014)

15. Goh, A.T.C.: Empirical design in geotechnics using neural net-
works. Geotechnique 45(4), 709–714 (1995)

16. Goh, A.T.C.: Pile driving records reanalyzed using neural net-
works. J. Geotech. Eng., ASCE 122(6), 492–495 (1996)

17. Chan, W.T.; Chow, Y.K.; Liu, L.F.: Neural network: an alternative
to pile driving formulas. J. Comput. Geotech. 17, 135–156 (1995)

18. Lee, I.M.; Lee, J.H.: Prediction of pile bearing capacity using
artificial neural networks. Comput. Geotech. 18(3), 189–200
(1996)

19. Teh, C.I.; Wong, K.S.; Goh, A.T.C.; Jaritngam, S.: Prediction
of pile capacity using neural networks. J. Comput. Civ. Eng.,
ASCE 11(2), 129–138 (1997)

20. Abu-Kiefa, M.A.: General regression neural networks for driven
piles in cohesionless soils. J. Geotech. Geoenviron. Eng.,
ASCE 124(12), 1177–1185 (1998)

21. Samui, P.: Prediction of friction capacity of driven piles in clay
using the support vector machine. Can. Geotech. J. 45(2), 288–
295 (2008)

22. Pal, M.; Deswal, S.: Modelling pile capacity using Gaussian
process regression. Comput. Geotech. 37, 942–947 (2010)

123



1578 Arab J Sci Eng (2015) 40:1565–1578

23. Alkroosh, I.; Nikraz, H.: Evaluation of pile lateral capacity in
clay applying evolutionary approach. Int. J. GEOMATE 4(1), 462–
465 (2013)

24. Giustolisi, O.; Doglioni, A.; Savic, D.A.; Webb, B.W.: A multi-
model approach to analysis of environmental phenomena. Environ.
Model. Softw. 22(5), 674–682 (2007)

25. Friedman, J.: Multivariate adaptive regression splines. Ann.
Stat. 19, 1–141 (1991)

26. Samui, P.; Das, S.; Kim, D.: Uplift capacity of suction cais-
son in clay using multivariate adaptive regression spline. Ocean
Eng. 38(17–18), 2123–2127 (2011)

27. El-Sebakhy, E.A.; Asparouhov, O.; Abdulraheem, A.; Al-Majed,
A.; Wu, D.; Latinski, K.; Raharja, I.: Functional networks as a
new data mining predictive paradigm to predict permeability in a
carbonate reservoir. Expert Syst. Appl. 39, 10359–10375 (2012)

28. Castillo, E.; Cobo, A.; Gutierrez, J.M.; Pruneda, R.E.: Working
with differential, functional and difference equations using func-
tional networks. Appl. Math. Model. 23, 89–107 (1999)

29. El-Sebakhy, E.A.; Faisal, K.A.; Helmy, T.; Azzedin, F.; Al-Suhaim,
A.: Evaluation of breast cancer tumor classification with uncon-
strained functional networks classifier. In: Proceeding of the 4th
ACS/IEEE international conference on computer systems and
applications, pp. 281–287 (2006)

30. Rajasekaran, S.: Functional networks in structural engineering. J.
Comput. Civ. Eng. 18, 172–181 (2004)

31. Attoh-Okine, N.O.: Modeling incremental pavement roughness
using functional network. Can. J. Civ. Eng. 32, 899–905 (2005)

32. Castillo, E.: Functional networks. Neural Process. Lett. 7, 151–
159 (1998)

33. Castillo, E.; Ruiz-Cobo, R.: Functional equations in science and
engineering. Marcel Dekker, New York (1992)

34. Castillo, E.;Cobo,A.;Gutierrez, J.M.; Pruneda,E.:An introduction
to functional networks with applications. Kluwer, Boston (1998)

35. Castillo, E.; Cobo, A.; Manuel, J.; Gutierrez, J.M.; Pruneda,
E.: Functional networks: a new network-basedmethodology. Com-
put. Aided Civ. Infrastruct. Eng. 15, 90–106 (2000a)

36. Castillo, E.; Cobo, A.; Gomez-Nesterkin, R.; Hadi, A.S.: A gen-
eral framework for functional networks. Networks 35(1), 70–
82 (2000b)

37. Das, S.K.; Basudhar, P.K.: Prediction of residual friction angle of
clays using artificial neural network. Eng. Geol. 100(3–4), 142–
145 (2008)

38. Abu-Farsakh, M.Y.; Titi, H.H.: Assessment of direct cone pene-
tration test methods for predicting the ultimate capacity of friction
driven piles. J. Geotech. Geoenviron. Eng. 130(9), 935–944 (2004)

39. Jekabsons, G.; ARESLab: Adaptive regression splines toolbox for
Matlab/Octave. http://www.cs.rtu.lv/jekabsons/ (2011)

40. MathWork Inc.: Matlab User’s Manual, Version 6.5. Natick
(MA).(2005)

41. Das, S.K.; Sivakugan, N.: Discussion of: intelligent computing
for modeling axial capacity of pile foundations. Can. Geotech.
J. 47, 928–930 (2010)

42. Gandomi, A.H.; Yun, G.J.; Alavi, A.H.: An evolutionary approach
for modeling of shear strength of RC deep beams. Mater. Struct.
(2013) doi:10.1617/s11527-013-0039-z

43. Rao, K.M.; Suresh Kumar, V.: Measured and predicted response
of laterally loaded piles. In: Proceedings of the sixth international
conference and exhibition on piling and deep foundations, India,
pp. 1.6.1–1.6.7 (1996)

123

http://www.cs.rtu.lv/jekabsons/
http://dx.doi.org/10.1617/s11527-013-0039-z

	Prediction of Lateral Load Capacity of Pile in Clay Using Multivariate Adaptive Regression Spline and Functional Network
	Abstract
	1 Introduction
	2 Methodology
	2.1 Multivariate Adaptive Regression Splines
	2.2 Functional Networks
	2.2.1 Differences Between FN and ANN
	2.2.2 Working with Functional Networks
	2.2.3 Associativity Functional Network
	2.2.4 Example of a Two-Input, One-Output Associativity Functional Network


	3 Database and Preprocessing
	4 Results and Discussion
	4.1 Comparison of Models in Terms of Statistical Parameters
	4.2 Ranking of Models
	4.3 Sensitivity Analysis
	4.4 Validation of MARS and FN Modelling

	5 Conclusions
	References




