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Abstract Information recommendation between different
user groups has recently received a lot of attention in the
information service community.However,wefind that obtain-
ing the exact optimal recommendation solution is anNP-hard
problem.Based on the abovefinding, in this paper,we present
an efficient method achieving approximate optimal recom-
mendation solution (AAORS) to reduce this NP-hard prob-
lem to an equivalent extendedSteiner tree problemandobtain
the approximate optimal recommendation solution appIRS
in polynomial time. We theoretically prove that the global
trust value of appIRS is at least 63% of that obtained for
the exact optimal solution optIRS. Moreover, in real appli-
cations, based on a computed index of reputation gain, we
also adjust the recommendation solution produced by the
AAORS method in polynomial time and obtain the optimal
recommendation solution which satisfies the global reputa-
tion constraint. The detailed theoretical analyses and exten-
sive experiments demonstrate that our proposed methods are
both efficient and effective.

Keywords Social network · Information recommendation ·
User group · Approximation algorithm · Steiner tree

1 Introduction

Social networks have already developed significantly in the
era of Web 2.0 in facilitating information recommending
and sharing between people. Compared with traditional print
media, networkmedia etc., peoplemay join in different social
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groups via Web, WAP and various Apps which are based
on the technology of information sharing, transmission and
acquisition, where they can gain more information and more
interactive experience [1]. Just by virtue of this peculiar
mode of fission information transmitting and sharing gener-
ated from social relationships, the social network has quickly
swept from the government, celebrities, stars, to general pub-
lic, and it has been an important platform gathering specific
user groups [2].

In recent years, the group model has been widely intro-
duced in social networks. The group model is based on a
close relationship through which users are combined in a
community. Owing to the group model, users are introduced
from a relatively closed friendship into groups thus creat-
ing a new and more open social relationship to transmit and
share information more conveniently and efficiently [3,4].
Xiang et al. [5] computed the node degrees, aggregation
coefficient, length of characteristic path and the inflation
rate, etc., in social networks and then depicted the charac-
teristics of social networks from different aspects. Borgatti
et al. [6] designed amachine learning systemReGroup based
on terminal interaction to assist users to create personalized
groups in social networks. When a user requests to join in
a social network group, ReGroup will learn the character-
istics of group members and obtain the relevant probabil-
ity model, which will be used to judge whether or not the
user is suitable for this group. Through experimental eval-
uation of the system, the author showed that ReGroup can
efficiently collaborate to create a large-scale heterogeneous
social network groups. Amershi et al. [7] used two network
data sets DBLP [8] and LiveJournal [9] to test and analyse the
principles of growth and evolution of social network groups.
Backstrom et al. [10] took two differing social networks,
World of Warcraft (WoW) [11] and DBLP, as testing plat-
forms to build models and predict the dynamic stability of
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the social network groups. The results showed that the level
of diversification and social activities of network members
are two key factors in maintaining stability of social net-
work groups while the presence of a specific set of network
members plays an important role in the maintenance of the
stability of social network groups. Patil et al. [12] proposed
a model of computing trust between social network groups.
There are four main evaluation properties of the trust model,
namely availability, reliability, maintainability and fault tol-
erance. Sagar [13] designed an effective heuristic algorithm
to obtain approximate optimal active social network groups
given the specific active hosts, a set of tags describing active
topics, desired size of the group and a set of networkmembers
to be included.

We find that current research work on social network
groups mainly focuses on the establishment and evolution
of groups but little on information transmitting and sharing.
While social network groups are put forward to facilitate
information transmitting and sharing more efficiently [14].
Thus, based on the current popular mechanism of trust rela-
tionshipbetweenmembers and the evaluationmodels of objec-
tive reputation and subjective trust [15], we study the opti-
mal solution problemof recommending information between
groups, which is the basis of information transmitting and
sharing between groups. However, we find that it is an NP-
hard problem to get the exact optimal solution of recom-
mending information.

Based on the above, in order to obtain the approximate
optimal recommendation solution, we propose an efficient
method achieving approximate optimal recommendation
solution (AAORS) which has a time complexity of

O
(
n1 × n2 + (n1 + n2)

e/(e−1) + (n1 + n2)log(n1 + n2)
)

≈ O
(
n1 × n2 + (n1 + n2)

1.58 + (n1 + n2)log(n1 + n2)
)

where n1 and n2 denote the numbers of members in two
social network groupsG1 andG2, respectively. The AAORS
method first evaluates individual objective reputation and
subjective trust of members in groups G1 and G2 and then
expresses G1 and G2 as a directed weighted graph ℘ so
that the optimal solution of information recommendation is
equivalent to the problem of finding the extended Steiner
tree (EST) [16] on the graph ℘. We theoretically prove that
the global trust value of appIRS obtained for AAORS is at
least 63% of that obtained for the exact optimal solution
optIRS. Furthermore, in real applications, we observe that the
global objective reputation should not be lower than a certain
threshold ∂ . In order to obtain the optimal recommendation
solution satisfying the global objective threshold ∂ , we cal-
culate the index of reputation gain and utilize it to quickly
adjust the recommendation solution produced by theAAORS
method in polynomial time complexity of O(n31 + n2 × n21).
The detailed theoretical analyses and extensive experiments

demonstrate that our proposedmethods are both efficient and
effective.

The rest of this paper is organized as follows. Section 2
presents the problem description. Section 3 describes our
AAORS method which can be used to efficiently obtain the
approximate optimal recommendation solution. Given the
global constraint to the problem due to objective reputa-
tion, Sect. 4 presents a novel strategy to extend the rec-
ommendation solution produced by the AAORS method.
Both the AAORSmethod and the extendedX-AAORSmeth-
ods are implemented by computationally efficient algorithms
exhibitingpolynomial timecomplexity.Wepresent the exper-
imental study in Sect. 5. Finally, Sect. 6 concludes the paper
with directions for the future work.

2 Problem Description

In this section, we describe in detail the problem of obtaining
theoptimal solutionof information recommendationbetween
groups.

Assume that there are two groupsG1 andG2 in social net-
works, respectively, withmember sets ofG1 = {v11, . . . , v2n1}
and G2 = {v21, . . . , v2n2}. Without loss of generality, we just
analyse the process of information recommendation fromG1

to G2. According to the definition in the [17], each member
v1i (1 ≤ i ≤ n1) in G1 is associated with a value of objec-
tive reputation that is the common opinion from all members
in the group including v1i , denoted as obj(v1i ). Meanwhile,
according to the definition in [18], each member v2j (1 ≤
j ≤ n2) in G2 has subjective trust towards c j members
v11, . . . , v

1
c j in G1 where c j ≤ n1, denoted as sbj(v2j , v

1
1),

. . . , sbj(v2j , v
1
c j ) respectively. Figure 1 shows the process of

information recommendation from G1 which has six mem-
bers to G2 which has three members.

We can see from Fig. 1 that six members in G1 are all
associated with the values of objective reputation. For each
member v1i (1 ≤ i ≤ n1), the value of its objective reputation
is greater, which means v1i is more reliable. All three mem-
bers of group G2(v

2
1, v

2
2 and v23) receive information recom-

mended from somemembers inG1 : v21 receives information
from v11, v

1
4 and v16; v22 receives information from v11, v

1
2, v

1
3

and v15; v23 receives information from v12 and v13. And a value
of subjective trust is associated with each recommendation
path. The greater the value of subjective trust is, the more the
members in G2 will subjectively trust information from ones
in G1.

It is not difficult to see that the process of information
recommendation from G1 to G2 forms a weighted directed
acyclic graph G = (N , E,W ):

(1) the set of vertices N = G1 ∪ G2 = {v11, . . . , v1n1 , v21,
. . . , v2n2};
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Fig. 1 The example of the
process of information
recommendation from G1 to G2

Fig. 2 Theweighted directed acyclic graph of information recommen-
dation from G1 to G2

(2) the set of edges E = {v1i → v2j | there is a recommen-

dation path from v1i to v2j };
(3) the weight function W on the sets of N and E as W :

N ∪ E → Z+, such that for each v1i in G1, the value
ofW equals obj(v1i ), while for each edge v1i → v2j , the

value of W equals sbj(v2j , v
1
i ).

Figure 2 shows the weighted directed acyclic graph
G = (N , E,W ) of information recommendation from G1

to G2 with N = {v11, v12, v13, v14, v15, v16, v21, v22, v23}, E =
{v11 → v21, v

1
4 → v21, v

1
6 → v21, v

1
1 → v22, v12 → v22, v

1
3 →

v22,v
1
5 → v22, v

1
2 → v23, v

1
3 →v23} andW ={obj (v11), obj (v12),

obj(v13), obj (v
1
4), obj(v

1
5), obj(v

1
6), sbj(v

1
1, v

2
1), sbj(v

1
4, v

2
1),

sbj(v16, v
2
1), sbj(v

1
1, v

2
2), sbj (v

1
2, v

2
2), sbj(v

1
3, v

2
2), sbj(v

1
5, v

2
2),

sbj(v12, v
2
3), sbj(v

1
3, v

2
3)}.

Based on the weighted directed acyclic graph G, we give
the problem definition of obtaining the optimal solution of
information recommendation from G1 to G2.

2.1 Problem Definition

Assume there are two groups G1 and G2 in social networks
whose member sets are, respectively, G1 = {v11, . . . , v1n1}
and G2 = {v21, . . . , v2n2}. Each member v1i (1 ≤ i ≤ n1)
in G1 is associated with a value of objective reputation,
denoted as obj(v1i ), while each member v2j (1 ≤ j ≤ n2)

in G2 has subjective trust towards c j members v11, . . . , v
1
c j

inG1 where c j ≤ n1, denoted as sbj(v2j , v
1
1), . . ., sbj(v

2
j , v

1
c j )

respectively. Then the optimal solution optIRS of information
recommendation from G1 to G2 can be defined as follows:
Obtaining subG1 ⊆ G1 such that for ∀v2j (1 ≤ j ≤ n2) ∈
G2, v

2
j will receive information from some members in G1,

and ascertaining the recommendation path from members in
subG1 to members in G2 such that optIRS(subG1,G2) =∑

v1i ∈subG1
obj(v1i )+

∑
∀v2j∈G2

sbj(v2j , v
1
i ) is greatest.

From the above problem definition, we can see that for
two information recommendation solutions IRSA and IRSB,
if IRSA(subG1,G2) > IRSB(subG2,G2), then IRSA is better
than IRSB , which means that information recommendation
from subG1 toG2 ismore reliable than that from subG2 toG2.

3 AAORS: Obtain the Approximate Recommendation
Solution

It is an NP-hard problem to obtain the exact optimal solution
of information recommendation between groups which is
shown in Theorem 1.

Theorem 1 Assume there are two groups G1 and G2 in
social networks whose member sets are, respectively, G1 =
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{v11, . . . , v1n1} andG2 = {v21, . . . , v2n2}. Eachmember v1i (1 ≤
i ≤ n1) in G1 is associated with a value of objective reputa-
tion, denoted as obj(v1i ), while eachmember v2j (1 ≤ j ≤ n2)

in G2 has subjective trust towards c j members v11, . . . , v
1
c j in

G1 where c j ≤ n1, denoted as sbj(v2j , v
1
1), . . . , sbj(v

2
j , v

1
c j ),

respectively. Then it is an NP-hard problem to obtain the
exact optimal solution optIRS of information recommenda-
tion from G1 to G2.

Proof The time complexity of obtaining the optimal recom-
mendation solution is mainly due to searching the space of
recommendation solutions. It is self-evident that all instances
of recommendation solutions must cover all n2 members in
G2 but not allmembers inG1. Thenwewill get the exact time
complexity of obtaining optIRS by analysing the number of
instances for the space of recommendation solutions.

• The number of instances covering one member in G1 is
nINS(1) = C1

n1 · Cn2
n2 = n1.

• The number of instances covering two members in G1 is

nINS(2) = C2
n1 ·

(
C1
n2 + · · · + Ci

n2 + · · · + Cn2−1
n2

)

= C2
n1 · (2n2 − 2).

. . .

• The number of instances covering G1t (1 ≤ t ≤ n1)
members in G1 is

nINS(t) = Ct
n1 ·

{(
C1
n2 · C1

n2−1 . . .C1
n2−t+1

+ · · · + C1
n2 · C1

n2−1
. . .Cn2−t

n2−t+1

+ · · · + C1
n2 · Cn2−t+2

n2−1 · C1
t−2 · C1

t−3 . . . · C1
1

)

· · ·
+

(
Ci
n2 · C1

n2−i . . .C
1
n2−t+1

+ · · · + Ci
n2 · C1

n2−i . . .C
n2−t
n2−t+1

+Ci
n2 · Cn2−i−t+2

n2−i · C1
t−2 · C1

t−3 . . . · C1
1

)

+ · · · + Cn2−t+1
n2 · C1

t−1 · C1
t−2 · C1

t−3

. . . · C1
1

}

= Ct
n1 · (tn2 − t).

. . .

Then the time complexity of obtaining optIRS is

O(n1, n2) = nINS(1) + nINS(2) · · · + nINS(n1)

=
n1∑
u=1

Cu
n1 · (

un2 − u
)
.

From O(n1, n2), we can see that obtaining optIRS requires
exponential time complexity that characterizes NP problems.

Furthermore, for a given instance of recommendation solu-
tion space IRS which covers G1t (1 ≤ t ≤ n1) members
{v11, . . . , v1t }, determining whether it is the optimal solution
(i.e. IRS= optIRS) can be reduced to the minimum cover-
age problem [19] of the weighted directed bipartite graph
G({v11, . . . , v1t },G2,W ), where W is the values of objective
reputation and subjective trust associated with IRS. Accord-
ing to the graph theory [20], the minimum coverage prob-
lem of a bipartite graph is NP-hard. On the other hand, it
is easy to see that obtaining optIRS can be reduced to the
minimum coverage problem of the bipartite graph by time
complexity of O(n1). And hence obtaining optIRS is also
NP-hard.

From Theorem 1, we can see that obtaining the exact opti-
mal solution optIRS of information recommendation needs
much CPU time, and hence, in this section, we propose an
effective method achieving approximate optimal recommen-
dation solution (AAORS) to quickly obtain the approximate
optimal solution appIRS. Its basic idea can be described as
follows:

We first form the process of information recommendation
from G1 to G2 as a weighted direct acyclic graph
G = (N , E,W )with the set of vertices N = G1∪G2 = {v11,
. . . , v1n1 , v

2
1, . . . , v

2
n2} and the set of edges E = {v1i → v2j |

there is a recommendation path from v1i to v2j}.We define the
weight function W on the sets of N and E as W : N ∪ E →
Z+, such that for each v1i in G1, the value of W equals
obj(v1i ), while for each edge v1i → v2j , the value ofW equals

sbj(v2j , v
1
i ). Since there no connected edges exist inside the

vertices set G1(G2) although weighted directed edges do
exist between G1 and G2, it is easy to see that G is a bipar-
tite graph. Next, we add a control node Θ in G. For each
node ς in G1, we add a directed edge e〈Θ, ς〉 from Θ to
ς with the weight of obj(ς). And then we delete the pre-
vious weight of the node ς . Here we get a new weighted
directed acyclic graphG ′ = (N ′, E ′,W ′)with the set of ver-
tices N ′ = G1 ∪G2 ∪ {Θ} = {v11, . . . , v1n1 , v21, . . . , v2n2 ,Θ},
the set of edges E ′ = E ∪ {Θ → v1i |1 ≤ i ≤ n1} and
the set of weight W ′ = W ∪ {∀v1i ∈ G1,W (Θ → v1i ) =
obj(v1i )} − {∀v1i ∈ G1,W (v1i ) = obj(v1i )}. Finally, we use
the EST-A algorithm proposed in the literature [16] to pro-
duce the extended Steiner tree ESTree(N̂ , Ê, Ŵ ) in G ′ and
obtain the approximate optimal solution appIRS. The set of
members parG1 in appIRS consist of the members taking
part in information recommendation in G1, that is parG1 =
N̂ − {v21, . . . , v2n2 , Θ} ⊆ G1. And if there exists an edge

v(p) → v2j in Ê such that v(p) ∈ parG1 and v2j ∈ G2, then

this edge is the recommendation path from v(p) to v2j and the

weight sbj(v(p), v2j ) of this edge equals the value of subjec-

tive trust of v2j towards v(p).
Based on the above analysis, the AAORS method can be

implemented below.
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Algorithm 1: AAORS
Input: For groups G1 = {v11, . . ., v1n1} and G2 = {v21, . . . ,
v2n2}, each member v1i (1 ≤ i ≤ n1) in G1 is associated
with a value of objective reputation, denoted as obj(v1i ), and
each member v2j (1 ≤ j ≤ n2) in G2 has the subjective trust

towards c j members v11,…, v1c j inG1 where c j ≤ n1, denoted

as sbj(v2j , v
1
1), . . . , sbj(v

2
j , v

1
c j ), respectively.

Output: The approximate optimal solution appIRS of infor-
mation recommendation from G1 to G2.
Begin

1. Construct the weighted directed acyclic graph G =
(N , E,W ):

(a) N :- G1 ∪ G2 = {v11, . . . , v1n1 , v21, . . . , v2n2};
(b) E:- {v1i → v2j | there exists a recommendation path

from v1i to v2j };
(c) W:- {∀v1i ∈ G1,W (v1i ) = obj(v1i )} ∪ {∀v1i →

v2j ∈ E,W (v1i → v2j ) = sbj(v2j , v
1
i )};

2. Construct a new weighted directed acyclic graph G ′ =
(N ′, E ′,W ′) based on G;

(a) N′:- G1 ∪ G2 ∪ {Θ} = {v11, . . . , v1n1 , v21, . . . , v2n2 ,
Θ};

(b) E ′:- E ∪ {Θ → v1i |1 ≤ i ≤ n1};
(c) W ′:- W ∪ {∀v1i ∈ G1,W (Θ → v1i ) = obj(v1i )}− {∀v1i ∈ G1, W (v1i ) =obj(v1i )};

3. Produce the extend Steiner tree ESTree(N̂ , Ê, Ŵ ) on G ′
using the EST-A algorithm [16];

4. parG1:- N̂ − {v21, . . . , v2n2 ,Θ};
5. rePATH:- Ê ;
6. appIRS(parG1,G2):-

∑
v1i ∈parG1

Ŵ (Θ → v1i )

+ ∑
∀vrp∈rePATH Ŵ (rp);

/*Compute the global trust value of the recommendation
solution appIRS */

7. appIRS:- 〈parG1, rePATH, appIRS(parG1,G2)〉;
8. Return appIRS;

End.

In the following part, we theoretically prove that the lower
bound ε of appIRS equals 0.63. That is the global trust value
of appIRS is at least 63% of that obtained for the exact opti-
mal solution optIRS, which is shown in Theorem 2.

Theorem 2 Assume that there exists two groups G1

= {v11, . . . , v1n1} and G2 = {v21, . . . , v2n2} in the social net-
work and the exact optimal solution of information recom-
mendation from G1 to G2 is optIRS. optIRS covers λ1(1 ≤
λ1 ≤ n1) members in G1 which are denoted as optG1 =
{v11, . . . , v1λ1}, and its global trust value is optIRS(optG1,G2).
While the approximate optimal solution appIRS produced

by the AAORS method covers λ2(1 ≤ λ2 ≤ n1) members
in G1 that are denoted as appG1 = {u11, . . . , u1λ2}, and
its global trust value is appIRS(appG1, G2). Then we can
have:

appIRS(appG1,G2)

optIRS(optG1,G2)
≥ 0.63.

Proof Assume the order that appIRS chooses λ2 members
in G1 is v11, v

1
2, . . . , v

1
λ2
, and for each member v1i ∈ appG1,

selecting it can gain the trust value ai .Meanwhile, we assume
that the order of optIRS chooses λ1 members in
G1 is u11, u

1
2, . . . , u

1
λ1

and for each member u1i ∈ optG1,
selecting it can gain the trust value bi . Then we can have:

appIRS(appG1,G2) =
λ2∑
i=1

ai and optIRS(optG1,G2)

=
λ1∑
i=1

bi .

For each pair of members v1i and u1r in G1, we let xri be
the common part of v1i ’s trust value and u

1
r ’s trust value con-

tributing to the information recommendation. Then the fol-
lowing four inequalities can be satisfied: (1)

∑λ1
r=1 xri ≤ ai ;

(2) ∀r ∈ [1, λ1], br ≤ a1; (3) ∀r ∈ [1, λ1], br −xr1 ≤ a2; (4)
∀r ∈ [1, λ1], br−xr1−xr2−· · ·−xr(i−1) ≤ ai . Then accord-
ing to the above four inequalities, we can get the following
λ2 inequalities.

[1] optIRS(optG1,G2) ≤ λ1 · a1;
[2] optIRS(optG1,G2) ≤ λ1 · a2 + a1;

· · ·

[λ2] optIRS(optG1, G2) ≤ λ1 · aλ2 + aλ2−1 +· · ·+ a2 + a1.

It is easy to see that optIRS(optG1,G2) is not greater than any
one of λ1 ·a1, λ1 ·a2 + a1, . . ., λ1 ·aλ2 + aλ2−1 + · · · + a2 +
a1, and when these λ2 values are equal, optIRS(optG1,G2)

will be the greatest. Hence, we can have

optIRS(optG1,G2) ≤ λ1 ·
(

λ1

λ1 − 1

)λ2−1

· aλ2 .

On the other hand, when these λ2 values are equal, ∀i ∈
[1, λ2 − 1], λ1 · ai+1 − (λ1 − 1) · ai = 0. That is ai =
λ1/(λ1 − 1) · ai+1. Then we can have

appIRS(appG1,G2) =
λ2−1∑
i=0

(
λ1

λ1 − 1

)i

· aλ2 .

Thereby we can have the following inequality.
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appIRS(appG1,G2)

optIRS(optG1,G2)

≥ 1/k ·
λ2−1∑
i=0

(
λ1

λ1 − 1

)i−λ2+1

≥ 1/k ·
(
1 + λ1 − 1

λ1
+ · · · +

(
λ1 − 1

λ1

)λ2−1
)

≥ 1 −
(

λ1 − 1

λ1

)λ2

.

Then when λ1 and λ2 approach +∞, 1 −
(

λ1−1
λ1

)λ2
will

approach 1 − 1/e and we can get the following inequality.

appIRS(appG1,G2)

optIRS(optG1,G2)
≥ 1 − 1/e.

That is,

appIRS(appG1,G2)

optIRS(optG1,G2)
≥ 0.63.

Therefore, Theorem 2 is correct.
The AAORS method has polynomial time complexity,

which is shown in Theorem 3.

Theorem 3 Given twogroupsG1 = {v11, . . . , v1n1}andG2 =
{v21, . . . , v2n2} in the social network, the approximate optimal
solution appIRS from G1 to G2 produced by our AAORS
method has the polynomial time complexity:

O
(
n1 × n2 + (n1 + n2)

e/(e−1) + (n1 + n2) log(n1 + n2)
)

≈ O
(
n1 × n2 + (n1 + n2)

1.58 + (n1 + n2) log(n1 + n2)
)

.

Proof In AAORS, the time cost of constructing the weighted
directed acyclic graph G = (N , E,W ) is O(n1 + n2) and
requires a time cost of O(n1 + n2) to construct the new
weighted directed acyclic graphG ′ = (N ′, E ′,W ′) based on
G. Meanwhile according to [16], a time cost of
O((n1 + n2)e/(e−1) + (n1 + n2)log(n1 + n2)) is required for
building the extend Steiner treeESTree(N̂ , Ê, Ŵ ) onG ′ with
the EST-A algorithm. Furthermore, it takes O(n1 + n2 + n1
×n2) forESTree(N̂ , Ê, Ŵ ) to produce the approximate opti-
mal recommendation solution appIRS. Therefore, the total
time cost for AAORS is equal to O(n1 × n2 + n1 + n2 +
(n1+n2)e/(e−1)+(n1+n2) log(n1+n2)+n1×n2+n1+n2) =
O(n1 × n2 + (n1 + n2)e/(e−1) + (n1 + n2)log(n1 + n2))
while we can get the total time cost O(n1 × n2 +(n1 +
n2)1.58 + (n1 + n2)log(n1 + n2)) with e=2.72 substituted.
So Theorem 3 is correct.

4 Obtain the Recommendation Solution Under the
Global Objective Reputation Constraint

In real applications, the global objective reputation should
not be lower than a certain threshold ∂ . This can ensure the

reliability of information sources. For convenience, we refer
to the constraint as ‘∂ constraint’. Thus, the problem defini-
tion presented in Sect. 2 can be modified as follows:

Assume there are twogroupsG1 andG2 in social networks
whose member sets are, respectively, G1 = {v11, . . . , v1n1}
and G2 = {v21, . . . , v2n2}. Each member v1i (1 ≤ i ≤ n1) in
G1 is associated with a value of objective reputation, denoted
as obj(v1i ), while eachmember v2j (1 ≤ j ≤ n2) inG2 has the

subjective trust towards c j members v11, . . . , v
1
c j inG1 where

c j ≤ n1, denoted as sbj(v2j , v
1
1), . . . , sbj(v

2
j , v

1
c j ), respec-

tively. Then the optimal recommendation solution conIRS
satisfying ∂ constraint from G1 to G2 can be defined as fol-
lows: obtaining subG1 ⊆ G1 such that for ∀v2j (1 ≤ j ≤
n2) ∈ G2, v

2
j will receive information from some members

inG1, and ascertaining the recommendation path frommem-
bers in subG1 to members in G2 such that optIRS
(subG1,G2) = ∑

v1i ∈subG1
obj(v1i )+

∑
∀v2j∈G2

sbj(v2j , v
1
i ) is

greatest under the constraint condition of conIRS(subG1) =∑
v1i ∈subG1

obj(v1i ) ≥ ∂ .
To solve the aboveproblem,weextend theAAORSmethod

and introduce the concept of the index of reputation gain.
Assume that XS is a subset of G1 and for each member v2j in
G2, there always exists a member in XS who has the recom-
mendation path to v2j . That is, XS and G2 form an instance
xsIRS of recommendation solution space. Thus for a member
ξ /∈ XS in G1, its index of reputation gain for xsIRS can be
expressed as

RBinx(ξ) = xsIRS(XS ∪ {ζ },G2) − xsIRS(XS,G2)

xsIRS(XS ∪ {ζ }) − xsIRS(XS)
.

Based on the index of reputation gain,we extendAAORSand
denote this extended version as X-AAORS. Its basic idea can
be described as follows. We first produce two recommenda-
tion solutions. One is the approximate optimal recommen-
dation solution appIRS produced by AAORS which covers
the member set appG1 ⊆ G1. The other one is mxIRS which
covers the member set mxG1 ⊆ G1 satisfying the condition
that

∑
v∈mxG1

obj(v) is the greatest. Note that mxG1 can be
built as follows: for each v ∈ G2, we first find the member u
from G1 such that u has the recommendation path to v and
has the greatest object reputation value and then add u into
mxG1. Then for eachmember v of⊆ G1, X-AAORS creates
a list List(v) to store all members receiving information from
v. And based on the index of reputation gain, we repeatedly
execute the following steps until conIRS(subG1) is lower than
the threshold ∂ given by users: (i) visit appG1 and insert the
member mv with the greatest index of reputation gain into
mxG1; (ii) create a list List(mv) to store all members from
G2 which has a recommendation path frommv; (iii) for each
existing list l, delete all members in List(mv) from l; (iv)
remove each member whose list is null from mxG1. Finally,
X-AAORS returns the information recommendation solution
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formed by mxG1 and G2 to users. The complete X-AAORS
method can be shown below.

Algorithm 2: X-AAORS
Input: G1 = {v11, . . . , v1n1} and G2 = {v21, . . . , v2n2}, each
member v1i (1 ≤ i ≤ n1) in G1 is associated with a value of
objective reputation, denoted as obj(v1i ), while each mem-
ber v2j (1 ≤ j ≤ n2) in G2 has the subjective trust towards

c j members v11, . . . , v
1
c j in G1 where c j ≤ n1, denoted as

sbj(v2j , v
1
1), . . . , sbj(v

2
j , v

1
c j ), respectively. The global objec-

tive reputation threshold ∂ .
Output: The optimal recommendation solution appIRS sat-
isfying the constraint of ∂ .

Begin
1.  Use AAORS to produce the approximate optimal recommendation solution appIRS

which covers the member set mxG1⊆G1;
2.  If appIRS(appG1) ∂≥ Then Return appIRS;
3.  Else create the recommendation solution mxIRS that covers the member set

mxG1⊆G1 satisfying the condition that ∑ ∈ 1mxGv )v(obj is the greatest;
4.  If appIRS(mxG1) ∂< Then
5.    Return ‘There is no information recommendation solution satisfying

the constraintof ∂.’;
6.  Else
7.    ϒ← ∑ ∈ 1mxGv )v(obj −∂;
8.    For ∀v∈ appG1 Do 
9.      Create a list for v;  

10.      List(v):−{v’|v’∈G2∧there exists a recommendation path between v’ and v};
11.    While ϒ<0 Do
12.      RBinx←0;  vRB←NULL;
13.    For ∀ξ∈mxG1−appG1 Do

14.        RBinx(ξ)←
)appG(appIRS}){appG(appIRS

)G,appG(appIRS)G},{appG(appIRS
11

2121

−∪
−∪

ζ
ζ ;

15.        If RBinx(ξ)>RBinx Then RBinx ←RBinx(ξ);  vRB←ξ;
16.      If ϒ+RBinx(ξ)>0 Then
17.        Create a list List(vRB) for vRB;  
18.        List(vRB) ←{v|v∈G2∧there exists a recommendation path between v and    

vRB};
19.        mxG1← mxG1−{vRB};  appG1← appG1∪{vRB};
20.        For each list List(u) except List(vRB) Do
21.          List(u)←List(u)−(List(v)∩List(vRB));
22.          If List(u)−List(vRB)=∅ Then
23.            Delete List(u);
24.            If )appG(appIRS})u{appG(appIRS 11 −− <0 Then 
25.              mxG1← mxG1∪{u}; appG1← appG1−{u};  
26.              ϒ←ϒ- })u{appG(appIRS −1 ;
27.          ϒ←ϒ+ obj(vRB);
28.    Return appIRS;
End.

X- AAORS has the polynomial time complexity, which
can be shown in Theorem 4.

Theorem 4 The X-AAORS method can adjust the recom-
mendation solution produced by the AAORS method in the
polynomial time complexity of O(n31 + n2 × n21) and obtain
the optimal recommendation solution satisfying the ∂ con-
straint, where n1 and n2 are the numbers of members in G1

and G2, respectively.

Proof X-AAORS first takes O(n1 × n2) to create the rec-
ommendation solution mxIRS. And in order to compute the
index of reputation gain, for any two members u ∈ G2

and v ∈ appG1, X-AAORS needs O(n1 × (n21 + n1 ×
n2)) = O(n31 + n21 × n2) to get the shortest path from v to u.
Moreover, the while loop in X-AAORS takes O(|mxG1| ×

|appG1|×|G2|) = O(n21×n2). Therefore, X-AAORS needs
O(n1 × n2 + n31 + n21 × n2+ n21 × n2) = O(n31 + n2 × n21)
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in total to adjust the recommendation solution appIRS pro-
duced by AAORS. Accordingly, Theorem 4 is correct.

5 Experimental Evaluation

In this section, we evaluate the effectiveness of our AAORS
methodand its extendedversionX-AAORSviadetailed exper-
iments.

5.1 Experimental Setting

In the experiments, the numbers of members of G1 and G2

vary from 1× 104 to 5× 104. Objective reputation values of
members in G1 are generated to satisfy the Gauss distribu-
tion [21], and we normalize these objective reputation values
in [0,1] for convenience. The mean number of recommenda-
tion paths between G1 and G2 varies from 10 to 50. That is
for each member u in G2, there exists 10 to 50 members in
G1 on average which recommend information to u. Subjec-
tive trust values of members in G2 towards the ones in G1

are also generated to satisfy the Gauss distribution. Also we
normalize these subjective trust values in [0, 1].

The computers in experiments are configuredwith a quad-
core i5-3450 CPU, 4G memory and 500G hard disk. The

operating system is CentOS Linux 6.4. All methods are com-
piled using JDK 1.6.

5.2 Experimental Evaluation for the AAORS Method

In this section, we evaluate the effectiveness of the AAORS
method. The two compared methods are (i) OPTIMAL: get
the exact optimal solution of information recommendation
from G1 to G2 exhaustively with exponential time complex-
ity. (ii) GREEDY: for each member v in G2,obtain the most
trustworthy member in G1 and thus generate the greedy rec-
ommendation solution.

The experiments divide into three groups: (1) The number
of members in G2 is fixed to 3 × 104, and the mean number
of recommendation paths between G1 and G2 is fixed to 30,
while the number of members in G1 varies from 1 × 104 to
5×104. (2) The number of members inG1 is fixed to 3×104,
and the mean number of recommendation paths between G1

and G2 is fixed to 30, while the number of members in G2

varies from 1×104 to 5×104. (3) The numbers of members
in G1 and members in G2 are fixed to 3 × 104, while the
mean number of recommendation paths between G1 and G2

varies from 10 to 50. Figures 3 and 4 shows the experimental
results.

Fig. 3 Experimental evaluation
for the reliability of
recommendation solutions
produced by three methods. a
The first group of experiments.
b The second group of
experiments. c The third group
of experiments
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Fig. 4 Experimental evaluation
for the time cost of three
methods. a The first group of
experiments. b The second
group of experiments. c The
third group of experiments
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In Fig. 3, we take OPTIMAL as the benchmark since its
recommendation solution is the exact optimal. Andwe let the
reliability of recommendation solution of OPTIMAL equal
100%. From Fig. 3, we can see that the reliability of the
recommendation solution produced by AAORS approaches
OPTIMAL’s, while the reliability of recommendation solu-
tion produced by GREEDY is relatively poor. It is mainly
because (i) AAORS uses the extended Steiner tree to get
the approximate optimal recommendation solution so that
the reliability of the solution can be well guaranteed. (ii)
For each member v in G2, GREEDY obtains the member
in G1 that is the most trust for v and generates the final
greedy recommendation solution. And this recommendation
solution is easy to fall into the local optimal problem. For
example, in Fig. 3a, when there are 1 × 104 members in G1

and 3× 104 members in G2, the reliability of recommenda-
tion solution produced by AAORS is 93.6% of OPTIMAL’s,
while the reliability of recommendation solution produced
by GREEDY is only 30.3% of OPTIMAL’s. And in Fig. 3c,
when there are 40 recommendation paths betweenG1 andG2

on average, the reliability of recommendation solution pro-
duced by AAORS is 82.9% of OPTIMAL’s, while the relia-
bility of recommendation solution produced by GREEDY is
only 33.2% of OPTIMAL’s. Furthermore, we can see from
Fig. 3 that under each experimental setting, the reliability of
recommendation solution produced by AAORS is not <70%
ofOPTIMAL’s,which validates the correctness ofTheorem2
proposed in Sect. 3.

Although the reliability of the exact recommendation solu-
tion produced by OPTIMAL is slightly higher than
AAORS’s, in Fig. 4 we can find that OPTIMAL take enor-
mous time in the experiments. This is mainly because for
obtaining the exact optimal solution,OPTIMAL involves vis-
iting all instances in the space of recommendation solutions
and thus has an exponential time cost, while AAORS only
needs the polynomial time complexity to return the approx-
imate optimal recommendation solution and its runtime is
close to the one of GREEDY. For example, in Fig. 4a, when
there are 5 × 104 members in G1, the runtime of AAORS is
only 1.7% of OPTIMAL’s, while the runtime of GREEDY
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Fig. 5 Experimental evaluation
for the reliability of
recommendation solutions
produced by two methods. a The
first group of experiments. b The
second group of experiments

Fig. 6 Experimental evaluation
for the time cost of two
methods. a The first group of
experiments. b The second
group of experiments

is only 0.56% of OPTIMAL’s. And in Fig. 4c, when there
are 50 recommendation paths between G1 and G2 on aver-
age, the runtime of AAORS is only 0.45% of OPTIMAL’s,
while the runtime of GREEDY is only 0.34% of OPTI-
MAL’s.

Therefore, from the experimental evaluation shown in
Figs. 3 and 4, we can conclude that AAORS proposed in
this paper can not only balance the reliability of recommen-
dation solution and the running time, but also has a good
scalability.

5.3 Experimental Evaluation for the X-AAORS Method

In this section,we evaluate the effectiveness of theX-AAORS
method. The comparedmethod is GREEDY. For the approxi-
mate recommendation solution appG1 produced byAAORS,
GREEDY repeatedly executes the following steps until the
global objective reputation value is greater than or equal to
the threshold ∂: (i) It obtains the member v in appG1 with
the lowest object reputation value; (ii) assume that there
exists recommendation paths from v to members in the set
vG2 ⊆ G2, it gets the member v′ in G1–appG1 which has
the recommendation paths to vG2 and has the greatest object
reputation value, and then exchanges v with v′ in appG1.

The experiments divide into two groups: (1) The numbers
of members in G1 and G2 are both fixed to 1 × 104, and
the mean number of recommendation paths from G1 to G2

is set to 10. Under the above experimental setting, we use
AAORS to produce the approximate recommendation solu-
tion appIRS which is the input of X-AAORS and GREEDY.

The threshold ∂ varies from 500 to 900. (2) The numbers
of members in G1 and G2 are both fixed to 5 × 104, and
the mean number of recommendation paths from G1 to G2

is set to 50. Under the above experimental setting, we use
AAORS to produce the approximate recommendation solu-
tion appIRS which is the input of X-AAORS and GREEDY.
The threshold ∂ varies from 5000 to 9000. Figures 5 and 6
shows the experimental results.

From Fig. 5, we can see that after X-AAORS adjusts the
recommendation solution, its reputation value ismuch higher
that GREEDY’s in each experimental setting. It is mainly
because (i) X-AAORS uses the index of reputation gain to
slightly adjust the recommendation solution until the global
objective reputation value is not less than the threshold ∂ .
(ii) While GREEDY repeatedly changes the member with
the lowest objective reputation value, it is easy to fall into
the local optimal problem. For instance, in Fig. 5a, when
the threshold ∂ equals 700, the reliability of recommenda-
tion solution adjusted by X-AAORS is 9634.2, while the
one adjusted by GREEDY is 3746.5, i.e. only 38.9% of X-
AAORS. And in Fig. 5b, when the threshold ∂ equals 800,
the reliability of recommendation solution adjusted by X-
AAORS is 39,957.4, while the one adjusted by GREEDY is
17,093.8, i.e. only 42.8% of X-AAORS.

While from Fig. 6, we can see that the time cost of X-
AAORS is close to GREEDY’s, but slightly higher than
GREEDY’s. For instance, in Fig. 6a, when the threshold ∂

equals 700, X-AAORS and GREEDY need 64.5 and 57.4 s,
respectively. That is the time cost of GREEDY is 89.0% of
the one of X-AAORS. And in Fig. 6b, when the threshold ∂
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equals 800,X-AAORSandGREEDYneed297.2 and248.3 s,
respectively. That is, the time cost of GREEDY is 83.5% of
the one of X-AAORS.

Therefore, from the experimental evaluation shown in
Figs. 5 and 6, we can conclude that X-AAORS proposed
in this paper can not only balance the reliability of adjusted
recommendation solution and the running time, but also has
a good scalability.

6 Conclusion

Information recommendation between user groups in social
networks has been a research hotspot in recent years. How-
ever, it is an NP-hard problem to obtain the exact optimal
recommendation solution. In this paper, based on the evalu-
ation models of objective reputation and subjective trust, we
propose an efficient method AAORS with polynomial time
complexity to obtain the approximate optimal recommenda-
tion solution. We also theoretically prove that AAORS has
the approximate lower bound 0.63. Furthermore, based on
the index of reputation gain, we adjust the recommendation
solution produced by theAAORSmethod in polynomial time
and thereby rapidly obtain the optimal recommendation solu-
tion satisfying the global reputation constraint. The detailed
theoretical analyses and extensive experiments demonstrate
that our proposed methods are both efficient and effective.

In the future work, it might also be good to compare some
real example(s) of social network data sets and show how
AAORS can avoid local minima encountered by GREEDY
and nearly or always find a ‘robust’ solution which is com-
parable to the global optimum found by the “brute force”
OPTIMAL method.
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